JPH07118015A - Transparent oxide and transparent conductive oxide using the oxide - Google Patents

Transparent oxide and transparent conductive oxide using the oxide

Info

Publication number
JPH07118015A
JPH07118015A JP28174993A JP28174993A JPH07118015A JP H07118015 A JPH07118015 A JP H07118015A JP 28174993 A JP28174993 A JP 28174993A JP 28174993 A JP28174993 A JP 28174993A JP H07118015 A JPH07118015 A JP H07118015A
Authority
JP
Japan
Prior art keywords
oxide
transparent
transparent conductive
carrier
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28174993A
Other languages
Japanese (ja)
Other versions
JP3506390B2 (en
Inventor
Masahiro Orita
政寛 折田
Megumi Takeuchi
恵 竹内
Hiroaki Tanji
宏彰 丹治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP28174993A priority Critical patent/JP3506390B2/en
Publication of JPH07118015A publication Critical patent/JPH07118015A/en
Application granted granted Critical
Publication of JP3506390B2 publication Critical patent/JP3506390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain a new material transparent to the light of <=250nm and having electric conductivity. CONSTITUTION:This transparent oxide is expressed by Zn(Ga(1-x)Alx)2O4 (where (x) is 0.05 to 0.8) and is a solid soln. having a spinel crystal structure. A carrier is injected into a solid soln. shown by Zn(Ga(1-x)Alx)2O4 (where (x) is 0.05 to 0.8) and having a spinel crystal structure to obtain the transparent conductive oxide. The carrier is injected, for example, at 1X10<18> to 1X10<22>/cm<2>. The transparent conductive oxide is useful as the various displays such as liq. crystal display and EL display, electrode of a solar battery, defogging heater of a refrigerated showcase, heat reflecting glass of the panel of building and automobile, coating material for preventing the electrification of a transparent material and for shielding the electromagnetic wave, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は紫外域での透明性と電気
伝導性とを有する透明導電性酸化物及びその中間体とし
て有用な透明酸化物に関する。特に、本発明は、250
nm以下の光に対する透明性と電気伝導性に優れた透明
導電性酸化物に関する。本発明の透明導電性酸化物は、
液晶ディスプレイ、ELディスプレイ等の各種ディスプ
レイや、太陽電池の電極、冷凍ショーケースの防曇ヒー
ター、建物及び自動車の窓ガラスの熱線反射膜、透明物
質の帯電防止及び電磁波遮蔽用のコーティング材料等と
して好ましく用いることができる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent conductive oxide having transparency in the ultraviolet region and electrical conductivity and a transparent oxide useful as an intermediate thereof. In particular, the invention is
The present invention relates to a transparent conductive oxide having excellent transparency and electric conductivity with respect to light of nm or less. The transparent conductive oxide of the present invention,
Preferred as various displays such as liquid crystal displays and EL displays, solar cell electrodes, anti-fog heaters for freezer showcases, heat ray reflective films for window glass of buildings and automobiles, coating materials for preventing static electricity of transparent substances and shielding electromagnetic waves. Can be used.

【0002】[0002]

【従来の技術】可視光線領域で透明でかつ電気伝導性を
有するいわゆる透明導電性材料は、液晶ディスプレイ、
ELディスプレイなどの各種ディスプレイや太陽電池の
透明電極として、また冷凍ショーケースの防曇ヒータ
ー、建物及び自動車の窓ガラスの熱線反射膜、さらには
透明物の帯電防止や電磁波遮蔽用のコーティング等とし
て利用されている。
2. Description of the Related Art So-called transparent conductive materials which are transparent in the visible light region and have electrical conductivity are liquid crystal displays,
Used as various displays such as EL displays and transparent electrodes for solar cells, anti-fog heaters for freezer showcases, heat ray reflection films for window glass of buildings and automobiles, and as a coating for antistatic and electromagnetic shielding of transparent materials. Has been done.

【0003】この種の透明導電性材料としては、金属酸
化物半導体が一般に用いられている。例えば、酸化スズ
(SnO2)、スズをドープした酸化インジウム(IT
O)、CdSn2O4 、ZnCd2O4 など種々提案されている。こ
の中でも、特にITOが広範に使われている。ITOは
その光学的吸収端が370nm付近にあり、可視領域の
最も短波長側の領域を除くほぼ全域にわたって透明性が
あるのみならず、金属に匹敵するキャリア濃度と、酸化
物としては比較的大きいキャリア移動度を有し、高い電
気伝導度を有する。
A metal oxide semiconductor is generally used as this type of transparent conductive material. For example, tin oxide (SnO 2 ), tin-doped indium oxide (IT
O), CdSn 2 O 4 , ZnCd 2 O 4, etc. have been proposed. Among these, ITO is particularly widely used. ITO has an optical absorption edge near 370 nm, and is not only transparent over almost the entire region except the region on the shortest wavelength side of the visible region, but also has a carrier concentration comparable to that of metal and is relatively large as an oxide. It has carrier mobility and high electrical conductivity.

【0004】[0004]

【発明が解決しようとする課題】レーザー光源やSOR
光源の開発にともない、紫外域の明るい光を比較的容易
に用いることができるようになっている。しかしこのよ
うな紫外域、特に波長250nm以下の光に対して透明
な導電材料はこれまで存在せず、紫外光応用上の技術的
課題となっていた。例えば、上述したITOは光学的吸
収端が370nm付近にあってこれより短波長の光に対
しては透明でない。また、最近報告されたZnGa2O4 なる
スピネル化合物は、30/Ω・cmの電気伝導度をもち
250nmに吸収端がある(日本セラミック協会93年
会講演予稿集585ページ)。しかし、これより短波長
の光に対しては透明でない。
Problems to be Solved by the Invention Laser light source and SOR
With the development of light sources, bright light in the ultraviolet region can be used relatively easily. However, such a conductive material that is transparent to the ultraviolet region, particularly light having a wavelength of 250 nm or less, has not existed so far, which has been a technical problem in the application of ultraviolet light. For example, the above-mentioned ITO has an optical absorption edge near 370 nm and is not transparent to light having a shorter wavelength. In addition, the recently reported ZnGa 2 O 4 spinel compound has an electric conductivity of 30 / Ω · cm and has an absorption edge at 250 nm (Proceedings of 1993 Annual Meeting of the Ceramic Society of Japan, p. 585). However, it is not transparent to light with a shorter wavelength than this.

【0005】そこで、本発明の目的は、250nm以下
の光に対する透明性と電気伝導性を兼ね備えた新しい材
料を提供することにある。
Therefore, an object of the present invention is to provide a new material having both transparency to light of 250 nm or less and electrical conductivity.

【0006】[0006]

【課題を解決するための手段】本発明者らは、このよう
な課題を解決するべく検討した結果、ZnGa2O4 のGaサイ
トをAlで部分置換した酸化物が、250nmよりも短波
長域での優れた透明性を示すこと、さらにはこの酸化物
にキャリアを注入することで上記透明性に加えて電気伝
導性も有する酸化物が得られることを見出し、本発明に
到った。
Means for Solving the Problems As a result of investigations aimed at solving such problems, the present inventors have found that an oxide in which Ga sites of ZnGa 2 O 4 are partially substituted with Al is in a wavelength range shorter than 250 nm. It was found that the oxide of the present invention exhibits excellent transparency, and that by injecting a carrier into this oxide, an oxide having electric conductivity in addition to the above transparency can be obtained.

【0007】即ち、本発明は、一般式 Zn(Ga(1-X) A
lX )2O4(但し、X は 0.05 以上0.8 以下である)で表
され、スピネル型結晶構造を有する固溶体である透明酸
化物に関する。
That is, the present invention is based on the general formula Zn (Ga (1-X) A
l X ) 2 O 4 (where X is 0.05 or more and 0.8 or less), and relates to a transparent oxide which is a solid solution having a spinel type crystal structure.

【0008】さらに本発明は、上記透明酸化物である、
一般式 Zn(Ga(1-X) AlX )2O4(但し、X は 0.05 以上0.
8 以下である)で表され、スピネル型結晶構造を有する
固溶体に、キャリアを注入したことを特徴とする透明導
電性酸化物に関す。
Further, the present invention is the above transparent oxide,
General formula Zn (Ga (1-X) Al X ) 2 O 4 (where X is 0.05 or more and 0.
8 or less), and a carrier is injected into a solid solution having a spinel type crystal structure.

【0009】本発明の酸化物のベースとなる物質は、亜
鉛・ガリウムスピネル、ZnGa2O4 である。ZnGa2O4 の結
晶構造である、スピネル構造は、例えば「図解ファイン
セラミックスの結晶化学」(F.S.ガラッソー著、加
藤誠軌、植松敬三訳、アグネ技術センター刊(198
4))などに詳しく説明されており、以下に述べる構造
をしている。スピネル構造をとる物質の化学式は一般に
AB2O4 で表される(A、Bは2種類の陽イオンを表
す)。スピネル構造の単位格子は立方晶型で、1単位格
子中に32個の酸素イオンが含まれ、この酸素イオンは
<111>方向に最密充填している。酸素イオンが立方
最密充填することにより、1単位格子中には64個の四
面体配位サイトと32個の八面体配位サイトができる
が、このうち四面体配位サイトの1/8と八面体配位サ
イトの1/2を2種類の陽イオンが占め、一つの単位格
子には8つのAB2O4 が含まれる。AおよびBイオンに
よる四面体配位サイト及び八面体配位サイトの占有のし
かたによって、スピネル構造は次の2種類に分けられ
る。Aイオンが四面体配位サイト、Bイオンが八面体配
位サイトを占める場合を正スピネルと呼び、Bイオンの
半分が四面体配位サイト、残り半分のBイオンとAイオ
ンが八面体配位サイトを占める場合を逆スピネルと呼
ぶ。
The base material of the oxide of the present invention is zinc gallium spinel, ZnGa 2 O 4 . The spinel structure, which is the crystal structure of ZnGa 2 O 4 , is described, for example, in “Crystal Chemistry of Illustrated Fine Ceramics” (FS Galassau, translated by Seiji Kato, Keizo Uematsu, published by Agne Technical Center (198).
4)) and the like, and has the structure described below. The chemical formula of a substance having a spinel structure is generally represented by AB 2 O 4 (A and B represent two kinds of cations). The unit cell of the spinel structure is a cubic type, and 32 oxygen ions are contained in one unit cell, and the oxygen ions are closest packed in the <111> direction. The cubic closest packing of oxygen ions creates 64 tetrahedral coordination sites and 32 octahedral coordination sites in one unit lattice, of which 1/8 of the tetrahedral coordination sites Two types of cations occupy 1/2 of the octahedral coordination site, and one unit cell contains eight AB 2 O 4 . The spinel structure is classified into the following two types according to the occupancy of the tetrahedral coordination site and the octahedral coordination site by the A and B ions. When the A ion occupies the tetrahedral coordination site and the B ion occupies the octahedral coordination site, it is called a positive spinel. Half of the B ion is the tetrahedral coordination site, and the remaining half of the B ion and A ion is the octahedral coordination site. The case of occupying a site is called reverse spinel.

【0010】ZnGa2O4 は正スピネルであり、Zn2+イオン
は四面体配位サイト、Ga3+イオンは八面体配位サイトに
位置する(J.B.グッドイナフ及びA.L.ローブ(J.B.Good
enough and A.L.Loeb)、フィジカル・レビュー(Physic
al Review)、98-2巻、1955年、392 頁) 。八面体は互い
に稜を共有して配列しているためGa3+イオン間距離は充
分に近く、空のGa4S軌道が互いに重なり伝導帯を形成し
て電気伝導性をもたらす。これに対して例えばMgGa2O4
は逆スピネルであり、八面体配位サイトの1/2はMg2+
イオンが占有する。このためGa4S軌道間の重なりが必ず
しも有効に形成されない。電気伝導性は八面体配位サイ
トを占有するGa3+の4S軌道間の重なりによってもたらさ
れるので、ZnGa2O4 にイオン置換を施す場合には結晶が
正スピネル構造を保つことが好ましい。
ZnGa 2 O 4 is a positive spinel, Zn 2+ ions are located at tetrahedral coordination sites, and Ga 3+ ions are located at octahedral coordination sites (JB Good Enough and AL Lobe (JBGood).
enough and ALLoeb), Physical Review (Physic
al Review), Vol. 98-2, 1955, p. 392). Since the octahedra are arranged with their edges shared, the distance between Ga 3+ ions is sufficiently short, and the empty Ga 4S orbits overlap each other to form a conduction band, thereby providing electrical conductivity. On the other hand, for example, MgGa 2 O 4
Is an inverse spinel, and 1/2 of the octahedral coordination site is Mg 2+
Ions are occupied. Therefore, the overlap between Ga4S orbitals is not always formed effectively. Since the electrical conductivity is brought about by the overlap between the 4S orbitals of Ga 3+ occupying the octahedral coordination site, it is preferable that the crystal maintain a positive spinel structure when ion-substituting ZnGa 2 O 4 .

【0011】ZnGa2O4 は、上述したように電気伝導度は
30/Ω・cmであって導電材料として充分な値を有す
る。しかし、光学的吸収端波長は250nmであって、
これより短波長の光を透過させるためには吸収端をより
短波長側にシフトさせる必要がある。吸収端波長をより
短波長側にシフトさせるためには、吸収端波長を定める
物質の禁制帯のエネルギー的な幅、すなわち禁制帯幅を
広げなければならない。禁制帯幅と電気伝導率は、とも
に物質の結晶構造に関連している特性である。本発明で
は、以下に説明するように、種々のイオンでZnGa2O4
Zn2+又はGa3+を置換することについて検討した。その結
果、Ga3+サイトをAl3+で部分置換することにより禁制帯
幅と電気伝導率を制御でき、吸収端波長がより短く、電
気伝導性の高い材料を得ることに成功した。
As described above, ZnGa 2 O 4 has an electric conductivity of 30 / Ω · cm, which is a sufficient value as a conductive material. However, the optical absorption edge wavelength is 250 nm,
In order to transmit light with a shorter wavelength than this, it is necessary to shift the absorption edge to the shorter wavelength side. In order to shift the absorption edge wavelength to a shorter wavelength side, it is necessary to widen the energy width of the forbidden band of the substance that defines the absorption edge wavelength, that is, the forbidden band width. Bandwidth and electrical conductivity are both properties that are related to the crystal structure of a material. In the present invention, as described below, various ions of ZnGa 2 O 4
Substitution of Zn 2+ or Ga 3+ was investigated. As a result, the band gap and electrical conductivity can be controlled by partially substituting the Ga 3+ site with Al 3+ , and a material with a shorter absorption edge wavelength and higher electrical conductivity was successfully obtained.

【0012】まず、Zn2+と置換できるイオンについて、
Ga3+とスピネル構造をつくる二価イオンについて検討し
た。Ga3+とスピネル構造を作る二価イオンには、Mg2+
Mn2+、Ni2+、Fe2+、Cu2+とCd2+があるが、このうちM
g2+、Mn2+、Ni2+、Fe2+とCu2+はGa3+と逆スピネルを作
るので、本発明では使用できなかった。Cd2+はGa3+と正
スピネルを作る。しかし、その禁制帯幅は3.5eVで
あってZnGa2O4 の5eVよりも小さい。よって、Cd2+
よる置換では禁制帯幅をかえって小さくしてしまうので
本発明では使用できなかった。したがって、これらの二
価イオンのなかには正スピネル構造を保ちつつ禁制帯幅
を広げるものは存在しなかった。
First, regarding the ions that can be replaced with Zn 2+ ,
We studied divalent ions that form Ga 3+ and spinel structure. The divalent ions to create a Ga 3+ and spinel structure, Mg 2+,
There are Mn 2+ , Ni 2+ , Fe 2+ , Cu 2+ and Cd 2+ , of which M
Since g 2+ , Mn 2+ , Ni 2+ , Fe 2+ and Cu 2+ form an inverse spinel with Ga 3+ , they cannot be used in the present invention. Cd 2+ forms a positive spinel with Ga 3+ . However, its forbidden band width is 3.5 eV, which is smaller than 5 eV of ZnGa 2 O 4 . Therefore, the substitution with Cd 2+ would rather reduce the forbidden band width, and therefore could not be used in the present invention. Therefore, none of these divalent ions has a wide band gap while maintaining the positive spinel structure.

【0013】次に、Ga3+と置換できるイオンについて、
Zn2+とスピネル構造をつくる三価イオンを検討した。Zn
2+とスピネル構造をつくる三価イオンには、V3+、C
r3+、Fe3+、Rh3+、Mn3+、Co3+とAl3+があり、いずれも
正スピネルとなる。しかし、このうちV3+、Cr3+、F
e3+、Rh3+、Mn3+とCo3+はd軌道が部分的に充填された
d金属のイオンである。d軌道の半径は小さいので八面
体サイトを占有しても隣接する八面体サイトのイオンの
軌道と充分な重なりを持たず、伝導帯幅が狭まって電気
伝導率の顕著な減少が起こる。また禁制帯幅は広がらな
いので、これらのd金属を用いることができなかった。
Al3+イオンは完全に充填した2p軌道と空の3s軌道を
持つ。この軌道半径はGa3+の4s軌道の半径よりは小さ
いがd軌道の半径よりも大きく、隣接する八面体サイト
のイオンの軌道と充分な重なりを持つ。このため電気伝
導率の顕著な減少は起こらない。同時に禁制帯幅が広が
るため吸収端波長を250nmより小さくすることがで
きる。このようにして、本発明では、ZnGa2O4 のGa3+
イトをAl3+で部分置換することにより、充分な透明性と
電気伝導率を実現できる酸化物を見出した。
Next, regarding the ions that can replace Ga 3+ ,
Trivalent ions forming Zn 2+ and spinel structure were investigated. Zn
Trivalent ions that form a spinel structure with 2+ include V 3+ and C
There are r 3+ , Fe 3+ , Rh 3+ , Mn 3+ , Co 3+ and Al 3+ , all of which are positive spinels. However, of these, V 3+ , Cr 3+ , F
e 3+ , Rh 3+ , Mn 3+ and Co 3+ are ions of d metal whose d orbitals are partially filled. Since the radius of the d orbital is small, even if it occupies the octahedral site, it does not sufficiently overlap with the orbits of the ions of the adjacent octahedral sites, and the conduction band width narrows, causing a significant decrease in electrical conductivity. Further, since the band gap does not widen, these d metals could not be used.
Al 3+ ions have completely filled 2p orbitals and empty 3s orbitals. This orbital radius is smaller than the radius of the Ga 3+ 4s orbital, but larger than the d orbital, and has a sufficient overlap with the orbitals of the ions of the adjacent octahedral sites. Therefore, no significant decrease in electrical conductivity occurs. At the same time, the band gap widens, so that the absorption edge wavelength can be made smaller than 250 nm. Thus, in the present invention, an oxide that can realize sufficient transparency and electrical conductivity was found by partially substituting the Ga 3+ site of ZnGa 2 O 4 with Al 3+ .

【0014】本発明の酸化物において、xは0.05以
上、0.8以下の範囲である。xが0.05未満では置
換量が充分でなく、禁制帯幅が広がらないために吸収端
波長が250nm以下とならない。またxが0.8を越
えると光の透過性は充分であるが、電気伝導性を発現し
にくくなる。即ち、透明酸化物 Zn(Ga(1-X) AlX )2O4
電気伝導性を発現させて透明導電性酸化物を得るために
は、伝導帯にキャリアを注入しなければならないが、x
が0.8を越えるとキャリアを注入できなくなる。xは
好ましくは、0.05〜0.5の範囲である。
In the oxide of the present invention, x is in the range of 0.05 or more and 0.8 or less. When x is less than 0.05, the amount of substitution is not sufficient and the band gap does not widen, so that the absorption edge wavelength does not become 250 nm or less. Further, when x exceeds 0.8, the light transmittance is sufficient, but it becomes difficult to exhibit electric conductivity. That is, in order to obtain a transparent oxide Zn (Ga (1-X) Al X) 2 O 4 to be expressed electrically conductive transparent conductive oxide, it is necessary to inject carriers into the conduction band, x
When exceeds 0.8, carriers cannot be injected. x is preferably in the range of 0.05 to 0.5.

【0015】本発明の透明酸化物 Zn(Ga(1-X) AlX )2O4
は、焼結法、薄膜法(例えば、スパッタリング法、CV
D法、MBE法、蒸着法等)により製造することができ
る。焼結法は、例えば、原料酸化物である酸化亜鉛、酸
化アルミニウム、酸化ガリウムを所望の組成になるよう
に混合し、所望の形状に成形し、例えば1400〜17
00℃で1〜48時間焼結することにより行うことがで
きる。また、薄膜法は、例えばスパッタリング法の場
合、ターゲットとして Zn(Ga(1-X) AlX )2O4の組成を有
する焼結体又は混合粉成形体等を用い、10-4〜10-2
Torrの圧力下、室温から500℃での基板加熱とい
う条件で、石英等のガラスまたはPMMA等のプラスチ
ック等の透明基板上に成膜することができる。
The transparent oxide of the present invention Zn (Ga (1-X) Al X) 2 O 4
Is a sintering method, a thin film method (eg, sputtering method, CV
D method, MBE method, vapor deposition method, etc.). In the sintering method, for example, raw material oxides such as zinc oxide, aluminum oxide, and gallium oxide are mixed so as to have a desired composition and molded into a desired shape, for example, 1400 to 17
It can be performed by sintering at 00 ° C. for 1 to 48 hours. Further, the thin film method, for example, in the case of a sputtering method, using a Zn (Ga (1-X) Al X) sintered body having a composition of 2 O 4 or a mixture powder compact or the like as a target, 10-4 to - 2
A film can be formed on a transparent substrate such as glass such as quartz or plastic such as PMMA under the condition of heating the substrate at room temperature to 500 ° C. under the pressure of Torr.

【0016】本発明の透明導電性酸化物は、上記透明酸
化物にキャリアである電子を注入することで得られる。
キャリアの注入量は、1×1018/cm2〜1×1022/cm2
の範囲、好ましくは1×1019/cm2〜1×1021/cm2
範囲であることが適当である。キャリアの注入量が上記
範囲未満であると電気伝導性を得にくくなり、キャリア
の注入量が上記範囲を超えるとプラズマ振動により、可
視光域での透明性が低下する。キャリアの注入方法とし
ては、イオン交換法、イオン注入法等を挙げることがで
きる。即ち、結晶から酸素原子を引き抜いた際に酸素空
孔に残される電子を注入して Zn(Ga(1-X) AlX )2 O4-σ
(σは0以上の数)とする方法やZn2+やGa3+よりも価数
の高いイオンを各イオンのサイトにドープすることによ
り生じる電子を注入する方法などを用いることができ
る。σは0以上の数であれば良いが、注入されるキャリ
アは少量であるため、ストイキオメトリックな組成とほ
とんど変わらない。酸素原子を引き抜いて酸素空孔をつ
くる方法としては、還元性雰囲気下で焼成する、加圧雰
囲気下または減圧雰囲気下で焼成する、不活性ガス下で
焼成する等の方法を用いることができる。しかしこれら
の方法を用いても、xが0.8を越えると酸素空孔の電
子はZn2+と結合するようになり、伝導帯に注入されなく
なる。
The transparent conductive oxide of the present invention can be obtained by injecting electrons as carriers into the above transparent oxide.
The carrier injection amount is 1 × 10 18 / cm 2 to 1 × 10 22 / cm 2
Is suitable, and preferably in the range of 1 × 10 19 / cm 2 to 1 × 10 21 / cm 2 . When the injection amount of the carrier is less than the above range, it becomes difficult to obtain electric conductivity, and when the injection amount of the carrier exceeds the above range, plasma vibration reduces transparency in the visible light region. Examples of the carrier injection method include an ion exchange method and an ion injection method. That is, by injecting electrons left in the oxygen vacancies in withdrawal of the oxygen atoms from the crystal Zn (Ga (1-X) Al X) 2 O 4- σ
(Σ is a number of 0 or more), a method of injecting electrons generated by doping an ion having a higher valence than Zn 2+ or Ga 3+ into each ion site, and the like can be used. σ may be a number of 0 or more, but since the injected carriers are small, it is almost the same as the stoichiometric composition. As a method of extracting oxygen atoms to form oxygen vacancies, a method such as firing in a reducing atmosphere, firing in a pressurized atmosphere or a reduced pressure atmosphere, and firing in an inert gas can be used. However, even if these methods are used, when x exceeds 0.8, electrons in oxygen vacancies are bonded to Zn 2+ and cannot be injected into the conduction band.

【0017】[0017]

【実施例】次に、実施例により本発明をさらに詳細に説
明する。 実施例1〜6及び比較例1〜4 ZnO(高純度化学、純度99.9%)、Al2O3 (高純度
化学、純度99.99%)及びGa2O3 (高純度化学、純
度99.99%)各粉末を表1に示す10種類の割合で
秤量し、ナイロンボールとナイロンポットを用いて湿式
混合した。分散媒にはエタノールを用いた。各混合粉を
アルミナ坩堝中、大気下、1000℃で5時間仮焼した
のち、乳鉢で解砕して微粉にした。粉末X線解析を理学
電機社製X線回折装置RADIIBを用いて行い、いずれ
の粉体もZnGa2O4 とZnAl2O4 の混合相であることを確認
した。各仮焼粉体を一軸加圧(100kg/cm2)によ
って直径20ミリのディスク状に成形し、大気中、14
00℃〜1700℃で2〜24時間焼成して焼結体を得
た。相対密度95%以上の緻密な焼結体を得るには、x
が多くなるほど高温・長時間の焼成が必要であった。焼
結体のX線解析を上記装置を用いて行った結果、 Zn(Ga
(1-X) AlX )2O4の固溶体が形成されたことを確認した。
実施例1〜6では、本発明の透明酸化物が得られた。
EXAMPLES Next, the present invention will be described in more detail by way of examples. Examples 1 to 6 and Comparative Examples 1 to 4 ZnO (high purity chemistry, purity 99.9%), Al 2 O 3 (high purity chemistry, purity 99.99%) and Ga 2 O 3 (high purity chemistry, purity). Each of the powders was weighed at a ratio of 10 kinds shown in Table 1 and wet-mixed using a nylon ball and a nylon pot. Ethanol was used as the dispersion medium. Each mixed powder was calcined in an alumina crucible at 1000 ° C. for 5 hours in the air, and then crushed into a fine powder in a mortar. Powder X-ray analysis was carried out using an X-ray diffractometer RADIIB manufactured by Rigaku Denki Co., Ltd., and it was confirmed that all the powders were a mixed phase of ZnGa 2 O 4 and ZnAl 2 O 4 . Each calcined powder was uniaxially pressed (100 kg / cm 2 ) into a disk shape with a diameter of 20 mm, and
A sintered body was obtained by firing at 00 ° C to 1700 ° C for 2 to 24 hours. To obtain a dense sintered body having a relative density of 95% or more, x
The higher the temperature, the higher the temperature and the time required for firing. As a result of X-ray analysis of the sintered body using the above equipment, Zn (Ga
Was confirmed (1-X) to Al X) of the 2 O 4 solid solutions were formed.
In Examples 1 to 6, the transparent oxide of the present invention was obtained.

【0018】次に、各焼結体について、緻密な焼結体の
表面をラッピング加工して厚み約500μmのディスク
状試料と厚み約30μmの薄片試料の2種類を調製し
た。これらを水素雰囲気中600℃から800℃で1〜
2時間還元処理してキャリアを注入して本発明の透明導
電性酸化物を得た(キャリアの注入量:1×1020/c
m2)。これらの透明導電性酸化物の光透過率と電気伝導
率とを測定した。光透過率の測定においては、厚み約3
0μmの薄片試料の光透過率を日立電機製330形自記
分光光度計を用いて測定し、吸収率が50%となる波長
を吸収端波長とした。電気伝導率の測定は、以下のよう
にして行った。ディスク状試料の円周上の4カ所に1ミ
リ角の形状に金を蒸着して電極とした。電極と導線の接
合には銀ペースト(鎌倉化成社製、ドータイト、D55
0)を使用した。ファン・デア・パウ法によって電気抵
抗を測定したのち表面層をラッピング加工し、再び電極
を形成して電気抵抗を測定した。これを繰り返すことに
よって研磨厚みと電気抵抗の関係を求め、電気伝導率を
算出した。以上のようにして測定した吸収端波長、24
0nmにおける透過率及び電気伝導率の値を表1に示
す。
Next, for each sintered body, the surface of the dense sintered body was lapped to prepare two kinds of samples, a disk-shaped sample having a thickness of about 500 μm and a thin piece sample having a thickness of about 30 μm. 1 to 600 ° C. to 800 ° C. in a hydrogen atmosphere
The carrier was injected after reduction for 2 hours to obtain a transparent conductive oxide of the present invention (carrier injection amount: 1 × 10 20 / c).
m 2 ). The light transmittance and electric conductivity of these transparent conductive oxides were measured. In measuring the light transmittance, the thickness is about 3
The light transmittance of a 0 μm thin piece sample was measured using a Hitachi Electric Model 330 self-recording spectrophotometer, and the wavelength at which the absorptance was 50% was taken as the absorption edge wavelength. The electrical conductivity was measured as follows. Gold was vapor-deposited in a 1 mm square shape at four locations on the circumference of the disk-shaped sample to form electrodes. Silver paste (Kamakura Kasei Co., Ltd., DOTITE, D55
0) was used. After measuring the electric resistance by the van der Pauw method, the surface layer was lapped, electrodes were formed again, and the electric resistance was measured. By repeating this, the relationship between the polishing thickness and the electric resistance was obtained, and the electric conductivity was calculated. Absorption edge wavelength measured as described above, 24
Table 1 shows the values of the transmittance and the electric conductivity at 0 nm.

【0019】[0019]

【表1】 [Table 1]

【0020】xが0及び0.01の酸化物(比較例1及
び2)では、吸収端波長がそれぞれ250nm及び24
9nmであり、240nmにおける透過率は0%であっ
た。xを0.05以上とした本発明の酸化物(実施例1
〜6)では、吸収端は245nm以上にシフトし、24
0nmにおける透過率は18%〜91%に増大した。透
過率はxが0.7及び0.8のときに最大値91%を示
し、この透過率は焼結体の緻密性を向上させることによ
り100%に近付けることが可能である。また、xを
0.8より大きくした場合(比較例3、4)は電気伝導
性が失われた。
In the oxides in which x is 0 and 0.01 (Comparative Examples 1 and 2), the absorption edge wavelengths are 250 nm and 24, respectively.
It was 9 nm, and the transmittance at 240 nm was 0%. The oxide of the present invention in which x is 0.05 or more (Example 1
In ~ 6), the absorption edge shifts to 245 nm or more, and
The transmission at 0 nm increased from 18% to 91%. The transmittance shows a maximum value of 91% when x is 0.7 and 0.8, and this transmittance can be brought close to 100% by improving the compactness of the sintered body. Moreover, when x was made larger than 0.8 (Comparative Examples 3 and 4), the electrical conductivity was lost.

【0021】[0021]

【発明の効果】本発明の透明酸化物は、紫外光に対する
透明性に優れていおり、この酸化物にキャリアを注入し
た本発明の透明導電性酸化物は、紫外光に対する透明性
に優れ、かつ充分な電気伝導率を有する、優れた透明導
電性酸化物である。この本発明の透明導電性酸化物は、
液晶ディスプレイ、ELディスプレイ等の各種ディスプ
レイや、太陽電池の電極、冷凍ショーケースの防曇ヒー
ター、建物及び自動車の窓ガラスの熱線反射膜、透明物
質の帯電防止及び電磁波遮蔽用のコーティング材料等と
して有用である。
The transparent oxide of the present invention is excellent in transparency to ultraviolet light, and the transparent conductive oxide of the present invention obtained by injecting a carrier into this oxide is excellent in transparency to ultraviolet light, and It is an excellent transparent conductive oxide having a sufficient electric conductivity. This transparent conductive oxide of the present invention,
Useful as various displays such as liquid crystal displays and EL displays, solar cell electrodes, anti-fog heaters for freezer showcases, heat ray reflection films for window glass of buildings and automobiles, coating materials for antistatic and electromagnetic shielding of transparent substances. Is.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一般式 Zn(Ga(1-X) AlX )2O4(但し、X
は 0.05 以上0.8 以下である)で表され、スピネル型結
晶構造を有する固溶体であることを特徴とする透明酸化
物。
1. A general formula Zn (Ga (1-X) Al X) 2 O 4 ( where, X
Is 0.05 or more and 0.8 or less) and is a solid solution having a spinel type crystal structure.
【請求項2】 一般式 Zn(Ga(1-X) AlX )2O4(但し、X
は 0.05 以上0.8 以下である)で表され、スピネル型結
晶構造を有する固溶体に、キャリアを注入したことを特
徴とする透明導電性酸化物。
2. A general formula Zn (Ga (1-X) Al X) 2 O 4 ( where, X
Is 0.05 or more and 0.8 or less), and a carrier is injected into a solid solution having a spinel type crystal structure.
【請求項3】 キャリアの注入量が、1×1018/cm2
1×1022/cm2の範囲である請求項2記載の透明導電性
酸化物。
3. The carrier injection amount is 1 × 10 18 / cm 2 to
The transparent conductive oxide according to claim 2 , which has a concentration in the range of 1 × 10 22 / cm 2 .
JP28174993A 1993-10-15 1993-10-15 Transparent oxide and transparent conductive oxide using the same Expired - Fee Related JP3506390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28174993A JP3506390B2 (en) 1993-10-15 1993-10-15 Transparent oxide and transparent conductive oxide using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28174993A JP3506390B2 (en) 1993-10-15 1993-10-15 Transparent oxide and transparent conductive oxide using the same

Publications (2)

Publication Number Publication Date
JPH07118015A true JPH07118015A (en) 1995-05-09
JP3506390B2 JP3506390B2 (en) 2004-03-15

Family

ID=17643447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28174993A Expired - Fee Related JP3506390B2 (en) 1993-10-15 1993-10-15 Transparent oxide and transparent conductive oxide using the same

Country Status (1)

Country Link
JP (1) JP3506390B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761079A1 (en) * 1997-03-18 1998-09-25 Hughes Electronics Corp PAINT CONTAINING IN PARTICULAR ZINC OR CADMIUM ALUMINATE GALLATE
WO2002005296A1 (en) * 2000-07-10 2002-01-17 Japan Science And Technology Corporation Ultraviolet-transparent conductive film and process for producing the same
KR100596017B1 (en) * 2004-04-29 2006-07-03 장민수 transparent conductive film and their manufacturing method
JP2006251805A (en) * 2005-03-08 2006-09-21 Schott Ag Manufacturing method of optical element for microlithography, lens system obtained by the method and using method of the lens system
WO2007000867A1 (en) * 2005-06-28 2007-01-04 Nippon Mining & Metals Co., Ltd. Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
WO2013022057A1 (en) * 2011-08-11 2013-02-14 日本電気硝子株式会社 Transparent conductive material, substrate having transparent conductive layer, and method for producing substrate having transparent conductive layer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761079A1 (en) * 1997-03-18 1998-09-25 Hughes Electronics Corp PAINT CONTAINING IN PARTICULAR ZINC OR CADMIUM ALUMINATE GALLATE
WO2002005296A1 (en) * 2000-07-10 2002-01-17 Japan Science And Technology Corporation Ultraviolet-transparent conductive film and process for producing the same
US6897560B2 (en) 2000-07-10 2005-05-24 Japan Science & Technology Corporation Ultraviolet-transparent conductive film and process for producing the same
KR100596017B1 (en) * 2004-04-29 2006-07-03 장민수 transparent conductive film and their manufacturing method
JP2006251805A (en) * 2005-03-08 2006-09-21 Schott Ag Manufacturing method of optical element for microlithography, lens system obtained by the method and using method of the lens system
WO2007000867A1 (en) * 2005-06-28 2007-01-04 Nippon Mining & Metals Co., Ltd. Gallium oxide-zinc oxide sputtering target, method of forming transparent conductive film and transparent conductive film
WO2013022057A1 (en) * 2011-08-11 2013-02-14 日本電気硝子株式会社 Transparent conductive material, substrate having transparent conductive layer, and method for producing substrate having transparent conductive layer

Also Published As

Publication number Publication date
JP3506390B2 (en) 2004-03-15

Similar Documents

Publication Publication Date Title
JP3947575B2 (en) Conductive oxide and electrode using the same
Hiramatsu et al. Electrical and optical properties of radio-frequency-sputtered thin films of (ZnO) 5In2O3
JP2000026119A (en) Article having transparent electrically conductive oxide thin film and its manufacture
JP3644647B2 (en) Conductive oxide and electrode using the same
JPS62122011A (en) Transparent conducting film and manufacture of the same
JP2000044236A (en) Article having transparent conductive oxide thin film and its production
Gulino et al. Deposition and characterization of transparent thin films of zinc oxide doped with Bi and Sb
JP2005219982A (en) Translucent conductive material
JP3881407B2 (en) Conductive oxide thin film, article having this thin film, and method for producing the same
Zade et al. Electronic structure of tungsten-doped β-Ga2O3 compounds
JP3945887B2 (en) Article having conductive oxide thin film and method for producing the same
JPH0350148A (en) Zinc oxide sintered compact, production and its application
Aboulkacem et al. Thermally activated charge transport in modified tetragonal zirconia thin films prepared by sol–gel method
JP3506390B2 (en) Transparent oxide and transparent conductive oxide using the same
JPH06290641A (en) Noncrystal transparent conductive membrane
KR950006208B1 (en) Zinc oxide sintered body and preparation process thereof
Izaki et al. Transparent conducting and highly stable indium-incorporated zinc oxide film prepared by chemical reactions
JP2528763B2 (en) Transparent electrically conductive oxide
Minami et al. Highly transparent and conductive ZnO–In 2 O 3 thin films prepared by atmospheric pressure chemical vapor deposition
JP4237861B2 (en) Highly monocrystalline zinc oxide thin film and manufacturing method
JP3763544B2 (en) Conductive oxide and electrode using the same
JPH06191845A (en) Electrically conductive oxide
JP3379745B2 (en) Transparent conductive oxide material
JP3379743B2 (en) Transparent conductive oxide material
JPH08277112A (en) Transparent conductive oxide material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20031210

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031215

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081226

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20091226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20101226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20101226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20111226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees