JPS6118809A - Non-contacting multi-point displacement measurement - Google Patents

Non-contacting multi-point displacement measurement

Info

Publication number
JPS6118809A
JPS6118809A JP13891284A JP13891284A JPS6118809A JP S6118809 A JPS6118809 A JP S6118809A JP 13891284 A JP13891284 A JP 13891284A JP 13891284 A JP13891284 A JP 13891284A JP S6118809 A JPS6118809 A JP S6118809A
Authority
JP
Japan
Prior art keywords
displacement
measured
receiving sensor
emitting device
laser emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13891284A
Other languages
Japanese (ja)
Other versions
JPH0219404B2 (en
Inventor
Shigeki Sugihara
繁樹 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Fujita Kogyo KK
Original Assignee
Fujita Corp
Fujita Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp, Fujita Kogyo KK filed Critical Fujita Corp
Priority to JP13891284A priority Critical patent/JPS6118809A/en
Publication of JPS6118809A publication Critical patent/JPS6118809A/en
Publication of JPH0219404B2 publication Critical patent/JPH0219404B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To effect measurements of the amounts of displacement, such as displacement of a structure and land subsidence, by reflecting by an incident ray reflector of a detecting rod existence of fine fluxes of laser beams and detecting with a light-receiving sensor. CONSTITUTION:A laser irradiating apparatus 1 is shifted by the constant distance by a displacing means and, using an automatic swivelling mechanism 2, a laser beam speed L from the apparatus 1 is scanned at each time within the specified angle or along the entire periphery. During these operations, at the moment when a reflected beam L from the detecting rod 10 is detected by a light-receiving sensor 8, displacement and distance data obtained by a displacement distance detecting mechanism 5 are introduced into a central processing mechanism 9 and stored. Later, the newly introduced displacement distance is compared with a value stored with the swivelling angle stored top most and a difference is obtained as the displacement distance.

Description

【発明の詳細な説明】 本発明は変位計測方向に係る非接触式多数点変位計測法
に関するもので、構造物の変位や地盤沈下等の計測に用
いる新規変位計測法を提唱することを目的とする。
[Detailed description of the invention] The present invention relates to a non-contact multi-point displacement measurement method in the displacement measurement direction, and its purpose is to propose a new displacement measurement method for use in measuring the displacement of structures, ground subsidence, etc. do.

従来、構造物の変位や地盤沈下等の変位量の計測にはト
ランシットまたは連通管等の計測機器が使われているが
、この種の計測では一般に多数点の計測を経時的に行な
わなければならず、計測作業が甚だ面倒なものであった
Conventionally, measuring instruments such as transits or communication pipes have been used to measure the amount of displacement such as the displacement of structures or ground subsidence, but this type of measurement generally requires measurements at multiple points over time. However, the measurement work was extremely troublesome.

本発明は上記問題に鑑みてなされたもので、多数点の変
位量を比較的簡単に、かつ正確に計測する方向を提唱せ
んとするものである。すなわち本発明の非接触式多数点
変位計測法は、被計測物に対して、該被計測物外の一点
から直線上に遮蔽物を有しない複数の所望位置に入射光
反射体か、もしくは受光センサを設けた検知棒を、姿勢
安定機構を介して取り付けるとともに上記被計測物外の
一点に、被計測物の変位量計測方向に平行移動する移動
量検知機構を備え、かつ該移動軸と直交面内を自動的に
旋回してその角度検知機構を備えてなるレーザ発射装置
を設置し、該レーザ発射装置から投光したレーザ光の細
光束の有無を上記検知棒の入射光反射体によって反射し
て、該レーザ発射装置の一部に取り付けた受光センサで
検知するかまたは検知棒に設けた受光センサで検知し、
被計測物の変位量をレーザ発射装置の旋回軸に設けた移
動量検知機構によって計測することを特徴とするもので
ある。
The present invention has been made in view of the above problems, and aims to propose a method for relatively easily and accurately measuring the amount of displacement at multiple points. In other words, the non-contact multi-point displacement measurement method of the present invention uses an incident light reflector or a light-receiving object at a plurality of desired positions on a straight line from a point outside the object to be measured that have no obstructions. A detection rod provided with a sensor is attached via a posture stabilizing mechanism, and a movement amount detection mechanism is provided at a point outside the object to be measured to move parallel to the displacement measuring direction of the object to be measured, and the rod is perpendicular to the movement axis. A laser emitting device that automatically rotates within a plane and is equipped with an angle detection mechanism is installed, and the presence or absence of a narrow beam of laser light projected from the laser emitting device is reflected by the incident light reflector of the detection rod. and detect it with a light receiving sensor attached to a part of the laser emitting device or with a light receiving sensor attached to a detection rod,
This method is characterized in that the amount of displacement of the object to be measured is measured by a movement amount detection mechanism provided on the pivot axis of the laser emitting device.

以下、本発明の実施例を図面に基づいて説明すると、第
1図ないし第3図は第一の実施例を示すものである。被
計測物(11)の変位計測方向は鉛直方向(矢印A)で
ある。(1)は旋回軸(0)を矢印Aと平行になるよう
に被計測物(a)外の地点に設置したレーザ発射装置で
自動旋回機構(2)によって旋回軸(0)と直交する平
面内を旋回し、所望旋回方向に一定波長のレーザ光の細
光束を発射するとともに自動旋回機構(2)によって旋
回角度を検出するようになる。また上記旋回軸(0)に
は基台(3)との間にレーザ発射装置(1)の旋回面を
旋回軸(0)の方向に適宜、連続的に移動させる螺合構
造等の移動手段(4)とその移動量を検知する移動量検
知機構(5)を具備するとともにレーザ発射装置(1)
の一部に放物面鏡または望遠レンズになる集光器(7)
を取り付け、該集光器(7)の焦点位置にホトダイオー
ドまたはTVカメラ等の受光センサ(8)を設けてなる
もので受光センサ(8)は後述する中央処理機構(9)
と接続される。
Embodiments of the present invention will be described below based on the drawings. FIGS. 1 to 3 show the first embodiment. The displacement measurement direction of the object to be measured (11) is the vertical direction (arrow A). (1) is a laser emitting device installed at a point outside the object to be measured (a) so that the axis of rotation (0) is parallel to arrow A, and the plane is perpendicular to the axis of rotation (0) by the automatic rotation mechanism (2). The automatic rotation mechanism (2) detects the rotation angle while emitting a narrow beam of laser light of a certain wavelength in the desired rotation direction. Further, the pivot shaft (0) is provided with a moving means such as a threaded structure between the base (3) and the pivot surface of the laser emitting device (1) to continuously move the pivot surface of the laser emitting device (1) in the direction of the pivot shaft (0). (4) and a movement amount detection mechanism (5) for detecting the amount of movement thereof, and a laser emitting device (1).
A condenser (7) that becomes a parabolic mirror or a telephoto lens as part of the
A light receiving sensor (8) such as a photodiode or a TV camera is installed at the focal position of the condenser (7), and the light receiving sensor (8) is connected to a central processing mechanism (9) which will be described later.
connected to.

(lO)は被計測物(a)側に設けられる検知棒であり
、該検知棒(lO)の下端部をポールジヨイント(II
)等の姿勢安定機構を介して被計測物(a)に取り付け
るためのブラケット(12)の端部と揺回動自在に枢着
するとともに、該枢着部から反対方向に延びるバランス
ウェイ) (+3)の荷重により、常時検知棒(10)
を鉛直方向に支承してなる。また(14)は当該検知棒
(10)の略中央部に構成した反射テープや鏡面加工板
等の入射光反射体であり、前記レーザ光を投光方向に反
射するもので、該入射光反射体(14)の上下位置には
レーザ光を透光するような透明材もしくはプリズムのご
とくレーザ光を入射方向に反射しない入射光吸収構造(
15)(15)を形成してなる。
(lO) is a detection rod provided on the side of the object to be measured (a), and the lower end of the detection rod (lO) is connected to the pole joint (II).
) is pivotally connected to the end of the bracket (12) for attachment to the object to be measured (a) via a posture stabilizing mechanism such as ( Due to the load of +3), the detection rod (10)
is supported in the vertical direction. Further, (14) is an incident light reflector such as a reflective tape or a mirror-finished plate formed approximately in the center of the detection rod (10), which reflects the laser beam in the projection direction, and reflects the incident light. At the upper and lower positions of the body (14), there is a transparent material that transmits the laser beam or an incident light absorbing structure (such as a prism) that does not reflect the laser beam in the incident direction.
15) (15) is formed.

前記中央処理機構(9)は受光センサ(8)の受光入力
信号をトリガーとしてその時のレーザ発射装置(1)の
旋回角度を自動旋回機構(2)の出力信号から、また同
時に移動手段(4)の移動量を移動量検知機構(5)か
ら読み取って記憶するとともに、つぎに移動および旋回
スキャンを繰り返えし行ない、該記憶位置との比較を行
なうようになる。
The central processing mechanism (9) uses the light receiving input signal of the light receiving sensor (8) as a trigger to determine the turning angle of the laser emitting device (1) at that time from the output signal of the automatic turning mechanism (2), and at the same time, the moving means (4). The amount of movement is read from the movement amount detection mechanism (5) and stored, and then the movement and rotation scans are repeated and compared with the stored position.

上記実施例によって被計測物(a)の多数点al、a2
.a3の変位(変位方向A)を計測する場合第3図に示
すようにレーザ発射装置(1)が移動・手段(4)によ
る移動範囲内で、直接視認可能な位置al 、 a2.
 a3を選び検知棒(1o)を設置する。
In the above embodiment, multiple points al, a2 of the object to be measured (a)
.. When measuring the displacement (displacement direction A) of a3, as shown in FIG. 3, the laser emitting device (1) is located at a position al, a2.
Select a3 and install the detection rod (1o).

その後、移動手段(4)によってたとえば下から上へ順
次、旋回面を一定量だけ移動させ、その都度自動旋回機
構(2)によって、レーザ発射装置(1)からのレーザ
光束(L)を、旋回面上で一定角度内または全周スキャ
ニングさせる。この動作の間、多数点al 、 a2.
 ’a3の各各の検知棒(10)からの反射光(L)を
受光センサ(8)が検出した時点で、移動量検知機構(
5)によって基準位置1jQ)からの移動と距# Ml
 、 fL2.13を、また自動旋回機構(2)によっ
てal、a2.a3の基準方向(θ0)からの角度θ1
.θ2.θ3を中央処理機構(9)に入力し1、その移
動距離と旋回角度を初期値として記憶する。
Thereafter, the moving means (4) sequentially moves the turning plane by a certain amount, for example from bottom to top, and each time the automatic turning mechanism (2) turns the laser beam (L) from the laser emitting device (1). Scan within a certain angle or all around the surface. During this operation, multiple points al, a2.
When the light receiving sensor (8) detects the reflected light (L) from each detection rod (10) of 'a3, the movement amount detection mechanism (
5), the movement and distance from the reference position 1jQ) #Ml
, fL2.13, and al, a2. Angle θ1 from the reference direction (θ0) of a3
.. θ2. θ3 is input to the central processing mechanism (9) 1, and its moving distance and turning angle are stored as initial values.

この状態から以後、同様に移動手段(4)と自動旋回機
構(2)とをスキャニングさせ、新しく入力した移動距
離と旋回角度を、先に記憶した初期値と比較し、移動距
離の読みの差を、被計測物(a)の変位量として求める
ことができる。
From this state onwards, the moving means (4) and the automatic turning mechanism (2) are scanned in the same way, and the newly input moving distance and turning angle are compared with the previously stored initial values, and the difference between the readings of the moving distance is determined. can be determined as the amount of displacement of the object to be measured (a).

このと゛き、旋回角度は、該多数点al、a2.i13
を判別するために用いられる。
At this time, the turning angle is determined by the multiple points al, a2. i13
It is used to determine the

このように、移動手段(4)と自動旋回機構(2)を任
意の範囲で略連続的にスキャニングしながら、該多数点
の移動距離を入力する方法のほか、つぎの方法によって
もよい。第二の方法は、あらかじめ移動距離と旋回角度
の初期値文1.初、!13およびal 、 、a2. 
a3によって被計測物(a)の初期位置にレーザ光束(
L)を照射するよう、移動手段(4)と自動旋回機構(
2)を同調駆動する。
In addition to the method of inputting the moving distances of multiple points while substantially continuously scanning the moving means (4) and the automatic turning mechanism (2) in an arbitrary range as described above, the following method may be used. The second method is to prepare the initial value statement 1 for the travel distance and turning angle in advance. first time,! 13 and al, , a2.
a3, the laser beam (
The moving means (4) and the automatic rotation mechanism (
2) is synchronously driven.

被計測物(a)の変位がない場合にはレーザ光束(L)
は検知棒(10)の入射光反射体(14)によって反射
され受光センサ(8)がONして、中央処理機構(8)
に変位がないことを入力する。また被計測物(a)が変
位している場合はレーザ光束(L)が反射されず、受光
センサ(8)はOFF状態のままである。この状態で移
動手段(4)を操作してレーザ発射装置(1)を鉛直方
向に移動せしめ、レーザ光束(シ)の反射光が受光セン
サ(8)をONする位置を探すことにより、被計測物(
a)の変位量を移動量検知機構(5)の読みの差によっ
て計測することができるものであり、この繰り返しに、
より多収点al。
When there is no displacement of the object to be measured (a), the laser beam (L)
is reflected by the incident light reflector (14) of the detection rod (10), the light receiving sensor (8) is turned on, and the central processing mechanism (8)
Input that there is no displacement. Further, when the object to be measured (a) is displaced, the laser beam (L) is not reflected and the light receiving sensor (8) remains in the OFF state. In this state, operate the moving means (4) to move the laser emitting device (1) in the vertical direction and search for the position where the reflected light of the laser beam (shi) turns on the light receiving sensor (8). thing(
The amount of displacement in a) can be measured by the difference in the readings of the movement amount detection mechanism (5), and by repeating this,
Higher yield al.

a2.a3の経時的変位を計測することができる。a2. The displacement of a3 over time can be measured.

つぎに第4図および第5図は本発明の他の実施例を示す
ものである。前記第一の実施例と異なる部分についての
み説明すると、本実施例では受光センサ(8a)を検知
棒(10)側に設けたものである。
Next, FIGS. 4 and 5 show another embodiment of the present invention. To explain only the differences from the first embodiment, in this embodiment, a light receiving sensor (8a) is provided on the detection rod (10) side.

検知棒(10)の中央部にはレーザ光束(L)のみを透
過するレーザフィルタ(16)を設けた受光素子(8a
)を検知棒(10)の正面に向くように設けてなり、該
受光素子(8a)の受光信号を増幅する増幅回路(17
)に入力した信号を発信機(18)を介して無線または
有線によって中央処理機構(8)に人力する受信機(1
9)と情報伝達する構造になる。本実施例ではレーザ発
射装置(1)からの照射されたレーザ光束(L)を直接
検知棒(10)の受光センサ(8a)によって受光する
もので、計測操作は第一の実施例と同一である。
At the center of the detection rod (10) is a light receiving element (8a) provided with a laser filter (16) that transmits only the laser beam (L).
) is provided to face the front of the detection rod (10), and an amplifier circuit (17) for amplifying the light reception signal of the light receiving element (8a) is provided.
) via a transmitter (18) and a receiver (1) that manually transmits the signal input to the central processing unit (8) by wireless or wired means.
9) and becomes a structure for transmitting information. In this embodiment, the laser beam (L) emitted from the laser emitting device (1) is directly received by the light receiving sensor (8a) of the detection rod (10), and the measurement operation is the same as in the first embodiment. be.

これまでの実施例は、被計測物の変位方向を鉛直方向と
するものであったが、第6図のように、被計測物の変位
方向(A)が水平方向であり、レーザ発射装置(1)の
旋回軸(0)および移動手段(4)による移動の方向も
変位方向(A)に平行である場合にも応用することがで
きる。この場合、検知棒(10)は、水平に保持される
よう、ブラケッ) (12)によって支持されるもので
、第2図1、第5図に示されるバランスウェイト(13
)は不要である。
In the previous embodiments, the displacement direction of the object to be measured was vertical, but as shown in FIG. 6, the displacement direction (A) of the object to be measured was horizontal, and the laser emitting device ( The present invention can also be applied to the case where the rotation axis (0) of 1) and the direction of movement by the moving means (4) are also parallel to the displacement direction (A). In this case, the detection rod (10) is supported by a bracket (12) so as to be held horizontally, and the balance weight (13) shown in FIGS.
) is unnecessary.

以上述べたように本発明の変位計測法によれば、計測位
置を被計測物から離れた位置に定置することができるの
で、建造物の破壊実験等の経時的変位計測において有用
であるばかりでなく、多数点の変位計測を一点の測定位
置で計測することができる特徴を有するものである。ま
た本発明の変位計測法によれば、旋回機構および該旋回
軸の移動手段を自動化することにより、無人計測装置を
構成することができるもので、本発明の効果はきわめて
大きい。
As described above, according to the displacement measurement method of the present invention, the measurement position can be fixed at a position away from the object to be measured, so it is useful in measuring displacement over time such as in building destruction experiments. Instead, it has the feature of being able to measure displacement at multiple points at a single measurement position. Further, according to the displacement measuring method of the present invention, an unmanned measuring device can be constructed by automating the turning mechanism and the means for moving the turning axis, and the effects of the present invention are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明非接触式多数点変位計測法の実施例を示す
もので、第1図は第一の実施方法を示す説明図、第2図
は同検知棒の正面図、第3図(a)および(b)はレー
ザ発射装置の旋回状態を示す説明図、第4図は第二の実
施方法を示す説明図、第5図は同検知棒の側面図、第6
図は第3の実施方法を示す説明図である。 (1)レーザ発射装置   (2)自動旋回機構(4)
移動手段      (5)移動量検知機構(7)集光
器       (8) (8a)受光センサ(8)中
央処理機構    (10)検知棒(13)バランスウ
ェイト(14)入射光反射体(17)増幅回路  (1
日)発信機  (19)受信機(a)被計測物    
  (L)レーザ光束特許出願人   フジタ工業株式
会社 第1図 第2図     第5図 第3図 (a)(b) 第4図 第6゛図
The drawings show an embodiment of the non-contact multi-point displacement measurement method of the present invention, in which Fig. 1 is an explanatory diagram showing the first implementation method, Fig. 2 is a front view of the same detection rod, and Fig. 3 (a). ) and (b) are explanatory diagrams showing the turning state of the laser emitting device, FIG. 4 is an explanatory diagram showing the second implementation method, FIG. 5 is a side view of the same detection rod, and FIG.
The figure is an explanatory diagram showing the third implementation method. (1) Laser emitting device (2) Automatic rotation mechanism (4)
Movement means (5) Movement amount detection mechanism (7) Concentrator (8) (8a) Light receiving sensor (8) Central processing mechanism (10) Detection rod (13) Balance weight (14) Incident light reflector (17) Amplification Circuit (1
J) Transmitter (19) Receiver (a) Object to be measured
(L) Laser beam patent applicant Fujita Kogyo Co., Ltd. Figure 1 Figure 2 Figure 5 Figure 3 (a) (b) Figure 4 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 被計測物に対して、該被計測物外の一点からの線分上に
遮蔽物を有しない単数または複数の所望計測位置に、入
射光反射体または受光センサを設けた検知棒を、姿勢安
定機構を介して取り付けるとともに上記被計測物外の一
点に被計測物の変位計測方向に平行移動する移動量検知
機構を備え、かつ該移動軸と直交面内を旋回し、該旋回
角度検知機構を備えてなるレーザ発射装置を設置し、該
レーザ発射装置から照射したレーザ細光束の有無を上記
検知棒の入射光反射体によってレーザ発射装置側に設け
た受光センサで検知するか、もしくは検知棒に設けた受
光センサで検知し、被計測物の変位量をレーザ発射装置
を平行移動せしめ、その旋回軸に設けた移動量検知機構
によって計測することを特徴とする非接触式多数点変位
計測法。
A detection rod equipped with an incident light reflector or a light-receiving sensor is placed at one or more desired measurement positions on a line segment from a point outside the object to be measured that has no obstructions, and is placed in a stable position. A movement amount detection mechanism is attached via a mechanism and is provided at a point outside the object to be measured to move in parallel in the direction of measuring the displacement of the object to be measured, and the mechanism rotates in a plane perpendicular to the movement axis, and the rotation angle detection mechanism is provided at a point outside the object to be measured. A laser emitting device equipped with the equipment is installed, and the presence or absence of a narrow laser beam irradiated from the laser emitting device is detected by a light receiving sensor provided on the laser emitting device side using the incident light reflector of the detection rod, or A non-contact multi-point displacement measurement method characterized in that the amount of displacement of an object to be measured is detected by a light-receiving sensor provided, and the amount of displacement of an object to be measured is measured by moving a laser emitting device in parallel and using a movement amount detection mechanism provided on its rotation axis.
JP13891284A 1984-07-06 1984-07-06 Non-contacting multi-point displacement measurement Granted JPS6118809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13891284A JPS6118809A (en) 1984-07-06 1984-07-06 Non-contacting multi-point displacement measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13891284A JPS6118809A (en) 1984-07-06 1984-07-06 Non-contacting multi-point displacement measurement

Publications (2)

Publication Number Publication Date
JPS6118809A true JPS6118809A (en) 1986-01-27
JPH0219404B2 JPH0219404B2 (en) 1990-05-01

Family

ID=15233044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13891284A Granted JPS6118809A (en) 1984-07-06 1984-07-06 Non-contacting multi-point displacement measurement

Country Status (1)

Country Link
JP (1) JPS6118809A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196809A (en) * 1987-02-12 1988-08-15 Kumamoto Techno Porisu Zaidan Apparatus for detecting movement of object
JPH0540235U (en) * 1991-10-29 1993-05-28 株式会社デユプロ Paper feeder for newspaper advertising collator
US6376083B1 (en) 1994-09-22 2002-04-23 Fuji Photo Film, Ltd. Magnetic recording medium
JP2006258613A (en) * 2005-03-17 2006-09-28 National Institute Of Occupation Safety & Health Japan Displacement measurement and displacement detection system utilizing laser light and optical sensor
JP2014070468A (en) * 2012-10-01 2014-04-21 Sharp Corp Photovoltaic power generation device, method of detecting positional deviation of photovoltaic power generation device, and method for constructing photovoltaic power generation device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63196809A (en) * 1987-02-12 1988-08-15 Kumamoto Techno Porisu Zaidan Apparatus for detecting movement of object
JPH0540235U (en) * 1991-10-29 1993-05-28 株式会社デユプロ Paper feeder for newspaper advertising collator
US6376083B1 (en) 1994-09-22 2002-04-23 Fuji Photo Film, Ltd. Magnetic recording medium
JP2006258613A (en) * 2005-03-17 2006-09-28 National Institute Of Occupation Safety & Health Japan Displacement measurement and displacement detection system utilizing laser light and optical sensor
JP2014070468A (en) * 2012-10-01 2014-04-21 Sharp Corp Photovoltaic power generation device, method of detecting positional deviation of photovoltaic power generation device, and method for constructing photovoltaic power generation device

Also Published As

Publication number Publication date
JPH0219404B2 (en) 1990-05-01

Similar Documents

Publication Publication Date Title
US5610711A (en) Remote pointing system for a self-leveling laser instrument
US6462810B1 (en) Surveying system
EP0801315B1 (en) Electro-optical device for detecting the presence of a body at an adjustable distance, with background suppression
JPH09250927A (en) Surveying system
EP1061335A2 (en) Position detecting apparatus
GB2155271A (en) Object location
EP0110937B1 (en) Apparatus for measuring the dimensions of cylindrical objects by means of a scanning laser beam
JPS6118809A (en) Non-contacting multi-point displacement measurement
US3002419A (en) Alignment theodolite
CA2007289A1 (en) Mirror scanner
US3988059A (en) Projector
JP4412815B2 (en) Position measuring apparatus and position measuring method
JPS5483853A (en) Measuring device
JPH07117414B2 (en) Automatic collimating lightwave rangefinder
US5764349A (en) Self-aligning baseline plane instrument
JPH07190773A (en) Optical three-dimensional position detecting device
GB2157419A (en) Optical sensor for for use in controlling a robot
US5959739A (en) System for distinguishing true target reflections from ghost target reflections
US20230096122A1 (en) Measuring device comprising a targeting unit and a scanning module
SU983398A1 (en) Tracking system pickup
SU1753273A1 (en) Device for determining coordinates of object
JPH0642967A (en) Leveling apparatus
JPH0249184A (en) Light wave distance measuring instrument for automatic tracking system
JPS6363910A (en) Distance measuring apparatus
RU2044272C1 (en) Range finder