JPH0921635A - Survey robot system - Google Patents

Survey robot system

Info

Publication number
JPH0921635A
JPH0921635A JP17086695A JP17086695A JPH0921635A JP H0921635 A JPH0921635 A JP H0921635A JP 17086695 A JP17086695 A JP 17086695A JP 17086695 A JP17086695 A JP 17086695A JP H0921635 A JPH0921635 A JP H0921635A
Authority
JP
Japan
Prior art keywords
turning
laser light
time interval
turning laser
underlayer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17086695A
Other languages
Japanese (ja)
Inventor
Makoto Hirano
信 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP17086695A priority Critical patent/JPH0921635A/en
Publication of JPH0921635A publication Critical patent/JPH0921635A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)

Abstract

PROBLEM TO BE SOLVED: To shorten the survey time and improve the workability, by calculating the photodetecting time interval of turning laser lights of photosensors with a photodetecting time interval-measuring means. SOLUTION: Turning laser lights turning within a horizontal plane are sequentially input to three photosensors 42. A photodetecting time interval-measuring means 46b calculates the photodetecting time interval of laser lights of sensors 42, and an area-judging means 46c detects, from the photodetecting time interval, at which of areas divided in the height direction of the sensors 42 a laser light 20 is detected. Moreover, a buzzer 44 generates an identification signal different in every divided area based on output of the judging means 46c. Which area of the sensors 42 the laser light hits is easily confirmed from a lighthouse in accordance with the identification signal generated from the buzzer 44 of a moving robot, without requiring a laser level sensor.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、旋回レーザ光を用
いて、下地層のレベル測量を行なう測量ロボットシステ
ムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surveying robot system for performing level surveying of an underlayer using a turning laser beam.

【0002】[0002]

【従来の技術】従来、この種の測量ロボットシステム
は、図4〜図7に示すように、排水勾配などの高低差の
ある路面やフィールドなどの下地層1上の一基準点に設
置された灯台2より発する旋回レーザ光3を、下地層1
上を自律自走する移動ロボット4に搭載された少なくと
も3個の光センサ5で受光して得られる受光時刻情報お
よびこれら各光センサ5からの出力により求められる光
センサ5上の受光位置情報から、下地層1のレベル測量
を行なう。
2. Description of the Related Art Conventionally, as shown in FIGS. 4 to 7, a surveying robot system of this type has been installed at a reference point on a ground layer 1 such as a road surface or a field having a height difference such as a drainage gradient. The rotating laser light 3 emitted from the lighthouse 2 is supplied to the underlayer 1.
From the light receiving time information obtained by receiving light by at least three optical sensors 5 mounted on the mobile robot 4 autonomously traveling above and the light receiving position information on the optical sensors 5 obtained by the output from each of these optical sensors 5. , Level measurement of the underlayer 1 is performed.

【0003】この場合、移動ロボット4が自立走行しな
がら移動する間に、旋回レーザ光3が光センサ5の計測
範囲を外れてしまわないように、レーザレベルセンサを
用いて、旋回レーザ光3が光センサ5のどの位置に当た
っているかの確認を行なう。すなわち、図4の場合は、
図5に示すように、旋回レーザ光3が光センサ5の下側
に当たるように、下地層1の傾斜状態を考慮して、灯台
2の高さ(レーザ旋回面の高さ)を低く調整し、図6の
場合には、図7に示すように、旋回レーザ光3が光セン
サ5の上側に当たるように、下地層1の傾斜状態を考慮
して、灯台2の高さを高く調節する。これは、たとえば
灯台2の下の三脚の開度と人手で調整することにより行
なわれる。
In this case, while the mobile robot 4 moves while moving independently, the turning laser beam 3 is controlled by a laser level sensor so that the turning laser beam 3 does not fall outside the measurement range of the optical sensor 5. The position of the optical sensor 5 is confirmed. That is, in the case of FIG.
As shown in FIG. 5, the height of the lighthouse 2 (the height of the laser turning surface) is adjusted to be low so that the turning laser beam 3 hits the lower side of the optical sensor 5 in consideration of the inclination state of the underlayer 1. In the case of FIG. 6, as shown in FIG. 7, the height of the lighthouse 2 is adjusted high so that the orbiting laser beam 3 hits the upper side of the optical sensor 5 in consideration of the inclination state of the underlayer 1. This is done, for example, by manually adjusting the opening of the tripod below the lighthouse 2.

【0004】なお、かかる技術は、たとえば「建設ロボ
ットシンポジウム論文,345頁〜678頁」1993
年10月17日、積水化学工業(株)に開示されてい
る。
Incidentally, such a technique is described in, for example, "Construction Robot Symposium Paper, pp. 345-678", 1993.
It was disclosed to Sekisui Chemical Co., Ltd. on October 17, 2010.

【0005】[0005]

【発明が解決しようとする課題】ところが、前述した測
量ロボットシステムにおいては、次のような問題点があ
ることが本発明者により見い出された。すなわち、旋回
レーザ光3が光センサ5のどの位置に当たっているかを
確認する作業は、レーザレベルセンサにより、移動ロボ
ット4側で行なわれ、他方、灯台2の高さ調整は、移動
ロボット4から離れて位置する灯台2側で行なう必要が
あるため、移動ロボット4側および灯台2側にそれぞれ
作業者を配置するか、あるいは作業者が移動ロボット4
側と灯台2側とを行き来する必要がある。このため、労
力や時間が掛かり、作業性が低下する。
However, the present inventors have found that the surveying robot system described above has the following problems. That is, the work for confirming which position of the optical sensor 5 the turning laser beam 3 hits is carried out by the laser level sensor on the side of the mobile robot 4, while the height adjustment of the lighthouse 2 is performed away from the mobile robot 4. Since it is necessary to perform the operation on the side of the lighthouse 2 that is located, a worker is arranged on each of the mobile robot 4 side and the lighthouse 2 side, or the worker moves the mobile robot 4
It is necessary to go back and forth between the side and the lighthouse 2 side. Therefore, labor and time are required and workability is reduced.

【0006】本発明の目的は、前述した問題点に鑑み、
測量時間を短縮すると共に、測量労力を低減して、作業
性を向上することができる測量ロボットシステムを提供
することにある。本発明の前記ならびにその他の目的と
新規な特徴は、本明細書の記述および添付図面から明ら
かになるであろう。
The object of the present invention is to solve the above-mentioned problems.
It is an object of the present invention to provide a surveying robot system that can shorten the surveying time, reduce the surveying labor, and improve the workability. The above and other objects and novel features of the present invention will become apparent from the description of the present specification and the accompanying drawings.

【0007】[0007]

【課題を解決するための手段】本願において開示される
発明の概要を簡単に説明すれば、以下のとおりである。
本発明の測量ロボットシステムは、下地層上の一基準点
に設置され、所定の旋回角速度で水平面内を旋回する旋
回レーザ光を発光する発光器および前記旋回レーザ光が
特定の方向に発光されたとき、無指向性信号を発信する
送信器を有する灯台と、前記旋回レーザ光の照射位置お
よび照射時刻の情報を含む信号を出力する少なくとも3
個の光センサおよび前記無指向性信号を受信する受信器
を有し、前記下地層上を自律自走する移動ロボットとか
らなり、前記光センサの前記旋回レーザ光の受光時刻と
前記無指向性信号の受信時刻との差および前記光センサ
上の前記旋回レーザ光の受光位置から前記下地層のレベ
ル測量を行なう測量ロボットシステムにおいて、前記各
光センサ間の前記旋回レーザ光の受光時間間隔を算出す
る受光時間間隔計測手段と、前記受光時間間隔より、前
記旋回レーザ光が、前記光センサの高さ方向に区分され
たどの領域で受光されたかを判定する領域判定手段と、
前記領域判定手段の出力により、前記区分された領域毎
に異なる識別信号を発生する識別信号発生手段とを具備
したものである。
The outline of the invention disclosed in the present application will be briefly described as follows.
The surveying robot system of the present invention is installed at one reference point on the underlayer and emits a turning laser beam that turns in a horizontal plane at a predetermined turning angular velocity and the turning laser beam is emitted in a specific direction. At this time, a lighthouse having a transmitter for transmitting an omnidirectional signal, and at least 3 for outputting a signal including information on an irradiation position and irradiation time of the turning laser light.
The mobile robot has an optical sensor and a receiver that receives the omnidirectional signal, and is a mobile robot that autonomously travels on the underlayer. The reception time of the turning laser light of the optical sensor and the omnidirectionality In a surveying robot system that measures the level of the underlayer from the difference between the signal reception time and the light receiving position of the turning laser light on the optical sensor, calculates the light receiving time interval of the turning laser light between the optical sensors. From the light-receiving time interval measuring means to, the region determination means for determining in which region the turning laser light is received in the height direction of the optical sensor, from the light-receiving time interval,
An identification signal generating means for generating an identification signal different for each of the divided areas according to the output of the area determining means is provided.

【0008】[0008]

【作 用】前述した手段によれば、受光時間間隔計測手
段は、光センサ間の旋回レーザ光の受光時間間隔を算出
し、領域判定手段は、受光時間間隔より、旋回レーザ光
が、光センサの高さ方向に区分されたどの領域で受光さ
れたかを判定する。さらに、識別信号発生手段は、領域
判定手段の出力により、区分された領域毎に異なる識別
信号を発生するので、移動ロボットの識別信号発生手段
より発せられる識別信号により、旋回レーザ光が光セン
サのどの領域に当たっているかが、灯台側にいる作業者
により容易に認識される。よって、灯台の高さの設定が
灯台側作業者のみで容易に行なえる。
[Operation] According to the above-mentioned means, the light receiving time interval measuring means calculates the light receiving time interval of the turning laser light between the optical sensors, and the area determining means determines the turning laser light from the optical sensor based on the light receiving time interval. It is determined which area is divided in the height direction of the received light. Further, the identification signal generation means generates different identification signals for each divided area according to the output of the area determination means. Therefore, the turning laser light is emitted from the optical sensor by the identification signal generated by the identification signal generation means of the mobile robot. An operator on the lighthouse side can easily recognize which area is hit. Therefore, the height of the lighthouse can be easily set by only the lighthouse-side operator.

【0009】[0009]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【実施例】以下、本発明の一実施例を図面に基づいて詳
細に説明する。ここで、図1は本発明の一実施例に係る
測量ロボットシステムの概略構成図、図2は本発明の一
実施例に係る測量ロボットシステムの光センサの説明
図、図3は本発明の一実施例に係る測量ロボットシステ
ムの信号処理器のブロック図を示す。また、実施例を説
明するための全図において同一の機能を有するものは同
一の符号を付け、その繰り返しの説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below in detail with reference to the drawings. Here, FIG. 1 is a schematic configuration diagram of a surveying robot system according to one embodiment of the present invention, FIG. 2 is an explanatory diagram of an optical sensor of the surveying robot system according to one embodiment of the present invention, and FIG. The block diagram of the signal processor of the surveying robot system which concerns on an Example is shown. Also, components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments, and the repetitive description thereof will be omitted.

【0010】図1において、測量ロボットシステムは、
下地層10上の一測定基準点に立設され、所定の旋回角
速度で水平面内を回転あるいは走査する旋回レーザ光2
0を発光する灯台30と下地層10上を移動する自律自
走型の移動ロボット40とから構成されている。灯台3
0は、旋回レーザ光20を発光する発光器31および旋
回レーザ光20が特定の方向に発光されたとき、無指向
性の基準方位信号を発信する送信器32を有する。
In FIG. 1, the surveying robot system is
A swirling laser beam 2 which is erected at one measurement reference point on the underlayer 10 and rotates or scans in a horizontal plane at a predetermined swiveling angular velocity.
It is composed of a lighthouse 30 that emits 0 and an autonomous mobile mobile robot 40 that moves on the underlayer 10. Lighthouse 3
0 has a light emitter 31 that emits the turning laser light 20 and a transmitter 32 that emits an omnidirectional reference azimuth signal when the turning laser light 20 is emitted in a specific direction.

【0011】移動ロボット40は、台車41の上部に、
旋回レーザ光20を受光し、この旋回レーザ光20の照
射位置および照射時刻の情報を含む信号を出力する3個
の光センサ42が搭載され、台車41の側部に、基準方
位信号を受信する受信器43および識別信号を発する識
別信号発生手段、たとえばブザー44がそれぞれ装着さ
れ、台車41の下部には、走行用の車輪45が軸着され
ている。
The mobile robot 40 is mounted on the upper part of the carriage 41.
Three optical sensors 42 that receive the turning laser light 20 and output a signal including information on the irradiation position and the irradiation time of the turning laser light 20 are mounted, and a side direction of the carriage 41 receives the reference direction signal. A receiver 43 and an identification signal generating means for issuing an identification signal, for example, a buzzer 44 are mounted respectively, and traveling wheels 45 are pivotally mounted on the lower portion of the carriage 41.

【0012】また、台車41の内部には、旋回レーザ光
20の受光位置を検出する信号処理器46が内設され、
光センサ42の旋回レーザ光20の受光時刻と基準方位
信号の受信時刻との差および旋回レーザ光20の受光位
置から下地層10のレベルを算出する演算手段(図示略
す)が内設されている。3個の光センサ42は、図2に
示すように、全体N字型に構成され、その高さに応じ
て、領域A,B,Cに区分され、領域Aは、光センサ4
2の上方の領域であると識別するための範囲であり、領
域Bは、光センサ42の下方の領域であると識別するた
めの範囲である。
A signal processor 46 for detecting the light receiving position of the turning laser beam 20 is provided inside the carriage 41.
A calculation unit (not shown) for internally calculating the level of the underlayer 10 from the difference between the time when the turning laser light 20 is received by the optical sensor 42 and the time when the reference azimuth signal is received and the position where the turning laser light 20 is received is internally provided. . As shown in FIG. 2, the three photosensors 42 are formed into an N-shape as a whole, and are divided into regions A, B, and C according to their heights.
2 is a range for identifying the area above 2, and area B is a range for identifying the area below photosensor 42.

【0013】信号処理器46は、図3に示すように、各
光センサ42に個別に接続された受光回路46aと、こ
れら受光回路46aがそれぞれ接続された受光時間間隔
計測手段46bと、ブザー44に接続され、受光時間に
より旋回レーザ光20が光センサ42の領域A,B,C
のどの領域に当たっているかを判定する領域判定手段4
6cを備えている。
As shown in FIG. 3, the signal processor 46 includes a light receiving circuit 46a individually connected to each optical sensor 42, a light receiving time interval measuring means 46b to which these light receiving circuits 46a are respectively connected, and a buzzer 44. The turning laser light 20 is connected to the areas A, B, C of the optical sensor 42 depending on the light receiving time.
Area determination means 4 for determining which area of the
6c.

【0014】次に、かかる構成の測量ロボットシステム
の動作を説明する。まず、3個の光センサ42に、水平
面内を旋回する旋回レーザ光20が順次入射する。3個
の光センサ42に順次入射した旋回レーザ光20は、受
光時間間隔計測手段46bで受光時間間隔t1 ,t2
計測される。領域判定手段46cは、受光時間間隔
1 ,t2 の時間比であるt1 /t2 を計算し、その値
が領域A,B,Cのどの領域に相当するかを判断する。
たとえば、N字型センサの幅wが、500mm、A領域
およびB領域の長さhが各々10mm、C領域の長さが
380mmのとき、時間比t1 /t2 と各領域A,B,
Cの関係は次表1のようになる。
Next, the operation of the surveying robot system thus constructed will be described. First, the turning laser light 20 turning in a horizontal plane sequentially enters the three optical sensors 42. With respect to the orbiting laser light 20 sequentially incident on the three optical sensors 42, the light receiving time interval measuring means 46b measures the light receiving time intervals t 1 and t 2 . The area determination means 46c calculates t 1 / t 2 , which is the time ratio of the light receiving time intervals t 1 and t 2 , and determines which of the areas A, B and C the value corresponds to.
For example, when the width w of the N-shaped sensor is 500 mm, the length h of the A region and the B region is 10 mm, and the length of the C region is 380 mm, the time ratio t 1 / t 2 and the respective regions A, B,
The relationship of C is as shown in Table 1 below.

【0015】[0015]

【表1】 [Table 1]

【0016】従って、領域判定手段46cは、上表1を
参照して、時間比t1 /t2 により、各領域A,B,C
のどの領域かを判別する。判別結果に基づいて、ブザー
44により、各領域A,B,C毎に異なる可聴音が識別
信号として発せられる。このとき、領域A,B,Cの識
別は、次表2に示すように、ブザー音の間欠(オン/オ
フ時間)の違いにより行なわれる。また、3個の光セン
サ42のうち1つでも旋回レーザ光20が入射していな
ければ、センサ外と見なし、ブザー44は鳴らない。
Therefore, the area determining means 46c refers to the above table 1 and, based on the time ratio t 1 / t 2 , each area A, B, C.
Determine which area of the area. Based on the determination result, the buzzer 44 emits different audible sounds as the identification signal for each of the areas A, B, and C. At this time, the areas A, B, and C are identified by the difference in the intermittent (on / off time) of the buzzer sound, as shown in Table 2 below. If even one of the three optical sensors 42 does not receive the turning laser light 20, it is regarded as outside the sensor and the buzzer 44 does not sound.

【0017】[0017]

【表2】 [Table 2]

【0018】その後、光センサ42の受光位置情報と下
地層10の傾斜状態に基づいて、灯台30の高さ調整が
行なわれ、光センサ42の旋回レーザ光20の受光時刻
と基準方位信号の受信時刻との差および光センサ42上
の旋回レーザ光20の受光位置から、下地層10のレベ
ル測量が行なわれる。このように、本実施例によれば、
受光時間間隔計測手段46bは、光センサ42間の旋回
レーザ光20の受光時間間隔を算出し、領域判定手段4
6cは、受光時間間隔より、旋回レーザ光20が、光セ
ンサ42の高さ方向に区分されたどの領域A,B,Cで
受光されたかを判定する。さらに、ブザー44は、領域
判定手段46cの出力により、区分された領域A,B,
C毎に異なる識別信号を発生するので、移動ロボット4
0のブザー44より発せられる識別信号により、旋回レ
ーザ光20が光センサ42のどの領域A,B,Cに当た
っているかが、灯台30側で、レーザレベルセンサを必
要とすることなく、容易に確認される。
Thereafter, the height of the lighthouse 30 is adjusted based on the light receiving position information of the optical sensor 42 and the inclination state of the underlayer 10, and the light receiving time of the turning laser light 20 of the optical sensor 42 and the reception of the reference azimuth signal. Based on the difference from the time and the light receiving position of the turning laser light 20 on the optical sensor 42, the level measurement of the underlayer 10 is performed. Thus, according to the present embodiment,
The light receiving time interval measuring means 46b calculates the light receiving time interval of the turning laser light 20 between the optical sensors 42, and the area determining means 4
6c determines from which light receiving time interval the turning laser light 20 is received in which of the areas A, B, C divided in the height direction of the optical sensor 42. Further, the buzzer 44 outputs the divided areas A, B, and
Since a different identification signal is generated for each C, the mobile robot 4
With the identification signal emitted from the buzzer 44 of 0, it is possible to easily confirm on the lighthouse 30 side which region A, B, C of the optical sensor 42 the turning laser light 20 hits, without the need for a laser level sensor. It

【0019】以上、本発明者によってなされた発明を、
実施例に基づき具体的に説明したが、本発明は、前記実
施例に限定されるものではなく、その要旨を逸脱しない
範囲で、種々変更可能であることは、言うまでもない。
本実施例では、識別信号発生手段として、ブザー44を
用いたが、これに限定されず、作業者が識別できる手段
であればよく、ランプや作業者が無線機を携帯している
場合には、無線電波を用いてもよい。
As described above, the invention made by the present inventor is
Although the present invention has been specifically described based on the embodiments, it goes without saying that the present invention is not limited to the embodiments and various modifications can be made without departing from the scope of the invention.
In the present embodiment, the buzzer 44 is used as the identification signal generating means, but the identification signal generating means is not limited to this and may be any means that can be identified by the operator. In the case where the lamp or the operator carries a wireless device, Alternatively, wireless radio waves may be used.

【0020】また、ブザー44などの識別信号発生手段
は、下地層10の自動測量中にも作動させ、旋回レーザ
光20が光センサ42から外れた場合や灯台30の電池
切れなどの異常検知に役立てることもできる。
Further, the identification signal generating means such as the buzzer 44 is operated during the automatic measurement of the underlayer 10 to detect an abnormality such as when the turning laser light 20 is out of the optical sensor 42 or when the lamp of the lighthouse 30 runs out of battery. It can also be useful.

【0021】[0021]

【発明の効果】本願によって開示される発明によって得
られる効果を簡単に説明すれば、以下のとおりである。
本発明によれば、受光時間間隔計測手段は、光センサ間
の旋回レーザ光の受光時間間隔を算出し、領域判定手段
は、受光時間間隔より、旋回レーザ光が、光センサの高
さ方向に区分されたどの領域で受光されたかを判定す
る。さらに、識別信号発生手段は、領域判定手段の出力
により、区分された領域毎に異なる識別信号を発生する
ので、灯台の高さ調整が、識別信号に基づいて、灯台側
のみで行なわれる。よって、ソフトウェアの変更だけ
で、灯台の高さ調整に掛かる作業労力を低減することが
できると共に、作業時間を短縮することができ、よっ
て、作業性を向上することができる。
The effects obtained by the invention disclosed in the present application will be briefly described as follows.
According to the present invention, the light receiving time interval measuring means calculates the light receiving time interval of the turning laser light between the optical sensors, and the area determining means determines the turning laser light in the height direction of the optical sensor from the light receiving time interval. It is determined in which divided area the light is received. Further, the identification signal generation means generates different identification signals for each divided area according to the output of the area determination means, so that the height of the lighthouse is adjusted only on the lighthouse side based on the identification signal. Therefore, it is possible to reduce the work effort required to adjust the height of the lighthouse and to reduce the work time by only changing the software, and thus it is possible to improve the workability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例である測量ロボットシステム
の概略構成図である。
FIG. 1 is a schematic configuration diagram of a surveying robot system that is an embodiment of the present invention.

【図2】本発明の一実施例である測量ロボットシステム
の光センサの説明図である。
FIG. 2 is an explanatory diagram of an optical sensor of the surveying robot system that is an embodiment of the present invention.

【図3】本発明の一実施例である測量ロボットシステム
の信号処理器のブロック図である。
FIG. 3 is a block diagram of a signal processor of a surveying robot system that is an embodiment of the present invention.

【図4】従来の測量ロボットシステムにおける灯台の高
さ調整を説明する図である。
FIG. 4 is a diagram illustrating height adjustment of a lighthouse in a conventional surveying robot system.

【図5】従来の測量ロボットシステムにおける灯台の高
さ調整を説明する図である。
FIG. 5 is a diagram illustrating height adjustment of a lighthouse in a conventional surveying robot system.

【図6】従来の測量ロボットシステムにおける灯台の高
さ調整を説明する図である。
FIG. 6 is a diagram illustrating height adjustment of a lighthouse in a conventional surveying robot system.

【図7】従来の測量ロボットシステムにおける灯台の高
さ調整を説明する図である。
FIG. 7 is a diagram illustrating height adjustment of a lighthouse in a conventional surveying robot system.

【符号の説明】[Explanation of symbols]

10 下地層 20 旋回レーザ光 30 灯台 31 発光器 32 送信器 40 移動ロボット 41 台車 42 光センサ 43 受信器 44 ブザー 45 車輪 46 信号処理器 46a 受光回路 46b 受光時間間隔計測手段 46c 領域判定手段 A,B,C 領域 10 Underlayer 20 Swirling laser light 30 Lighthouse 31 Light emitter 32 Transmitter 40 Mobile robot 41 Carriage 42 Optical sensor 43 Receiver 44 Buzzer 45 Wheel 46 Signal processor 46a Light receiving circuit 46b Light receiving time interval measuring means 46c Area judging means A, B , C area

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 下地層上の一基準点に設置され、所定の
旋回角速度で水平面内を旋回する旋回レーザ光を発光す
る発光器および前記旋回レーザ光が特定の方向に発光さ
れたとき、無指向性信号を発信する送信器を有する灯台
と、前記旋回レーザ光の照射位置および照射時刻の情報
を含む信号を出力する少なくとも3個の光センサおよび
前記無指向性信号を受信する受信器を有し、前記下地層
上を自律自走する移動ロボットとからなり、前記光セン
サの前記旋回レーザ光の受光時刻と前記無指向性信号の
受信時刻との差および前記光センサ上の前記旋回レーザ
光の受光位置から前記下地層のレベル測量を行なう測量
ロボットシステムにおいて、 前記各光センサ間の前記旋回レーザ光の受光時間間隔を
算出する受光時間間隔計測手段と、前記受光時間間隔よ
り、前記旋回レーザ光が、前記光センサの高さ方向に区
分されたどの領域で受光されたかを判定する領域判定手
段と、前記領域判定手段の出力により、前記区分された
領域毎に異なる識別信号を発生する識別信号発生手段と
を具備したことを特徴とする測量ロボットシステム。
1. An emitter, which is installed at one reference point on the underlayer and emits a turning laser beam that turns in a horizontal plane at a predetermined turning angular velocity, and when the turning laser beam is emitted in a particular direction, A lighthouse having a transmitter for transmitting a directional signal, at least three optical sensors for outputting a signal including information on the irradiation position and irradiation time of the turning laser light, and a receiver for receiving the omnidirectional signal are provided. A mobile robot autonomously traveling on the underlayer, the difference between the reception time of the turning laser light of the optical sensor and the reception time of the omnidirectional signal, and the turning laser light on the optical sensor. In a surveying robot system for performing level measurement of the underlayer from the light receiving position of the underlayer, and a light receiving time interval measuring means for calculating a light receiving time interval of the turning laser light between the respective optical sensors; From the interval, the turning laser light, the area determination means for determining in which area is divided in the height direction of the optical sensor, and the output of the area determination means, for each of the divided areas A surveying robot system, comprising: identification signal generating means for generating different identification signals.
JP17086695A 1995-07-06 1995-07-06 Survey robot system Pending JPH0921635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17086695A JPH0921635A (en) 1995-07-06 1995-07-06 Survey robot system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17086695A JPH0921635A (en) 1995-07-06 1995-07-06 Survey robot system

Publications (1)

Publication Number Publication Date
JPH0921635A true JPH0921635A (en) 1997-01-21

Family

ID=15912773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17086695A Pending JPH0921635A (en) 1995-07-06 1995-07-06 Survey robot system

Country Status (1)

Country Link
JP (1) JPH0921635A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021011772A (en) * 2019-07-09 2021-02-04 株式会社日立プラントサービス Marking robot, marking robot system, and measuring robot

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021011772A (en) * 2019-07-09 2021-02-04 株式会社日立プラントサービス Marking robot, marking robot system, and measuring robot
JP2023002535A (en) * 2019-07-09 2023-01-10 株式会社日立プラントサービス Marking robot, marking robot system, and measuring robot

Similar Documents

Publication Publication Date Title
US4781465A (en) Device for detecting road surface condition
US8422035B2 (en) Distance-measuring method for a device projecting a reference line, and such a device
EP0269283B1 (en) Position sensing apparatus
JP2004198330A (en) Method and apparatus for detecting position of subject
JP2003307564A (en) Inclination angle measuring instrument
JPH1074297A (en) Vehicle position detecting device
EP0807801B1 (en) Apparatus for inspecting deformation of pipe
JPH0921635A (en) Survey robot system
JPH10105868A (en) Vehicle measuring device/method
JPH07333338A (en) Distance measuring equipment
JP2010286417A (en) Method and system for measurement of mounting angle on vehicle body of ultrasonic sensor
JPH038684B2 (en)
JPS6344122A (en) Measurement of position of self-propelled working truck
JP2001339350A (en) Mobile free-space optical space communication unit
JPS6118809A (en) Non-contacting multi-point displacement measurement
JP2660738B2 (en) Obstacle detection device
JP2882356B2 (en) Cleaning device for cylindrical tank
JPS62226073A (en) Measuring method for three-dimensional position of vehicle
JPH07122666B2 (en) Vehicle three-dimensional position measurement method
JPH08313435A (en) Road surface water measuring apparatus
JPH038685B2 (en)
JP2800922B2 (en) Moving object distance measuring device
JPH10105228A (en) Vehicle position detecting device
JP2667395B2 (en) Moving body
JPS629996B2 (en)