JPH0444961B2 - - Google Patents

Info

Publication number
JPH0444961B2
JPH0444961B2 JP59258375A JP25837584A JPH0444961B2 JP H0444961 B2 JPH0444961 B2 JP H0444961B2 JP 59258375 A JP59258375 A JP 59258375A JP 25837584 A JP25837584 A JP 25837584A JP H0444961 B2 JPH0444961 B2 JP H0444961B2
Authority
JP
Japan
Prior art keywords
self
light wave
propelled vehicle
distance
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59258375A
Other languages
Japanese (ja)
Other versions
JPS61134812A (en
Inventor
Takenori Nakanishi
Takuo Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIKAWAJIMA KENSA KEISOKU KK
Original Assignee
ISHIKAWAJIMA KENSA KEISOKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIKAWAJIMA KENSA KEISOKU KK filed Critical ISHIKAWAJIMA KENSA KEISOKU KK
Priority to JP59258375A priority Critical patent/JPS61134812A/en
Publication of JPS61134812A publication Critical patent/JPS61134812A/en
Publication of JPH0444961B2 publication Critical patent/JPH0444961B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自走車の走行制御方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the running of a self-propelled vehicle.

〔従来の技術〕[Conventional technology]

従来、自走車を設定された経路に沿つて走行さ
せることにより、探傷、溶接等といつた作業を自
動的に行わせるような場合、予め走行ラインに沿
つてレールを敷設し、該レールに沿つて自走車を
走行させるようにしているのが一般的である。
Conventionally, when a self-propelled vehicle is run along a set route to automatically perform work such as flaw detection or welding, a rail is laid along the running line in advance and the rail is attached to the track. It is common for self-propelled vehicles to run along the road.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記従来方式においては、レールの設
置が大変であり、特に走行ラインが複雑な曲線形
状を有している場合にはレールの製作、設置に多
大の時間と費用を要する等の問題を有していた。
However, in the conventional method described above, it is difficult to install the rails, and especially when the running line has a complicated curved shape, there are problems such as the production and installation of the rails requires a large amount of time and cost. Was.

本発明は、レール等の軌条を要することなしに
自走車を任意の設定された走行ラインに沿つて走
行させることのできる自走車の走行制御方法を提
供することを目的としている。
An object of the present invention is to provide a travel control method for a self-propelled vehicle that allows the self-propelled vehicle to travel along an arbitrary set travel line without requiring a track such as a rail.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記技術的課題を解決するためにな
したもので、互に直角を成す如くX方向とY方向
に反射板を配設し、且つ夫々の反射板装置に対し
て鉛直になるように互に90゜の方向に光を投射し
て前記各反射板装置との間の距離を計測できるよ
うにした2個の光波距離計を、下部車体に対して
旋回自在に支持された上部旋回体を有する自走車
の前記上部旋回体上に取り付け、各反射板装置と
の間の距離を計測する一方の光波距離計を、他方
の光波距離計に対して前記90゜の位置から所要の
同一角度だけ左右に首振りを行わせ、左と右に最
大に首を振らせた時の反射板装置上の2点位置と
の間の距離を夫々計測し、該2点位置との間の距
離が一致するように前記上部旋回体の旋回位置を
調整しながら、X、Y方向の計測距離に基づいて
自走車の走行方向を制御することを特徴とする自
走車の走行制御方法、に係るものである。
The present invention has been made in order to solve the above technical problem, and includes reflective plates disposed in the X direction and Y direction so as to be perpendicular to each other, and to be perpendicular to each reflective plate device. Two light wave distance meters capable of projecting light in directions 90 degrees from each other to measure the distance between the reflectors and the respective reflector devices are mounted on an upper swinging body that is rotatably supported on the lower body of the vehicle. One light wave distance meter is mounted on the upper revolving body of the self-propelled vehicle having a body and measures the distance between each reflector plate device, and the light wave range meter is mounted on the upper revolving body of the self-propelled vehicle having a body and measures the distance between the light wave distance meter and the other light wave range meter from the above-mentioned 90° position. Make the head swing left and right by the same angle, measure the distance between the two points on the reflector device when the head swings to the left and right to the maximum, and measure the distance between the two points. A traveling control method for a self-propelled vehicle, the method comprising controlling the traveling direction of the self-propelled vehicle based on measured distances in the X and Y directions while adjusting the turning position of the upper rotating structure so that the distances match; This is related to.

〔作 用〕[Effect]

従つて、本発明によれば、90゜方向に投射する
光の一方を、90゜の位置から左右に所要の同一角
度で首を振らせて反射板の2点の位置との間の距
離を計測し、その点の計測距離が一致するように
上部旋回体を旋回させるようにしているので、前
記光波距離計からの光を常に反射板に対して直角
に投射して距離を計測することができ、よつて自
走車の位置を正確に知つて任意の設定された方向
に自走車を正確に走行させることができる。
Therefore, according to the present invention, one of the lights projected in the 90° direction is swung from the 90° position to the left and right at the same required angle, and the distance between the two points on the reflector is determined. Since the upper rotating body is rotated so that the measured distance at that point matches, the distance can be measured by always projecting the light from the light wave rangefinder at right angles to the reflector. Therefore, the position of the self-propelled vehicle can be accurately known and the self-propelled vehicle can be accurately driven in any set direction.

〔実施例〕〔Example〕

以下本発明の一実施例を図面を参照しつつ説明
する。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は鋼板1の探傷等に適用した本発明の概
略を示すもので、水平に置かれた矩形鋼板1の直
角な2辺に沿つて垂直なX軸反射板2とY軸反射
板3を設置する。反射板2,3は、例えば板4
に、その表面に微細な球状レンズを接着してなる
反射シート5等を貼り付けた構成を有し、投射さ
れた光を再帰性良く反射させることができるよう
になつている。
FIG. 1 schematically shows the present invention applied to flaw detection of a steel plate 1, in which a vertical X-axis reflector 2 and a Y-axis reflector 3 are aligned along two right-angled sides of a rectangular steel plate 1 placed horizontally. Set up. The reflecting plates 2 and 3 are, for example, the plate 4.
In addition, it has a structure in which a reflective sheet 5 made of fine spherical lenses is attached to the surface thereof, so that the projected light can be reflected with good retroactivity.

又鋼板1上には、X軸、Y軸の直角2方向に光
を投射して前記X軸反射板2及びY軸反射板3か
ら反射して戻つて来る光の位相差を計ることによ
りその間の距離を計測するようにした光波距離計
6,7を上部に備えてなる自走車8が設けられて
いる。
Furthermore, by projecting light onto the steel plate 1 in two directions at right angles to the X-axis and Y-axis, and measuring the phase difference of the light reflected from the X-axis reflector 2 and Y-axis reflector 3, the distance between the two directions is measured. A self-propelled vehicle 8 is provided which is equipped with light wave distance meters 6 and 7 on its upper part to measure the distance between the two.

第2,3図は、上記自走車8の詳細例を示すも
ので、自走車8は下部車体9とその上部に支持軸
10を介して旋回自在に支持された上部旋回体1
1とにより構成されており、下部車体9の前後、
左右に設けられた走行輪12a,12a′,12
b,12b′によつて鋼板1上に走行可能に支持さ
れている。又、前後一側における左右の走行輪1
2a,12bの夫々が走行駆動モータ13a,1
3bと直結するか、又は図示するようにギヤ14
a,14bを介して同時に又は別個に回転駆動す
ることができるようになつている。
2 and 3 show detailed examples of the self-propelled vehicle 8. The self-propelled vehicle 8 includes a lower body 9 and an upper rotating body 1 rotatably supported on the upper part thereof via a support shaft 10.
1, the front and rear of the lower body 9,
Running wheels 12a, 12a', 12 provided on the left and right
b, 12b' is movably supported on the steel plate 1. In addition, left and right running wheels 1 on one side of the front and back
2a and 12b are travel drive motors 13a and 1, respectively.
3b or gear 14 as shown.
a and 14b, it is possible to drive the rotation simultaneously or separately.

又、前記上部旋回体11上には、前記光波距離
計6,7の一方6が固定され、又他方7は支点1
5を中心に水平方向に回動可能に設けられてい
る。更に、前記光波距離計7には円弧ギヤ16が
固定され、且つ上部旋回体11上に設けた首振り
駆動モータ17の駆動ギヤ18が前記円弧ギヤ1
6に噛合していることにより、前記モータ17正
逆転させて前記光波距離計7を固定側の光波距離
計6に対して90゜の位置から左右に所要の同一角
度θで首振りを行わせることができるようになつ
ている。
Further, one of the light wave distance meters 6 and 7 is fixed on the upper revolving body 11, and the other 7 is fixed to the fulcrum 1.
It is provided so as to be rotatable in the horizontal direction about 5. Further, an arc gear 16 is fixed to the light wave distance meter 7, and a drive gear 18 of a swing drive motor 17 provided on the upper revolving body 11 is connected to the arc gear 1.
6, the motor 17 is rotated in the forward and reverse directions to swing the light wave distance meter 7 from a position of 90 degrees to the left and right at the same required angle θ with respect to the light wave distance meter 6 on the fixed side. It is now possible to do so.

更に、前記支持軸10に旋回用の固定ギヤ19
を設け、且つ該固定ギヤ19に噛合する駆動ギヤ
20を有した旋回駆動モータ21を上部旋回体1
1上に設け、前記旋回駆動モータ21の作動によ
り上部旋回体11の位置を下部車体9に対して支
持軸10を中心に旋回させることができるように
なつている。
Further, a fixed gear 19 for rotation is attached to the support shaft 10.
A swing drive motor 21 having a drive gear 20 meshing with the fixed gear 19 is connected to the upper swing structure 1.
The rotating upper body 11 can be rotated about the support shaft 10 with respect to the lower vehicle body 9 by operating the rotation drive motor 21.

又、自走車から離れた位置には、第4図に示す
ように、コンピユータ22及び指示装置23に接
続され、前記光波距離計6,7からの検出信号を
入力して前記コンピユータ22との間で信号の授
受を行い、前記走行駆動モータ13a,13b及
び首振り駆動モータ17の駆動制御を行うための
制御装置25が別置に設けられ、該制御装置25
が信号ケーブル24及び端子箱27を介して自走
車の各駆動源に接続されている。上記した自走車
8の所要位置に、所要数の探傷装置26(第2図
参照)を設置して鋼板1の探傷を行うようにす
る。尚、第1図に示すような鋼板1は、その端縁
から所要の寸法だけ内側の位置、及び更にそこか
ら内側に所要の間隔を有した位置において探傷検
査を行うことが義務づけられるような場合が多々
有り、図中L1,L2…はX軸反射板2に平行な検
査ライン、M1,M2…はY軸反射板3に平行な検
査ラインを示している。
Also, at a position away from the self-propelled vehicle, as shown in FIG. A control device 25 is provided separately for transmitting and receiving signals between the drive motors 13a, 13b and the swing drive motor 17, and controls the drive motors 13a, 13b and the swing drive motor 17.
is connected to each drive source of the self-propelled vehicle via a signal cable 24 and a terminal box 27. A required number of flaw detection devices 26 (see FIG. 2) are installed at required positions of the above-mentioned self-propelled vehicle 8 to perform flaw detection on the steel plate 1. In addition, when the steel plate 1 as shown in Fig. 1 is required to be inspected at a position a required distance inside from its edge, and at a position further inward from there at a required distance, In the figure, L 1 , L 2 . . . indicate inspection lines parallel to the X-axis reflector 2, and M 1 , M 2 . . . indicate inspection lines parallel to the Y-axis reflector 3.

第1図に示すような矩形の鋼板1の探傷を行う
に際しては、まず鋼板1の寸法、査ラインL1
L2…及びM1,M2…と各反射板2,3との間の距
離からなる自走車の進路図形を前記指示装置23
に与えると共に、光波距離計7の首振り角度θ及
び周期、並びに自走車8の走行速度等も与えてお
く。
When performing flaw detection on a rectangular steel plate 1 as shown in FIG.
The direction figure of the self-propelled vehicle consisting of the distance between L 2 .
In addition, the swing angle θ and period of the light wave distance meter 7, the traveling speed of the self-propelled vehicle 8, etc. are also given.

上記状態において、自走車8をスタート点Sに
載置し、装置をONに操作すると、制御装置25
により走行駆動モータ13a,13bが駆動さ
れ、自走車8は設定された速度で走行を開始す
る。
In the above state, when the self-propelled vehicle 8 is placed at the starting point S and the device is turned on, the control device 25
The traveling drive motors 13a and 13b are driven, and the self-propelled vehicle 8 starts traveling at the set speed.

このとき、光波距離計7が所要の角度θで左右
に首を振り、その際の距離Y1とY2を検出してお
り、その検出信号がコンピユータ22に導かれて
いる。上記Y1とY2が異なつていると、光波距離
計7が反射板2に対して直角を有していない(正
面を向いていない)ことになるので、この傾斜方
向と傾斜の程度を演算し、その演算結果に基づ
き、制御装置25を介して旋回駆動モータ21を
駆動し、前記Y1とY2とが一致するように上部旋
回体11を旋回させる。これにより、X、Yの正
確な(真の)距離が計測されることになる。更に
光波距離計7による計測距離が予め指示装置23
によつて設定された一定の値になるように制御装
置25を介して走行駆動モータ13a,13bの
駆動を制御することにより、自走車8を設定され
た検査ラインL1に沿つて自走させることができ
る。従つて、この走行と同時に、探傷装置26を
作動させて検査ラインL1に沿つた探傷検査を行
うことができる。
At this time, the light wave distance meter 7 swings its head left and right at a required angle θ and detects the distances Y 1 and Y 2 at that time, and the detection signals are led to the computer 22 . If Y 1 and Y 2 are different, the optical distance meter 7 will not be at a right angle to the reflector 2 (not facing the front), so calculate the direction and degree of inclination. Then, based on the calculation result, the swing drive motor 21 is driven via the control device 25 to swing the upper swing structure 11 so that Y 1 and Y 2 coincide with each other. As a result, accurate (true) distances in X and Y can be measured. Furthermore, the distance measured by the light wave distance meter 7 is determined in advance by the indicating device 23.
By controlling the driving of the travel drive motors 13a and 13b via the control device 25 so that the drive motors 13a and 13b reach a constant value set by can be done. Therefore, at the same time as this traveling, the flaw detection device 26 can be activated to perform flaw detection along the inspection line L1 .

自走車8が検査ラインL1の右方向端部まで移
動して来ると、次の検査ラインL2に移動するた
めに90゜ずつ2回の方向変換を行つてターンする。
即ち、検査ラインL1の端部位置に来ると光波距
離計6によつてそれが検出されて自走車8の走行
が停止され、続いて自走車8が検査ラインL2
方向を向くように90゜方向転換され、続いて更に
検査ラインL2位置まで走行された後、更に90゜方
向転換される。このとき、自走車8の方向転換は
一方の走行駆動モータを停止させた状態で他方を
駆動するか、又は互に逆方向に回転させることに
よつて行われる。又上記自走車の方向転換と一緒
に光波距離計6,7が向きを変えてしまつたので
は、投射する光が反射板から外れて計測が不能に
なつてしまう。このため、前記自走車8の方向変
換と同時にその方向変換の方向と反対の方向に
90゜ずつ2回上部旋回体11を旋回させる。これ
により、光波距離計6,7は常に反射板2,3の
正面を向いていることになる。
When the self-propelled vehicle 8 moves to the right end of the inspection line L1 , it changes direction twice by 90 degrees and turns in order to move to the next inspection line L2 .
That is, when it comes to the end position of the inspection line L1 , it is detected by the light wave distance meter 6, the traveling of the self-propelled vehicle 8 is stopped, and the self-propelled vehicle 8 then turns in the direction of the inspection line L2 . Then, after traveling further to the inspection line L2 position, the direction is further changed by 90 degrees. At this time, the direction of the self-propelled vehicle 8 is changed by driving one of the travel drive motors while the other is stopped, or by rotating the motors in opposite directions. Furthermore, if the light wave range finders 6 and 7 change direction when the self-propelled vehicle changes direction, the projected light will come off the reflector and measurement will become impossible. Therefore, at the same time as the self-propelled vehicle 8 changes direction,
The upper rotating body 11 is rotated twice by 90 degrees. As a result, the optical range finders 6 and 7 always face the front of the reflectors 2 and 3.

上記により、検査ラインL1,L2…の探傷検査
を能率的に行うことができ、また検査ラインM1
M2…についても同様に実施することができる。
As a result of the above, the inspection lines L 1 , L 2 ... can be efficiently inspected, and the inspection lines M 1 ,
The same method can be applied to M 2 . . .

第5図は、扇形の鋼板1′の探傷に適用した場
合の一例を示すもので、曲線の検査ラインNが進
路図形として前記指示装置23に与えられている
ことにより、光波距離計6,7が常に反射板2,
3の正面を向くように上部旋回体11の位置が調
整された状態において、光波距離計6,7のX、
Yの計測値が設定された値になるように自走車8
の走行方向が制御される。これにより自走車8を
曲線の検査ラインNに沿つて走行させながら探傷
検査を行うことができる。
FIG. 5 shows an example of flaw detection applied to a fan-shaped steel plate 1', in which a curved inspection line N is given to the indicating device 23 as a path figure, so that the optical distance meter 6, 7 is always the reflector 2,
When the position of the upper rotating body 11 is adjusted so as to face the front of the optical distance meter 6, 7,
Self-propelled vehicle 8 so that the measured value of Y becomes the set value.
The direction of travel is controlled. Thereby, the flaw detection inspection can be performed while the self-propelled vehicle 8 is traveling along the curved inspection line N.

尚、上記実施例においては90゜方向に2台の光
波距離計6,7を備えた場合について例示した
が、1台の光波距離計を備えたものにおいても本
発明を実施することができる。即ち、第6図に示
す如く、1台の光波距離計6を90゜方向に旋回さ
せて各反射板2,3との間の距離を計測すると共
に、上記旋回端において、左右に所要の角度θの
首振りを行つて、その2点との距離Y1,Y2を計
測することによりその検出距離Y1,Y2が同一に
なるように上部旋回体11の位置を調整する。従
つて、この場合には、円弧ギヤ16の角度を大き
くしたり、或いは円形ギヤを用いる等によつて光
波距離計6の投射方向を変えられるようにする必
要がある。
In the above embodiment, the case where two light wave range finders 6 and 7 are provided in the 90° direction is illustrated, but the present invention can also be practiced in a case where the light wave range finder is provided with one light wave range finder. That is, as shown in FIG. 6, one optical distance meter 6 is rotated in a 90° direction to measure the distance between each reflecting plate 2 and 3, and at the end of the rotation, the required angle is set left and right. The position of the upper revolving body 11 is adjusted so that the detected distances Y 1 and Y 2 are the same by swinging the head by θ and measuring the distances Y 1 and Y 2 to the two points. Therefore, in this case, it is necessary to be able to change the projection direction of the optical distance meter 6 by increasing the angle of the arcuate gear 16 or by using a circular gear.

更に、本発明は上記実施例にのみ限定されるも
のではなく、探傷検査以外の検査、溶接、運搬等
を行う種々の自走車の走行制御に適用し得るこ
と、反射板は種々の構造のものを適用できるこ
と、反射板を四周に配置するようにしても良いこ
と、自走車の走行方式、方向変換方式、上部旋回
体の旋回方式、光波距離計の首振り方式等は種々
の方式を採用し得ること、その他本発明の要旨を
逸脱しない範囲内において種々変更を加え得るこ
と、等は勿論である。
Furthermore, the present invention is not limited to the above-mentioned embodiments, but can be applied to the travel control of various self-propelled vehicles that perform inspections other than flaw detection, welding, transportation, etc., and the reflector may have various structures. Reflectors can be placed on all four sides, and there are various methods for self-propelled vehicles, such as the driving method, direction change method, rotation method for the upper revolving structure, and oscillation method for light wave rangefinders. It goes without saying that various modifications may be made without departing from the spirit of the present invention.

〔発明の効果〕〔Effect of the invention〕

上記したように、本発明の自走車の走行制御方
法によれば、光波距離計を首振りさせて2点との
間の距離が常に一致しよつて光波距離計が常に正
確に反射板の方向を向くように旋回調整しなが
ら、X、Y方向に設けられた反射板との間の距離
を計測して設定された方向に走行させるようにし
たので、任意の直線、曲線に沿つて自走車を自由
且つ正確に走行させることができる優れた効果を
奏し得る。
As described above, according to the traveling control method for a self-propelled vehicle of the present invention, the distance between two points is always the same by swinging the light wave range meter, so that the light wave range meter always accurately detects the reflection plate. While adjusting the turning so that it faces the direction, the distance between it and the reflectors installed in the This provides an excellent effect of allowing the vehicle to travel freely and accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す平面図、第2
図は自走車の詳細例を示す平面図、第3図は第2
図の−矢視図、第4図は制御系統を示すブロ
ツク図、第5図は本発明の他の実施例を示す平面
図、第6図は光波距離計を1台とした場合の実施
例を示す平面図である。 1は鋼板、2はX軸反射板、3はY軸反射板、
6,7は光波距離計、8は自走車、10は支持
軸、11は上部旋回体、12a,12a′,12
b,12b′は走行輪、13a,13bは走行駆動
モータ、16は円弧ギヤ、17は首振り駆動モー
タ、19は固定ギヤ、21は旋回駆動モータ、2
2はコンピユータ、23は指示装置、25は制御
装置を示す。
FIG. 1 is a plan view showing one embodiment of the present invention, and FIG.
The figure is a plan view showing a detailed example of a self-propelled vehicle, and Figure 3 is a plan view showing a detailed example of a self-propelled vehicle.
Fig. 4 is a block diagram showing the control system, Fig. 5 is a plan view showing another embodiment of the present invention, and Fig. 6 is an embodiment in which one optical distance meter is used. FIG. 1 is a steel plate, 2 is an X-axis reflector, 3 is a Y-axis reflector,
6 and 7 are optical distance meters, 8 is a self-propelled vehicle, 10 is a support shaft, 11 is an upper revolving body, 12a, 12a', 12
b, 12b' are running wheels, 13a, 13b are running drive motors, 16 is an arc gear, 17 is a swing drive motor, 19 is a fixed gear, 21 is a swing drive motor, 2
2 is a computer, 23 is an instruction device, and 25 is a control device.

Claims (1)

【特許請求の範囲】[Claims] 1 互に直角を成す如くX方向とY方向に反射板
装置を配設し、且つ夫々の反射板装置に対して鉛
直になるように互に90゜の方向に光を投射して前
記各反射板装置との間の距離を計測できるように
した2個の光波距離計を、下部車体に対して旋回
自在に支持された上部旋回体を有する自走車の前
記上部旋回体上に取り付け、各反射板装置との間
の距離を計測する一方の光波距離計を、他方の光
波距離計に対して前記90゜の位置から所要の同一
角度だけ左右に首振りを行わせ、左と右に最大に
首を振らせた時の反射板装置上の2点位置との間
の距離を夫々計測し、該2点位置との間の距離が
一致するように前記上部旋回体の旋回位置を調整
しながら、X、Y方向の計測距離に基づいて自走
車の走行方向を制御することを特徴とする自走車
の走行制御方法。
1 Reflector devices are arranged in the X direction and Y direction so as to be perpendicular to each other, and light is projected in directions 90° from each other so as to be perpendicular to each reflector device. Two light wave distance meters capable of measuring the distance between the two light wave distance meters and the plate device are mounted on the upper rotating body of a self-propelled vehicle having an upper rotating body rotatably supported with respect to the lower vehicle body. One light wave distance meter that measures the distance between the reflector and the other light wave distance meter is swung left and right by the same required angle from the above-mentioned 90° position with respect to the other light wave range meter, and Measure the distances between the two points on the reflector device when the person shakes his or her head, and adjust the rotating position of the upper rotating structure so that the distances between the two points match. A method for controlling the running of a self-propelled vehicle, characterized in that the traveling direction of the self-propelled vehicle is controlled based on measured distances in the X and Y directions.
JP59258375A 1984-12-05 1984-12-05 Running controlling method of self-running car Granted JPS61134812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59258375A JPS61134812A (en) 1984-12-05 1984-12-05 Running controlling method of self-running car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59258375A JPS61134812A (en) 1984-12-05 1984-12-05 Running controlling method of self-running car

Publications (2)

Publication Number Publication Date
JPS61134812A JPS61134812A (en) 1986-06-21
JPH0444961B2 true JPH0444961B2 (en) 1992-07-23

Family

ID=17319369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59258375A Granted JPS61134812A (en) 1984-12-05 1984-12-05 Running controlling method of self-running car

Country Status (1)

Country Link
JP (1) JPS61134812A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940925A (en) * 1985-08-30 1990-07-10 Texas Instruments Incorporated Closed-loop navigation system for mobile robots
US4809178A (en) * 1986-05-22 1989-02-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Obstacle data processing system for unmanned vehicle
DE3807195A1 (en) * 1987-03-04 1988-09-15 Mitsubishi Metal Corp ADJUSTABLE CUTTING INSERT
JPH0715686Y2 (en) * 1987-03-04 1995-04-12 三菱マテリアル株式会社 Ball end mill
DE3844785C2 (en) * 1987-03-04 1992-03-12 Mitsubishi Materials Corp., Tokio/Tokyo, Jp
JPH0247115U (en) * 1988-09-27 1990-03-30
JP2515577Y2 (en) * 1989-08-18 1996-10-30 有限会社近本エンジニアリング Table feeding device for grinding machine

Also Published As

Publication number Publication date
JPS61134812A (en) 1986-06-21

Similar Documents

Publication Publication Date Title
JPH0371642B2 (en)
JPH0444961B2 (en)
JP2542653B2 (en) Non-contact copying method
US20240043247A1 (en) High-precision positioning system for underground monorail hoist in coal mine and positioning method thereof
JP3219204B2 (en) Road surface unevenness measurement vehicle
JPS6227406B2 (en)
JP2615015B2 (en) Self-propelled work vehicle position measurement method
JP2736558B2 (en) Position measuring method and device
JP2842675B2 (en) Moving object distance measuring device
JP2784481B2 (en) 2D position and direction measurement device for moving objects
JPH04102104A (en) Traveling control system for unmanned traveling vehicle
JPH0542002B2 (en)
JPH01239608A (en) Method for controlling travel of self-traveling working vehicle
JPH0439710A (en) Automatic marking device
JPH0573841B2 (en)
JP3090371B2 (en) Position measuring device and position measuring method using the same
JP2644155B2 (en) Automatic surveying method for position of trailing bogie of shield machine
JPH03105207A (en) Position detecting apparatus for moving object
JPS63238422A (en) Ship's position determining system
JPH0476634B2 (en)
JPH0345769B2 (en)
JP2503533Y2 (en) Vehicle position / speed detector
JPS63187103A (en) Non-contact measurement of three-dimensional shape
JP2930389B2 (en) Moving object distance measuring device
JPH0740066B2 (en) Method and device for measuring angle in three-dimensional space using laser beam