JPH07122086B2 - 化学還元による金属微粉末の製造法 - Google Patents

化学還元による金属微粉末の製造法

Info

Publication number
JPH07122086B2
JPH07122086B2 JP2189961A JP18996190A JPH07122086B2 JP H07122086 B2 JPH07122086 B2 JP H07122086B2 JP 2189961 A JP2189961 A JP 2189961A JP 18996190 A JP18996190 A JP 18996190A JP H07122086 B2 JPH07122086 B2 JP H07122086B2
Authority
JP
Japan
Prior art keywords
metal
mist
producing
powder
metal powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2189961A
Other languages
English (en)
Other versions
JPH0474811A (ja
Inventor
一兵 中川
春夫 松井
宣洋 平林
Original Assignee
工業技術院長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 工業技術院長 filed Critical 工業技術院長
Priority to JP2189961A priority Critical patent/JPH07122086B2/ja
Publication of JPH0474811A publication Critical patent/JPH0474811A/ja
Publication of JPH07122086B2 publication Critical patent/JPH07122086B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 粉末冶金、導電性ペースト、触媒、複合材料用素材、接
合剤に利用できる。
[従来の技術] 金属微粉末の製造法は、製造プロセスにより乾式法と湿
式法に区分される。
アークプラズマ中に、粗粉末を吹き込む方法、水素アー
クプラズマ法、ガス中蒸発法、金属塩化物の蒸気を水素
で気相還元する等の乾式法、金属塩を加水分解して水酸
化物の微粉末を沈澱させた後、水素還元する方法と還元
剤で直接還元する湿式法で行われる。
乾式法は、量産性とコストの点で難点があり、湿式法は
これらの点で有利であるが、排水処理という厄介なこと
があり、それぞれ一長一短がある。
[発明が解決しようとする課題] 本発明は、乾式法と湿式法のこれらの欠点を是正できる
複式法である。すなはち、ホルマリン、次亜リン酸、ヒ
ドラジン、水素化ホウ素ナトリウム、ジメチルボラン等
の還元剤を用いて、後記の実施例で述べるように、金属
塩を溶かした溶液と還元剤を溶かした溶液から超音波に
より霧を発生させて、この霧を混合、輸送し電気炉中に
納められた反応管中で還元反応を進行させて、金属微粉
末を得る方法である。乾式法のように連続操業が出来る
様に工夫する必要がある。同時に、廃液量を減らすこと
も重要な課題である。さらに得られる製品について言え
ば、粒径の揃った球形粒子を得る条件を決定し、高純度
品を得る方法を見いだすことも本発明の技術課題点であ
る。また金属の混合塩を用いることにより2元系の合金
粉末を作ることを検討した。実施例でこれらの課題点の
解決方法と結果を詳細に述べる。
次に、実施例により本発明をさらに詳細に説明する。
[実施例] 実施例1 第1図は、本発明に用いた装置の略図である。加湿器
(40W、17MHz)1の振動板の直上に200ml塩化ビニール
容器2またはガラス製の三角フラスコ2を置き、この中
に金属塩を溶かした溶液50mlを入れ、霧を発生させる。
また加湿器1の振動板の直上に還元剤を溶かした溶液50
mlを入れた塩化ビニール容器3または三角フラスコ3を
置き、霧を発生させる。ビニール管でマントルヒーター
4に納められた枝付き丸底フラスコ(200ml)5に霧を
導き混合する。その後電気炉6中に納められたガラス製
反応管(2cmx30cm)7に導入させて還元反応させる。な
お、還元反応をより一層促進する為に、ガス導入口11か
ら95%アルゴンと5%水素の混合ガスを流入する。その
あとに薄い濃度のヒドラジン溶液を入れた耐圧瓶8、洗
気瓶9を2個を置いて固体物質を捕集する。最後に逆流
防止用のガラス瓶を介してアスピレーター10により吸引
して気流をつくる。捕集後、遠心分離器により固液分離
し沈澱物を冷凍乾燥器で乾燥させる。
実施例2 1モルのAgNO3溶液を容器2に50ml入れる。容器3に1
モルの1水和ヒドラジン50mlまたは1水和ヒドラジン50
mlに少量の水素化ホウ素化ナトリウムを添加した溶液を
入れ加湿器1を作動させて霧を発生させる。アスピレー
タ10で吸引しながらアルゴンと水素の混合ガスをガス導
入口11から入れる。マントルヒー4の温度を100℃に保
持して加湿器1上の容器から出てくる霧を混合する。そ
の後電気炉6の温度を200℃に保持して反応管7中で還
元反応を進行させる。未反応の霧と反応生成物を薄いヒ
ドラジン溶液を入れた捕集器8,9で捕集する。枝付きフ
ラスコ5、反応管7中、捕集器8,9中の固形物と液体と
をそれぞれ遠心分離し、冷却乾燥させた。乾燥後の銀粉
末のX線回折、粒形観察および粒度分布測定を行った。
容器2にAgNO3の代わりにPaNO3、Cu(NO32またはNi
(NO32溶液を入れ換えた場合についても、Agの場合と
同様の結果が得られた。
実施例3 実施例3は、2元系の合金粉末を製造する例である。
1モルのAgNO3と1モルのCuNO3の混合溶液を容器2に50
mlに入れ、容器3に1モルの1水和ヒドラジン50mlを入
れて、加湿器1を作動させて霧を発生させる。霧を発生
させたあとの操作は、実施例1で述べた方法と同じであ
る。他のPa−Ag系、Ag−Ni系、Cu−Ni系も同様の方法で
つくる事ができる。
[発明の効果] 本発明は、従来の液相還元法の短所である非連続的であ
ること、多量の廃液を生ずる2点をカバーできる方法で
あり、連続操業が可能で、廃液の量を軽減できる。
本法で得られる製品は、粒径がサブミクロンの球形粒子
で高い反応性を有するので粉末冶金の添加剤に使うと焼
結温度を著しく下げることが出来、省エネの効果が期待
できる。特にサーメットにおける省エネルギーに有効で
ある。また高い導電率を示すので、導電性ペースト用素
材に好適である。
【図面の簡単な説明】
第1図は、本発明の実施例で使用される装置の略図であ
る。 1は加湿器、2、3はプラスチックまたはガラス製容
器,4はマントルヒーター、5は枝付き丸底フラスコ、6
は電気炉、7はガラス製反応管、8は耐圧瓶、9は洗気
瓶、10はアスピレーター、11はガス導入口である。 第2図は、本発明で作られた銀粉末のX線回折図であ
る。横軸は角度(CuKa)、縦軸は強度である。 第3図は、銀粉末の粒子構造を示すSEM写真である。 第4図は、銀粉末の粒度分布図である。

Claims (4)

    【特許請求の範囲】
  1. 【請求項1】金属塩を溶かした溶液から超音波でミスト
    を発生させ、還元剤を溶かした溶液からも超音波でミス
    トを発生させ、次に両者をミスト状態のまま混合し、還
    元雰囲気の熱帯域へ該混合されたミストを導入し、気相
    還元反応により、該金属塩を金属にまで還元したものを
    冷凍乾燥装置で乾燥させ、金属粉末を製造する方法。
  2. 【請求項2】請求項1記載の金属塩の金属が、Pd、Ag、
    Cu及びNiより成る群から選ばれた請求項1記載の金属粉
    末の製造方法。
  3. 【請求項3】請求項2記載の金属から成る2元系粉末
    を、請求項1記載の方法で製造する方法。
  4. 【請求項4】請求項1記載の還元剤が、ヒドラジン単独
    もしくはヒドラジンと水素化ホウ素化合物とを混合して
    請求項1記載の方法で金属粉末を製造する方法。
JP2189961A 1990-07-18 1990-07-18 化学還元による金属微粉末の製造法 Expired - Lifetime JPH07122086B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2189961A JPH07122086B2 (ja) 1990-07-18 1990-07-18 化学還元による金属微粉末の製造法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2189961A JPH07122086B2 (ja) 1990-07-18 1990-07-18 化学還元による金属微粉末の製造法

Publications (2)

Publication Number Publication Date
JPH0474811A JPH0474811A (ja) 1992-03-10
JPH07122086B2 true JPH07122086B2 (ja) 1995-12-25

Family

ID=16250089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2189961A Expired - Lifetime JPH07122086B2 (ja) 1990-07-18 1990-07-18 化学還元による金属微粉末の製造法

Country Status (1)

Country Link
JP (1) JPH07122086B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429657A (en) * 1994-01-05 1995-07-04 E. I. Du Pont De Nemours And Company Method for making silver-palladium alloy powders by aerosol decomposition
EP1647344A1 (de) * 2004-10-13 2006-04-19 Metco GmbH Verfahren zur Herstellung von Eisen- oder Stahlpulvern für den Metallpulverspritzguss
JP2013216941A (ja) * 2012-04-09 2013-10-24 Wingturf Co Ltd 空中反応による微粒子の製造方法
JP6393344B2 (ja) * 2014-12-22 2018-09-19 株式会社新光化学工業所 ナノ粒子の製造方法及び製造装置ならびにそれによって製造したナノ粒子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5615444B2 (ja) * 1973-10-31 1981-04-10
GB1461176A (en) * 1974-04-11 1977-01-13 Plessey Inc Method of producing powdered materials

Also Published As

Publication number Publication date
JPH0474811A (ja) 1992-03-10

Similar Documents

Publication Publication Date Title
KR100288095B1 (ko) 에어로졸분해에 의한 은분의 제조방법
JP4392864B2 (ja) エアゾル分解による金粒子の製造方法
CN106916314B (zh) 金属有机骨架材料MIL‑88B(Fe)的制备方法
WO2011131008A1 (zh) 一种利用微通道反应器制备纳米镍粉的方法
KR20060121855A (ko) 파우더재료의 합성, 분리 및 정제를 위한 프로세스
US8317894B2 (en) Method of producing metal nanoparticles continuously and metal nanoparticles produced thereby
JPH07122086B2 (ja) 化学還元による金属微粉末の製造法
CN107585792A (zh) 二水合氯化亚铁固体的制备方法及二水合氯化亚铁固体
CN206163654U (zh) 从废旧电池极片中回收正极材料的装置
CN110116218A (zh) 一种高纯粒径分布窄铜粉的制备方法
Chakrabarti et al. Nanotechnology-driven chemistry of boron materials
Viet Quang et al. The effect of hydrothermal treatment on silver nanoparticles stabilized by chitosan and its possible application to produce mesoporous silver powder
KR101166986B1 (ko) 질산은을 이용한 은분말 제조방법
Wang et al. Recycling valuable silver from waste generated in diverse nanotemplate reactions
Dong et al. Synthesis of homogeneous bunched lead molybdate nanobelts in large scale via vertical SLM system at room temperature
CN210132056U (zh) 高纯度高均匀性的超细镍粉的制备装置
Liu et al. Fabrication and photocatalytic activity of TiO2 derived nanotubes with Ag ions doping
FI87895B (fi) Foerfarande foer framstaellning av metallpulver
CN209985393U (zh) 一种纳米金属氧化物分散液制备装置
CN113413917A (zh) 一种基于芘四羧酸的Tb-MOF纳米片的制备及应用
JPH04281840A (ja) 金属酸化物超微粒子の製造方法及び製造装置
CN1253280C (zh) 一种制备纳米金属粉体的方法
RU2434716C2 (ru) Способ получения нанопорошков нитрида титана
JPH0474810A (ja) ニッケル基金属微粉末の製造法
JPH0249364B2 (ja)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term