JPH0249184A - Light wave distance measuring instrument for automatic tracking system - Google Patents

Light wave distance measuring instrument for automatic tracking system

Info

Publication number
JPH0249184A
JPH0249184A JP20173688A JP20173688A JPH0249184A JP H0249184 A JPH0249184 A JP H0249184A JP 20173688 A JP20173688 A JP 20173688A JP 20173688 A JP20173688 A JP 20173688A JP H0249184 A JPH0249184 A JP H0249184A
Authority
JP
Japan
Prior art keywords
light
tracking
light wave
wave distance
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20173688A
Other languages
Japanese (ja)
Other versions
JP2565748B2 (en
Inventor
Koji Kikko
橘高 耕治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KITSUKOU KOGAKU KENKYUSHO KK
Japan Industrial Land Development Co Ltd
Technical System Co Ltd
Original Assignee
KITSUKOU KOGAKU KENKYUSHO KK
Japan Industrial Land Development Co Ltd
Technical System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KITSUKOU KOGAKU KENKYUSHO KK, Japan Industrial Land Development Co Ltd, Technical System Co Ltd filed Critical KITSUKOU KOGAKU KENKYUSHO KK
Priority to JP63201736A priority Critical patent/JP2565748B2/en
Priority to EP89907273A priority patent/EP0374265B1/en
Priority to US07/460,109 priority patent/US5098185A/en
Priority to DE68927155T priority patent/DE68927155T2/en
Priority to PCT/JP1989/000597 priority patent/WO1989012836A1/en
Publication of JPH0249184A publication Critical patent/JPH0249184A/en
Application granted granted Critical
Publication of JP2565748B2 publication Critical patent/JP2565748B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To realize a light wave distance measuring instrument which can execute exactly positioning and measurement of a building berth by providing a tracking use scanning body and a light wave distance body on the building berth side and providing two corner cube prisms on the land side. CONSTITUTION:By using a collimation telescope provided on a light wave distance body 2 of a tracking and measuring instrument A on a work building berth, a corner cube prism 24 which is installed on the land side is caught, and set to a state that a reflected light of a light beam projected from the light wave distance body 2 returnes to the light wave distance body 2. Thereafter, automatic tracking is started. A tracking use scanning body 1 irradiates a corner cube prism 25 installed on the land side by an infrared laser light, receives its reflected light, and detects a shift in the horizontal and vertical directions from a reference position of this light receiving signal. Subsequently, based on this shift detecting signal, motors 3, 6 for a horizontal rotation and vertical driving of said tracking and measuring instrument A are controlled so that the azimuth of the light wave distance body 2 stands face to face exactly with the corner cube prism 24.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は海上における作業船台の位置を計測設定する場
合に使用される自動追尾方式の光波距離計測装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an automatic tracking type optical distance measuring device used for measuring and setting the position of a work platform on the sea.

(従来の技術) 一般に海上作業船における船台の位置決めは、うねり、
潮流、風等の自然外乱及び操船により、目標基準点が常
に移動しているために、このような条件下において高精
度、短時間、かつ省力的に計測する必要がある。
(Prior art) Generally, the positioning of a slipway on a offshore work vessel is performed due to swells,
Because the target reference point is constantly moving due to natural disturbances such as tidal currents and wind, as well as ship maneuvering, it is necessary to perform measurements with high precision, in a short time, and in a labor-saving manner under such conditions.

このような計測装置として、自動追尾方式の光波距離計
測装置が提案されている。
As such a measuring device, an automatic tracking type optical distance measuring device has been proposed.

この自動追尾方式の光波距離計測装置としては、例えば
、実公昭59−8221号公報に記載されているように
、水平方向に回転自在に、垂直方向に回動自在に支持し
た光波距離計本体の中心上部または下部に規準望遠鏡を
、その光軸を該光波距離計の光軸と平行にして取付け、
前記望遠鏡の対物レンズの焦点近傍に4分割受光素子を
固定し、陸上に配設した発光源からの光を前記4分割受
光素子の中心に結像せしめ、規準のずれによる受光像を
前記4分割受光素子の水平および垂直方向に直交して相
対向する2組の受光素子の差動出力を増幅して前記光波
距離計支持機構の水平および垂直回転駆動モータに供給
して受光源方向に自動追尾せしめるとしてなる船台など
の動揺体上に配置される規準光波距離計と、光束利用率
を増大せしめ、かつ水平広域を照射するための発光源の
前面に対物レンズまたはシリンドリカルレンズを単体ま
たは複合して装着し、さらに発光源の信号光束を発光源
前面に設けたチョッパにより点滅光として自然光と弁別
してなる陸上の発光源として配設のコーナープリズム光
軸と平行に該コーナープリズムの上部又は下部に該光波
距離計本体と規準望遠鏡との離隔に合わせて固定の基準
光源装置との組合せからなる自動追尾方式の光波距離計
測装置の構造が公知となっている。
As described in Japanese Utility Model Publication No. 59-8221, this automatic tracking type light wave distance measuring device has a light wave distance meter body supported rotatably in the horizontal direction and vertically. Attach a reference telescope at the top or bottom of the center with its optical axis parallel to the optical axis of the optical distance meter,
A 4-split light receiving element is fixed near the focal point of the objective lens of the telescope, and light from a light emitting source disposed on land is imaged at the center of the 4-split light receiving element, and the received light image due to the deviation of the standard is divided into the 4-split parts. Amplifying the differential output of two sets of light receiving elements facing each other perpendicularly to the horizontal and vertical directions of the light receiving elements and supplying the amplified signal to the horizontal and vertical rotation drive motors of the light wave distance meter support mechanism for automatic tracking in the direction of the light receiving source. A reference optical distance meter placed on a moving body such as a ship's platform to serve as a guide, and an objective lens or a cylindrical lens in front of a light source to increase luminous flux utilization and illuminate a wide horizontal area, either singly or in combination. A corner prism is installed as a terrestrial light source, and the signal beam of the light source is distinguished from natural light as blinking light by a chopper installed in front of the light source. The structure of an automatic tracking type optical distance measuring device is known, which includes a combination of a reference light source device fixed in accordance with the distance between the optical distance meter main body and a reference telescope.

(発明が解決しようとする問題点) ところが、上記従来の自動追尾方式の光波距離計測装置
は、規準光波距離計を船台上に配設するとともに、発光
源の、信号光束を自然光と弁別するためのチョッパを有
する基準発光源装置を陸上に配設する構成であるために
、基準発光源装置の電源となるバッテリーが必要となり
、バッテリー発光源、チョッパーの保守点検を定期的に
実施しなければならず、また発光源の前面に対物レンズ
またはシリンドリカルレンズを単体または複合して水平
広域を照射するようにしているために、光束の強度低下
が生じて遠距離の場合には追尾が不可能となる等の問題
点があった。
(Problems to be Solved by the Invention) However, the above-mentioned conventional automatic tracking type optical distance measuring device has a standard optical distance meter installed on the ship's platform, and also has a system for discriminating the signal light flux of the light source from natural light. Since the standard light source device with a chopper is installed on land, a battery is required to power the standard light source device, and maintenance and inspection of the battery light source and chopper must be carried out periodically. Furthermore, since an objective lens or cylindrical lens is installed in front of the light source, either alone or in combination, to illuminate a wide horizontal area, the intensity of the light beam decreases, making tracking impossible at long distances. There were problems such as.

さらに、陸上に配設した発光源からの光を4分割受光素
子の中心に結像せしめ、規準のずれによる受光像を前記
4分割受光素子の水平および垂直方向に直交して相対向
する2組の受光素子の差動出力を増幅するようにしてい
るから、発光源からの光の結像が4分割受光素子の中心
から外れない狭い範囲においては連続的な追尾が可能で
あるが、外れた場合にはもはや自動追尾ができないため
に1.自然外乱の程度によっては、操作者によって頻繁
に規準をしなければならないといった問題もあった。
Furthermore, the light from the light emitting source disposed on land is imaged at the center of the four-split light receiving element, and the received light images due to the deviation of the reference are divided into two groups facing each other perpendicularly to the horizontal and vertical directions of the four-split light receiving element. Since the differential output of the light-receiving element is amplified, continuous tracking is possible in a narrow range where the image of the light from the light source does not deviate from the center of the four-part light-receiving element. In some cases, automatic tracking is no longer possible, so 1. Depending on the degree of natural disturbance, there is also the problem that the operator has to frequently set standards.

本発明は上記従来装置の問題点を解消し、陸上に設置さ
れる装置の保守、点検とバッテリーの設置及び自然光と
の弁別のためのチョッパー手段を不要とするとともに、
船台設置の装置が陸上設置の装置に対し遠くに離間して
いても広い範囲で確実に追尾して、船台の位置決め計測
を正確に行なうことができる追尾方式の光波距離計測装
置を提供することを目的としている。
The present invention solves the problems of the conventional device described above, eliminates the need for maintenance and inspection of the device installed on land, the installation of batteries, and the chopper means for distinguishing from natural light.
To provide a tracking type optical distance measuring device capable of accurately tracking the positioning of a ship's platform in a wide range even if the device installed on the ship's platform is far away from the device installed on land. The purpose is

(問題点を解決するための手段) 本発明の追尾方式の光波距離計測装置は、追尾用スキャ
ニング本体と光波距離計本体とを、垂直上下に所定間隔
を有し、かつそれぞれの光軸を平行として配設するとと
もに、これらが一体的に水平方向に回転自在で垂直方向
に回動自在に支持してなる追尾計測装置と、垂直上下に
前記所定間隔に一致させて二個のコーナーキューブプリ
ズムを、それぞれの光軸を平行として支持した反射鏡装
置とからなり、前記追尾計測装置の追尾用スキャニング
本体は、半導体レーザーにより変調された赤外線レーザ
ー光を照射する半導体発光素子からなる発光手段と、所
定の制御信号により制御した光点を面照射するスキャナ
ー手段と、前記反射鏡装置により反射した反射光を集光
手段により集光して感知し、水平方向及び垂直方向の制
御信号に変換する受光感知手段とを具備しており、前記
スキャナー手段の制御信号と前記受光感知手段からの制
御信号との比較による信号によって、前記追尾計測装置
の水平回転及び垂直回動の駆動手段を制御するようにし
たことを特徴としている。
(Means for Solving the Problems) The tracking-type optical distance measuring device of the present invention has a tracking scanning main body and an optical distance meter main body that are vertically spaced apart from each other by a predetermined interval, and whose optical axes are parallel to each other. and a tracking measuring device which is integrally supported to be rotatable in the horizontal direction and rotatable in the vertical direction, and two corner cube prisms arranged vertically at the predetermined intervals above and below. , a reflecting mirror device whose optical axes are parallel to each other; scanner means for irradiating a surface with a light spot controlled by a control signal; and a light reception sensor for condensing and sensing the reflected light reflected by the reflecting mirror device by a condensing means and converting it into horizontal and vertical control signals. and a drive means for horizontal rotation and vertical rotation of the tracking measuring device is controlled by a signal obtained by comparing a control signal of the scanner means and a control signal from the light receiving and sensing means. It is characterized by

(作  用) 上記構成の追尾方式の光波距離計測装置は、沿岸陸上の
所定位置に所定間隔で、しかも反射面を海上設定位置の
方位として2台の反射鏡装置を配設するとともに、海上
設定位置近傍に浮遊させた船台上に、追尾用スキャニン
グ本体と光波距離計本体とからなる追尾計測装置の2台
を、所定間隔でしかも光照射方向を前記反射鏡装置の方
位として配設する。
(Function) The optical tracking type optical distance measuring device having the above configuration has two reflecting mirror devices installed at predetermined intervals on predetermined positions on land along the coast, with the reflecting surface oriented in the direction of the sea setting position. Two tracking measurement devices consisting of a tracking scanning main body and a light wave rangefinder main body are arranged on a boat floating near the position at a predetermined interval and with the direction of light irradiation as the orientation of the reflecting mirror device.

次に船台上の各追尾計測装置の光波距離計本体に装備さ
れている規準望遠鏡から、陸上に設置したそれぞれに対
応する反射鏡装置を捕えると、光波距離計本体から照射
した光の反射光が光波距離計本体に戻る状態となる。こ
の時のスキャナー手段制御信号を基準として設定した後
、自動追尾が開始される。
Next, when the reference telescope installed on the optical distance meter body of each tracking measurement device on the ship's platform captures the corresponding reflector device installed on land, the reflected light from the optical distance meter body is captured. It will return to the main body of the light wave distance meter. After setting the scanner means control signal at this time as a reference, automatic tracking is started.

自動追尾のために各追尾用スキャニング本体の発光手段
により赤外線レーザー光を照射すると。
For automatic tracking, infrared laser light is irradiated by the light emitting means of each tracking scanning body.

該レーザー光はスキャナー手段により面照射に変更され
て前記反射鏡装置に方向に照射される。
The laser beam is changed into surface irradiation by a scanner means and is irradiated in a direction onto the reflecting mirror device.

このように照射された赤外線レーザー光が、その照射域
内で各反射鏡装置を捕えるとコーナーキューブプリズム
により入射光と同一方向に反射される。
When the infrared laser beam irradiated in this way catches each reflecting mirror device within its irradiation area, it is reflected by the corner cube prism in the same direction as the incident light.

この反射光を集光手段により集光して受光感知手段によ
り受光し、水平方向及び垂直方向の制御信号に変換され
、スキャナー手段制m信号の基準との比較によって光波
距離計測本体の基準方位に対する水平及び垂直方向のず
れを検知し、これによって前記追尾計測装置の水平回転
及び垂直回動の駆動手段を制御し、光波距離計測本体の
方位を反射鏡装置のコーナーキューブプリズムと正確に
対峙する方位に一致させるようになる。
This reflected light is collected by a condensing means, received by a light receiving and sensing means, and converted into horizontal and vertical control signals. Detecting horizontal and vertical deviations, thereby controlling horizontal rotation and vertical rotation drive means of the tracking measurement device, and azimuth of the light wave distance measurement main body to accurately face the corner cube prism of the reflecting mirror device. will now match.

このような動作が自動連続的に行なわれて、常に光波距
離計測本体と反射鏡装置とが相対向し、それぞれの距離
が連続的に計測され、これに基すいて船台位置を移動さ
せ、その位置決めを行なうのである。
This kind of operation is carried out automatically and continuously, and the light wave distance measuring body and the reflector device always face each other, and the respective distances are continuously measured.Based on this, the position of the boat platform is moved and the It performs positioning.

(実施例) 次に本発明の追尾方式の光波距離計測装置の実施例を図
面に基づいて詳説すると以下の通りである。
(Example) Next, an example of the tracking type optical distance measuring device of the present invention will be described in detail based on the drawings.

第1図は本発明に係る追尾方式の光波距離計測装置の全
体を示す構成説明図、第2図は第1図の追尾用スキャニ
ング本体内に装備される赤外線レーザー光の照射及び反
射受光手段を示す説明図である。
FIG. 1 is an explanatory diagram showing the overall structure of a tracking type optical distance measuring device according to the present invention, and FIG. 2 shows an infrared laser beam irradiation and reflection receiving means installed in the tracking scanning main body of FIG. 1. FIG.

図においてAは追尾計測装置、Bは反射鏡装置である。In the figure, A is a tracking measurement device, and B is a reflecting mirror device.

Aの追尾計測装置は、追尾用スキャニング本体1と、該
追尾用スキャニング本体1の垂直下方に所定間隔りを有
しかつそれぞれの光軸a、  bを平行として追尾用ス
キャニング本体1と一体的に固定された光波距離計本体
2と、該光波距離計本体2を、垂直駆動モーター3によ
り駆動されるウオーム3aと噛合する垂直回動歯車4が
固定された水平軸5で回動自在に支持し、水平駆動モー
ター6により駆動される小歯車6aと噛合する水平回転
歯車7を固定した垂直軸8が固定されてなる架台9と、
クランプlOaにより固定できるように前記垂直軸8を
枢支し船台上に水平調節固定される調節台10bとから
なり、垂直駆動モーター3と水平駆動モーター6を、追
尾制御信号により制御して、追尾用スキャニング本体l
と光波距離計本体2とを一体として、垂直!&8周りに
回転させ、かつ水平軸5周りに回動させるようになって
いる。
The tracking measurement device A includes a tracking scanning main body 1, and is integrally formed with the tracking scanning main body 1, having a predetermined interval vertically below the tracking scanning main body 1, and with the respective optical axes a and b parallel to each other. The light wave distance meter main body 2 is fixed, and the light wave range meter main body 2 is rotatably supported by a horizontal shaft 5 to which a vertical rotation gear 4 that meshes with a worm 3a driven by a vertical drive motor 3 is fixed. , a pedestal 9 on which a vertical shaft 8 to which a horizontal rotating gear 7 that meshes with a small gear 6a driven by a horizontal drive motor 6 is fixed is fixed;
The vertical shaft 8 is pivoted so as to be fixed by a clamp lOa, and the adjustment table 10b is horizontally adjusted and fixed on the boat platform.The vertical drive motor 3 and the horizontal drive motor 6 are controlled by a tracking control signal to perform tracking. Scanning body for
and the light wave distance meter main body 2 are integrated, vertically! &8, and around the horizontal axis 5.

追尾用スキャニング本体1は、第2図に示すように、半
導体レーザーにより変調された赤外線レーザー光を照射
する半導体発光素子、例えばLDからなる発光源11と
、光源の広がりを改善するためのコリメートレンズ12
と、光点を垂直方向に走査する垂直方向スキャナー15
と、光点を水平方向に走査する水平方向スキャナー16
と1反射鏡装置Bにより反射した反射光を集光する集光
手段である対物レンズ13と1反射光を感知して水平方
向及び垂直方向の制御信号に変換する受光感知手段であ
る半導体受光素子14が配設された構成であって、発光
源11よりの赤外線レーザー光が、コリメートレンズ1
2を通過して、垂直及び水平スキャナー15、工6によ
り面照射に変更されて、前記反射鏡装置Bに方向に照射
され、また反射鏡装置Bに反射した反射光は、集光手段
である対物レンズ13で光束を集め、半導体受光素子1
4に感知させるようになっている。
As shown in FIG. 2, the tracking scanning main body 1 includes a light emitting source 11 consisting of a semiconductor light emitting element, such as an LD, which emits infrared laser light modulated by a semiconductor laser, and a collimating lens for improving the spread of the light source. 12
and a vertical scanner 15 that vertically scans the light spot.
and a horizontal scanner 16 that scans the light spot horizontally.
and (1) an objective lens 13 which is a condensing means for condensing the reflected light reflected by the reflecting mirror device B; and (1) a semiconductor light receiving element which is a light receiving and sensing means which senses the reflected light and converts it into control signals in the horizontal and vertical directions. 14 is arranged, and the infrared laser beam from the light emitting source 11 passes through the collimating lens 1.
2, the reflected light is changed to surface irradiation by the vertical and horizontal scanners 15 and 6, and is irradiated in the direction to the reflecting mirror device B, and the reflected light reflected by the reflecting mirror device B is a condensing means. The objective lens 13 collects the light beam, and the semiconductor light receiving element 1
It is designed to be detected by 4.

晶、上記実施例では、レーザー光の面照射位置と反射光
の集光位置が異なる軸上となっているが、両位置を同一
とするため第3図、第4図に示す構成としてもよい。
In the above embodiment, the surface irradiation position of the laser beam and the condensing position of the reflected light are on different axes, but in order to make both positions the same, the configuration shown in FIGS. 3 and 4 may be used. .

即ち、第3図は集光手段として照射用孔を開設した放物
面鏡13bを採用した場合であって、垂直及び水平スキ
ャナー15.16により面照射に変更されたレーザー光
を、放物面鏡13bの照射用孔から照射するとともに、
反射光を集光し半導体受光素子14に感知させるように
なっている。
That is, FIG. 3 shows a case where a parabolic mirror 13b with an irradiation hole is used as a condensing means, and the laser beam changed to surface irradiation by the vertical and horizontal scanners 15 and 16 is applied to the parabolic surface. While irradiating from the irradiation hole of the mirror 13b,
The reflected light is collected and sensed by the semiconductor light receiving element 14.

また第4図は集光手段として中心に照射用孔を開設した
対物レンズ13aを採用した場合であって、垂直及び水
平スキャナー15.16により面照射に変更されたレー
ザー光を、プリズム17.18を用いて対物レンズ13
aの照射用孔から照射するとともに、反射光を集光し半
導体受光素子14に感知させるようになっている。
Further, FIG. 4 shows a case where an objective lens 13a having an irradiation hole in the center is used as a light condensing means, and the laser beam changed to surface irradiation by the vertical and horizontal scanners 15.16 is transmitted to the prism 17.18. Objective lens 13 using
The light is irradiated through the irradiation hole a, and the reflected light is collected and sensed by the semiconductor light receiving element 14.

なお光波距離計本体2は、一般的に市販されているもの
を使用するためその詳細については説明を省略する。
Note that the light wave range finder main body 2 is a commonly available commercially available one, so a detailed explanation thereof will be omitted.

反射鏡装置Bは、陸上に水平調節固定される調節台21
に、クランプ21aにより支柱22を調節固定するよう
にした支持架台23を支持させるとともに、二個のコー
ナーキューブプリズム2425を、それぞれの光軸c、
dを所定間隔りで平行となるように支柱22に固定させ
た構成となっている。
Reflector device B includes an adjustment table 21 that is horizontally adjusted and fixed on land.
A support pedestal 23 is supported by a clamp 21a to adjust and fix the support column 22, and two corner cube prisms 2425 are attached to the respective optical axes c,
d are fixed to the pillars 22 so as to be parallel to each other at predetermined intervals.

上記構成の追尾方式の光波距離計測装置は、船台上の各
追尾計測装置Aの光波距離計本体2に装備されている規
準望遠鏡(図示せず)から、陸上に設置したそれぞれに
対応する反射鏡装置Bのコーナーキューブプリズム24
を規準し、光波距離計本体lから照射した光の反射光が
光波距離計本体Iに戻る状態とした後、自動的に反射鏡
装置Bを追尾し、連続的に反射鏡装置Bに対する船台の
距離が計測されるようになる。
The tracking-type optical distance measuring device with the above configuration is configured so that a reference telescope (not shown) installed in the optical distance meter body 2 of each tracking measuring device A on the ship's platform is connected to a corresponding reflecting mirror installed on land. Corner cube prism 24 of device B
After setting the state in which the reflected light emitted from the light-wave distance meter main body I returns to the light-wave range meter main body I, it automatically tracks the reflector device B and continuously adjusts the berth to the reflector device B. Distance will now be measured.

すなわち、光波距離計本体1から照射した光の反射光が
光波距離計本体1に戻る状態とした時には、垂直及び水
平スキャナー15.16によって面照射された赤外線レ
ーザー光もある点においてコーナーキューブプリズム2
5に反射され、その反射光が半導体受光素子14に感知
されるから、この時点の垂直及び水、平スキャナー15
.16を制御している制御電圧を、水平基準電圧Via
、垂直基準電圧V2oとして制御装置(図示せず)に設
定する。
That is, when the reflected light emitted from the light wave distance meter main body 1 returns to the light wave range meter main body 1, the infrared laser beam irradiated by the vertical and horizontal scanners 15 and 16 also reaches the corner cube prism 2 at a certain point.
5, and the reflected light is detected by the semiconductor light receiving element 14, so that the vertical, horizontal, and horizontal scanners 15 at this point
.. The control voltage controlling 16 is the horizontal reference voltage Via
, is set in a control device (not shown) as a vertical reference voltage V2o.

そして自然外乱等によって船台が揺動若しくは移動した
状態において、半導体受光素子14が反射光を感知した
時の垂直及び水平スキャナー1516の制御電圧v1、
V2を検知し、前記水平基準電圧Via、垂直基準電圧
V2oと比較し、差が零になるように垂直駆動モーター
3と水平駆動モーター6を制御して、追尾用スキャニン
グ本体1と光波距離計本体2とを一体として、垂直軸8
周りに回転させ、かつ水平軸5周りに回動させ、光波距
離計測本体lを反射鏡装置Bのコーナーキューブプリズ
ム24に対峙させるようになる。
The control voltage v1 of the vertical and horizontal scanner 1516 when the semiconductor light-receiving element 14 detects reflected light in a state where the boat platform is rocking or moving due to natural disturbance etc.
V2 is detected and compared with the horizontal reference voltage Via and vertical reference voltage V2o, and the vertical drive motor 3 and the horizontal drive motor 6 are controlled so that the difference becomes zero, and the tracking scanning main body 1 and the optical distance meter main body are connected. 2 and the vertical axis 8
The light wave distance measurement main body 1 is made to face the corner cube prism 24 of the reflecting mirror device B by rotating it around the horizontal axis 5.

このような動作が自動連続的に行なわれて、常に光波距
離計測本体lと反射鏡装置Bとが相対向12、距離が連
続的に計測され、これに基ずいて船台位置を移動させ、
その位置決めが行なわれるのである。
Such an operation is automatically and continuously carried out, and the light wave distance measurement main body 1 and the reflector device B are always facing each other 12, and the distance is continuously measured, and based on this, the position of the ship's platform is moved,
That positioning is then performed.

(発明の効果) 以上説明した本発明の追尾方式の光波距離計測装置は、
船台上に設置される追尾計測装置を、追尾用の発光手段
を有する追尾用スキャニング本体と光波距離計本体とで
構成するとともに、陸上に設置される反射鏡装置が、垂
直上下に前記所定間隔で2個のコーナーキューブプリズ
ムを配役支持させた構成であるから、陸上側の反射鏡装
置に発光手段は装備させる必要がない。
(Effects of the Invention) The tracking type optical distance measuring device of the present invention described above has the following features:
The tracking measuring device installed on the ship's platform is composed of a tracking scanning main body having a light emitting means for tracking and a light wave distance meter main body, and a reflecting mirror device installed on land is arranged vertically at the predetermined intervals above and below. Since the configuration is such that two corner cube prisms are arranged and supported, there is no need to equip the reflecting mirror device on the land side with a light emitting means.

また船台上に設置される追尾計測装置の追尾用スキャニ
ング本体に、半導体レーザーにより変調された赤外線レ
ーザー光を照射する半導体発光素子からなる発光手段と
、光点を面照射するスキャナー手段とを内蔵したから、
従来のようにチョッパーで光を点滅させる必要がないと
ともに、光束を広げず、しかも2次元的広範囲にかつ連
続的に光を走査して確実に反射光を捕捉することができ
、操作者によって頻繁に規準をすることなく自動的に追
尾させることができる。
In addition, the tracking scanning body of the tracking measurement device installed on the ship's platform is equipped with a built-in light emitting means consisting of a semiconductor light emitting element that emits infrared laser light modulated by a semiconductor laser, and a scanner means that illuminates the surface of the light spot. from,
There is no need to flicker the light with a chopper like in the past, and the light can be scanned continuously over a two-dimensional wide area without spreading the light beam, making it possible to reliably capture the reflected light. Automatic tracking can be performed without setting standards.

以上のように本発明によれば、陸上に設置される装置に
バッテリー等の電源を装備させる必要がなく、また自然
光との弁別のためのチゴッパー手段を必要としないので
、装置構造が簡単で安価となり、さらにバッテリー等の
電源や発光手段の保守点検のために反射鏡装置設置場所
へ行く手間が解消されるとともに、船台設置の装置が陸
上設置の装置に対し遠くに離間していても確実に追尾し
さらに水平方向において作業船の行動範囲を広くとりな
がら船台の位置決め計測を正確に行なうことができる追
尾方式の光波距離計測装置を提供し得るのである。
As described above, according to the present invention, there is no need to equip a device installed on land with a power source such as a battery, and there is no need for a light filter for distinguishing from natural light, so the device structure is simple and inexpensive. This eliminates the need to go to the location where the reflector device is installed for maintenance and inspection of power supplies such as batteries and light emitting means. This makes it possible to provide a tracking-type optical distance measuring device that can accurately measure the position of a ship's platform while tracking and widening the action range of a work boat in the horizontal direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る追尾方式の光波距離計測装置の全
体を示す構成説明図、第2図乃至第4図は第1図の追尾
用スキャニング本体内に装備される赤外線レーザー光の
照射及び反射受光手段の実施例を示す説明図である。 A・・・・追尾計測装置  B・・・・反射鏡装置D・
・・・所定間隔    a、b・・・・光  軸c、d
・・・・光  軸 1・・・・追尾用スキャニング本体 2・・・・光波距離計本体 3・・垂直駆動モーター3
a・・・・ウオーム   4・・・・垂直回動歯車5・
・・・水平軸     6・・・・水平駆動モーター6
a・・・・小歯車    7・・・・水平回転歯車8・
・・・垂直軸     9・・・・架  台Oa・・・
・クランプ  10b・・・・調節台1・・・・発光[
12・・・・コリメートレンズ3.13a・・・・対物
レンズ 3b・・・・放物面鏡  14・・・・半導体受光素子
5・・・・垂直方向スキャナー 6・・・・水平方向スキャナー 7.18・・・・プリズム ト・・・調節台    21a・・・・クランプ2・・
・・支  柱   23・・・・支持架台4.25・・
・・コーナーキューブプリズム第 1 第 図 第 図 イ
FIG. 1 is an explanatory diagram showing the entire configuration of a tracking type optical distance measuring device according to the present invention, and FIGS. It is an explanatory view showing an example of a reflected light receiving means. A...Tracking measurement device B...Reflector device D.
...Predetermined intervals a, b... Optical axes c, d
...Optical axis 1...Scanning body for tracking 2...Light wave distance meter body 3...Vertical drive motor 3
a... Worm 4... Vertical rotation gear 5.
...Horizontal axis 6...Horizontal drive motor 6
a... Small gear 7... Horizontal rotating gear 8.
...Vertical axis 9... Frame Oa...
・Clamp 10b...Adjustment stand 1...Light emission [
12...Collimating lens 3.13a...Objective lens 3b...Parabolic mirror 14...Semiconductor light receiving element 5...Vertical scanner 6...Horizontal scanner 7 .18...Prism...Adjustment stand 21a...Clamp 2...
...Support 23...Support frame 4.25...
... Corner Cube Prism No. 1 Fig. I

Claims (1)

【特許請求の範囲】[Claims] 1、追尾用スキャニング本体と光波距離計本体とを、垂
直上下に所定間隔を有し、かつそれぞれの光軸を平行と
して配設するとともに、これらが一体的に水平方向に回
転自在で垂直方向に回動自在に支持してなる追尾計測装
置と、垂直上下に前記所定間隔に一致させて二個のコー
ナーキューブプリズムを、それぞれの光軸を平行として
支持した反射鏡装置とからなり、前記追尾計測装置の追
尾用スキャニング本体は、半導体レーザーにより変調さ
れた赤外線レーザー光を照射する半導体発光素子からな
る発光手段と、所定の制御信号により制御した光点を面
照射するスキャナー手段と、前記反射鏡装置により反射
した反射光を集光手段により集光して感知し、水平方向
及び垂直方向の制御信号に変換する受光感知手段とを具
備しており、前記スキャナー手段の制御信号と前記受光
感知手段からの制御信号との比較による信号によって、
前記追尾計測装置の水平回転及び垂直回動の駆動手段を
制御するようにしたことを特徴とする自動追尾方式の光
波距離計測装置。
1. The tracking scanning body and the optical distance meter body are arranged vertically at a predetermined interval with their respective optical axes parallel to each other, and they are integrally rotatable horizontally and vertically. The tracking measurement device comprises a tracking measurement device rotatably supported, and a reflecting mirror device supporting two corner cube prisms vertically up and down at the predetermined intervals with their respective optical axes parallel to each other. The tracking scanning main body of the device includes a light emitting means made of a semiconductor light emitting element that emits infrared laser light modulated by a semiconductor laser, a scanner means that illuminates a surface with a light spot controlled by a predetermined control signal, and the reflecting mirror device. and a light-receiving sensing means for condensing and sensing the reflected light by a condensing means and converting the reflected light into horizontal and vertical control signals, the control signal of the scanner means and the light-receiving sensing means The signal by comparison with the control signal of
An automatic tracking type optical distance measuring device, characterized in that driving means for horizontal rotation and vertical rotation of the tracking measuring device is controlled.
JP63201736A 1988-06-15 1988-08-11 Lightwave distance measuring device with automatic tracking Expired - Lifetime JP2565748B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63201736A JP2565748B2 (en) 1988-08-11 1988-08-11 Lightwave distance measuring device with automatic tracking
EP89907273A EP0374265B1 (en) 1988-06-15 1989-06-15 Automatic tracking type surveying apparatus
US07/460,109 US5098185A (en) 1988-06-15 1989-06-15 Automatic tracking type measuring apparatus
DE68927155T DE68927155T2 (en) 1988-06-15 1989-06-15 MEASURING DEVICE WITH AUTOMATIC TRACKING
PCT/JP1989/000597 WO1989012836A1 (en) 1988-06-15 1989-06-15 Automatic tracking type surveying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63201736A JP2565748B2 (en) 1988-08-11 1988-08-11 Lightwave distance measuring device with automatic tracking

Publications (2)

Publication Number Publication Date
JPH0249184A true JPH0249184A (en) 1990-02-19
JP2565748B2 JP2565748B2 (en) 1996-12-18

Family

ID=16446084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63201736A Expired - Lifetime JP2565748B2 (en) 1988-06-15 1988-08-11 Lightwave distance measuring device with automatic tracking

Country Status (1)

Country Link
JP (1) JP2565748B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475930A (en) * 1993-06-29 1995-12-19 Kabushiki Kaisha Topcon Rotating and driving system for survey instrument
US7876430B2 (en) 2004-06-29 2011-01-25 Cavotec Msl Holdings Limited Laser scanning for mooring robot
JP2014228492A (en) * 2013-05-24 2014-12-08 リコー光学株式会社 Laser device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172266A (en) * 1981-04-17 1982-10-23 Auto Process:Kk Distance measuring device
JPS58200182A (en) * 1982-05-18 1983-11-21 Mitsubishi Electric Corp Tracking device for active image

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172266A (en) * 1981-04-17 1982-10-23 Auto Process:Kk Distance measuring device
JPS58200182A (en) * 1982-05-18 1983-11-21 Mitsubishi Electric Corp Tracking device for active image

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5475930A (en) * 1993-06-29 1995-12-19 Kabushiki Kaisha Topcon Rotating and driving system for survey instrument
US7876430B2 (en) 2004-06-29 2011-01-25 Cavotec Msl Holdings Limited Laser scanning for mooring robot
JP2014228492A (en) * 2013-05-24 2014-12-08 リコー光学株式会社 Laser device

Also Published As

Publication number Publication date
JP2565748B2 (en) 1996-12-18

Similar Documents

Publication Publication Date Title
US5098185A (en) Automatic tracking type measuring apparatus
JP4088906B2 (en) Photo detector of surveying instrument
CN207318710U (en) A kind of more harness hybrid laser radars of list laser
EP1037014B1 (en) Electric level
EP1422500B1 (en) Automatic reflector tracking apparatus
CN110989695B (en) Automatic sun tracking device and method on mobile platform
JP3647608B2 (en) Surveyor automatic tracking device
JP2004170355A (en) Automatic reflector tracking device
KR100351018B1 (en) Arrangement for target detection
JPH07120227A (en) Trolley line wear measurement optical system
CN201673031U (en) Far-field test device of turnplate type semiconductor laser
JPH0249184A (en) Light wave distance measuring instrument for automatic tracking system
JPH01156689A (en) Light wave distance measuring instrument for automatic tracking system
JP2018048868A (en) Scanner device and surveying device
JPH0219404B2 (en)
JPS6035880Y2 (en) oil film detector
JPH07117414B2 (en) Automatic collimating lightwave rangefinder
JP2840951B2 (en) Automatic collimation device
JPS598221Y2 (en) Automatic collimation optical distance meter device
US7531772B2 (en) Apparatus for translational displacement of a lens in a laser focussing optical system
CN221260786U (en) Light path alignment device of scanning type gas laser detection system
KR100506388B1 (en) Pin-hole detecting apparatus by using round-shape injection type razor
RU2098858C1 (en) Device for automatic measurement of distance to object
JPH0421109Y2 (en)
JPH0559386B2 (en)