JPH07115033A - Discrimination method of direction of layered ceramic capacitor - Google Patents

Discrimination method of direction of layered ceramic capacitor

Info

Publication number
JPH07115033A
JPH07115033A JP26004393A JP26004393A JPH07115033A JP H07115033 A JPH07115033 A JP H07115033A JP 26004393 A JP26004393 A JP 26004393A JP 26004393 A JP26004393 A JP 26004393A JP H07115033 A JPH07115033 A JP H07115033A
Authority
JP
Japan
Prior art keywords
ceramic capacitor
internal electrode
electrode layer
magnetic field
magnetization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26004393A
Other languages
Japanese (ja)
Other versions
JP3055374B2 (en
Inventor
Hiroaki Takashima
浩昭 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP5260043A priority Critical patent/JP3055374B2/en
Publication of JPH07115033A publication Critical patent/JPH07115033A/en
Application granted granted Critical
Publication of JP3055374B2 publication Critical patent/JP3055374B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Measuring Magnetic Variables (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)

Abstract

PURPOSE:To provide a method for discriminating the direction of a prismatic layered ceramic capacitor with an inside electrode layer comprised of a ferromagnetic substance accurately by non-destruction. CONSTITUTION:In a layered ceramic capacitor 1 whose inside electrode layer 2 is a ferromagnetic substance, a fixed magnetic field H is applied to one arbitrary surface thereof wherein the inside electrode layer 2 is not led out, magnetization state of the layered ceramic capacitor 1 is measured and a direction of the inside electrode layer 2 is discriminated by the strength of the magnetization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強磁性体を内部電極と
した積層セラミックコンデンサの方向識別方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for identifying the direction of a monolithic ceramic capacitor having a ferromagnetic material as an internal electrode.

【0002】[0002]

【従来の技術】積層セラミックコンデンサは、複数の誘
電体セラミック層と、その誘電体セラミック層を介して
互いに積層された状態で配置された複数の内部電極層
と、その内部電極層の所定のものに接続された外部電極
とからなり、直方体の形状をしている。また、その内部
電極層としてはPd,Pt,Ag等の貴金属系や、内部
電極材料のコストダウンを目的としたNi,Cu等の卑
金属系の金属が用いられている。
2. Description of the Related Art A multilayer ceramic capacitor includes a plurality of dielectric ceramic layers, a plurality of internal electrode layers arranged in a laminated state with the dielectric ceramic layers interposed therebetween, and predetermined internal electrode layers. It has an external electrode connected to and has a rectangular parallelepiped shape. As the internal electrode layer, a noble metal based metal such as Pd, Pt, Ag or a base metal based metal such as Ni or Cu for the purpose of cost reduction of the internal electrode material is used.

【0003】この積層セラミックコンデンサにおいて、
その実装信頼性や品質を高めるために、その方向、つま
り内部電極層の方向の識別を要求される場合がある。即
ち、一般に、積層セラミックコンデンサは、キャビティ
内に収容された状態にテーピング包装された後、実装機
により回路基板に装着されるが、この実装の信頼性を上
げるために、キャビティ内のチップの高さ寸法のばらつ
きを押さえる必要がある。このため、内部電極層の方向
を識別し、チップを同一方向でキャビティ内に収容し、
テーピングする必要がある。また、誘電体セラミック層
と内部電極層との間に生じるデラミネーション等の内部
構造欠陥を検出する方法として、超音波探傷試験機によ
り、積層セラミックコンデンサに超音波を照射し、その
反射波を解析することにより欠陥の有無を検査する方法
が採用されている。この場合も、デラミネーションの検
出感度を上げるためには内部電極層に垂直に超音波を当
てる必要があり、そのために超音波探傷試験の前に内部
電極層の方向の識別を要求されることがある。
In this laminated ceramic capacitor,
In order to improve its mounting reliability and quality, it may be required to identify the direction, that is, the direction of the internal electrode layer. That is, in general, a laminated ceramic capacitor is mounted on a circuit board by a mounting machine after being taped and packaged in a state of being housed in the cavity. In order to improve the reliability of mounting, the height of a chip in the cavity is increased. It is necessary to suppress variations in size. Therefore, the direction of the internal electrode layer is identified, the chip is housed in the cavity in the same direction,
Need to taping. In addition, as a method of detecting internal structural defects such as delamination that occurs between the dielectric ceramic layer and the internal electrode layer, an ultrasonic flaw tester irradiates the laminated ceramic capacitor with ultrasonic waves and analyzes the reflected waves. A method of inspecting for the presence or absence of a defect by doing so is adopted. Also in this case, in order to increase the detection sensitivity of delamination, it is necessary to apply ultrasonic waves vertically to the internal electrode layer, and therefore, it is required to identify the direction of the internal electrode layer before the ultrasonic flaw detection test. is there.

【0004】従来、この直方体形状をした積層セラミッ
クコンデンサの内部電極層の方向、特に内部電極層を積
み重ねた厚み方向と内部電極層の幅方向の識別は次のよ
うにしていた。即ち、積層セラミックコンデンサの内部
電極層を積み重ねた厚み方向と内部電極層の幅方向との
間に設計上明らかな違いがある時は、その寸法の違いに
より識別していた。一方、内部電極層を積み重ねた厚み
方向と内部電極層の幅方向との間に設計上殆ど差がな
い、即ち略正四角柱の形状の場合には、内部電極層がセ
ラミック表面に透けて見えるときはその色合いを、ある
いは一般に内部電極層を積み重ねた厚み方向の面が僅か
ながら凸形状を示す特徴を有する場合はその特徴を、目
視により観察したりして識別していた。
Conventionally, the direction of the internal electrode layers of this rectangular parallelepiped monolithic ceramic capacitor, in particular, the thickness direction in which the internal electrode layers are stacked and the width direction of the internal electrode layers have been identified as follows. That is, when there is a clear design difference between the thickness direction in which the internal electrode layers of the monolithic ceramic capacitor are stacked and the width direction of the internal electrode layers, they are identified by the size difference. On the other hand, when there is almost no difference in design between the thickness direction in which the internal electrode layers are stacked and the width direction of the internal electrode layers, that is, in the case of a substantially square prism shape, when the internal electrode layers can be seen through the ceramic surface. Has identified the hue, or generally, when the surface in the thickness direction in which the internal electrode layers are stacked has a slightly convex shape, the characteristic is visually observed to identify it.

【0005】[0005]

【発明が解決しようとする課題】従来の、角柱形状の積
層セラミックコンデンサのセラミック表面の色合いや凸
形状を目視により観察したりして、内部電極層の方向を
識別する方法は、視覚に頼る方法でありその識別精度は
悪く、テーピングした積層セラミックコンデンサの実装
信頼性や超音波探傷試験の精度を悪くする原因となって
いた。
The conventional method of identifying the direction of the internal electrode layers by visually observing the shade or convex shape of the ceramic surface of the prismatic monolithic ceramic capacitor depends on the visual method. Therefore, the identification accuracy is poor, which causes the mounting reliability of the taped laminated ceramic capacitor and the accuracy of the ultrasonic flaw detection test to be deteriorated.

【0006】そこで、本発明の目的は、Ni等の強磁性
体の内部電極層が外部磁界で磁化されることに着目し
て、強磁性体からなる内部電極層を有する角柱形状の積
層セラミックコンデンサの方向、つまり内部電極層の方
向を非破壊で正確に識別する方法を提供することにあ
る。
Therefore, an object of the present invention is to pay attention to the fact that an internal electrode layer made of a ferromagnetic material such as Ni is magnetized by an external magnetic field, and a prismatic laminated ceramic capacitor having an internal electrode layer made of a ferromagnetic material. The object of the present invention is to provide a method of accurately identifying the direction of the internal electrode layer, that is, the direction of the internal electrode layer in a nondestructive manner.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、誘電体セラミック層を介して配置された
静電容量を形成するための強磁性体からなる複数の内部
電極層を有する積層セラミックコンデンサに対し、該積
層セラミックコンデンサの内部電極層が導出されていな
い任意の一面に一定の磁場を加え、該磁場による積層セ
ラミックコンデンサの磁化状態を測定することを特徴と
する。
In order to achieve the above object, the present invention has a plurality of internal electrode layers made of a ferromagnetic material for forming a capacitance arranged through a dielectric ceramic layer. With respect to the monolithic ceramic capacitor, a constant magnetic field is applied to an arbitrary surface on which the internal electrode layer of the monolithic ceramic capacitor is not led out, and the magnetization state of the monolithic ceramic capacitor by the magnetic field is measured.

【0008】[0008]

【作用】本発明の対象とする積層セラミックコンデンサ
の内部電極層は、Ni等の強磁性体よりなる。従って、
内部電極層に平行な方向に磁場を加えた場合と、内部電
極層に垂直な方向に磁場を加えた場合とでは、内部電極
層を通過する磁束が異なるため積層セラミックコンデン
サの磁化の程度が異なる。従って、この磁化の違いを判
別することにより、積層セラミックコンデンサの方向を
識別できる。
The internal electrode layers of the monolithic ceramic capacitor targeted by the present invention are made of a ferromagnetic material such as Ni. Therefore,
Since the magnetic flux passing through the internal electrode layer is different between when the magnetic field is applied in the direction parallel to the internal electrode layer and when the magnetic field is applied in the direction perpendicular to the internal electrode layer, the degree of magnetization of the multilayer ceramic capacitor is different. . Therefore, the direction of the monolithic ceramic capacitor can be identified by discriminating the difference in the magnetization.

【0009】[0009]

【実施例】以下、本発明の積層セラミックコンデンサの
方向識別方法を実施例に基づき説明する。図1は振動試
料型磁力計を用いた積層セラミックコンデンサの磁化測
定の斜視図である。同図において、1は内部電極層が強
磁性体のNiからなる長さ寸法2.0mm,幅寸法1.
25mm,厚み寸法1.25mmの正角柱形状の積層セ
ラミックコンデンサ、2は積層セラミックコンデンサ1
の内部電極層、3は同じく積層セラミックコンデンサ1
の外部電極、4は積層セラミックコンデンサ1に磁場を
加える振動試料型磁力計の電磁石(ポールピース)であ
る。また、Hは積層セラミックコンデンサ1に加える磁
場の方向、Mは積層セラミックコンデンサ1の磁化の測
定方向である。
The method for identifying the direction of a monolithic ceramic capacitor according to the present invention will be described below with reference to embodiments. FIG. 1 is a perspective view of a magnetization measurement of a multilayer ceramic capacitor using a vibrating sample magnetometer. In the figure, reference numeral 1 denotes a length dimension of 2.0 mm and a width dimension of 1.
25 mm, thickness 1.25 mm prismatic prism-shaped monolithic ceramic capacitor, 2 monolithic ceramic capacitor 1
The internal electrode layers of 3 are the same as the multilayer ceramic capacitor 1
External electrodes 4 are electromagnets (pole pieces) of a vibrating sample magnetometer for applying a magnetic field to the monolithic ceramic capacitor 1. Further, H is the direction of the magnetic field applied to the monolithic ceramic capacitor 1, and M is the measurement direction of the magnetization of the monolithic ceramic capacitor 1.

【0010】まず、積層セラミックコンデンサ1に加え
る磁場の方向をパラメータとした場合の磁場−磁化曲線
を求めた。即ち、まず、あらかじめ外部電極3の一部を
除去して確認しておいた内部電極層2が磁場の方向Hに
対して垂直になるように、かつ外部電極3の面が上下に
位置するように積層セラミックコンデンサ1を振動試料
型磁力計の電磁石4の間に配置した。そして、磁場の強
さを0Oeから10kOeまで変化させ、そのときの磁
場の方向Hと直角で、かつ外部電極3の面に垂直な方向
Mの磁化を測定した。次に、内部電極層2が磁場の方向
Hに対して平行になるように、かつ外部電極3の面が上
下に位置するように積層セラミックコンデンサ1を振動
試料型磁力計の電磁石4の間に配置した。そして、同様
に磁場の強さを0Oeから10kOeまで変化させ、そ
のときの方向Mの磁化を測定した。その結果を図2に示
す。
First, a magnetic field-magnetization curve was obtained when the direction of the magnetic field applied to the monolithic ceramic capacitor 1 was used as a parameter. That is, first, the internal electrode layer 2, which has been confirmed by removing a part of the external electrode 3 in advance, is perpendicular to the direction H of the magnetic field, and the surface of the external electrode 3 is positioned vertically. The monolithic ceramic capacitor 1 was placed between the electromagnets 4 of the vibrating sample magnetometer. Then, the strength of the magnetic field was changed from 0 Oe to 10 kOe, and the magnetization in the direction M perpendicular to the direction H of the magnetic field and perpendicular to the surface of the external electrode 3 was measured. Next, the monolithic ceramic capacitor 1 is placed between the electromagnets 4 of the vibrating sample magnetometer so that the internal electrode layers 2 are parallel to the direction H of the magnetic field and the surfaces of the external electrodes 3 are located vertically. I placed it. Then, similarly, the strength of the magnetic field was changed from 0 Oe to 10 kOe, and the magnetization in the direction M at that time was measured. The result is shown in FIG.

【0011】図2に示す通り、積層セラミックコンデン
サをその内部電極層が磁場の方向に対して垂直になるよ
うに配置した場合は、2kOeで磁化は飽和しているの
に対し、内部電極層が磁場の方向に対して平行になるよ
うに配置した場合は、磁化の強さはその60〜70%程
度であり、また、磁化の飽和についても、約4.5kO
eまで飽和しない。
As shown in FIG. 2, when the multilayer ceramic capacitor is arranged such that its internal electrode layer is perpendicular to the direction of the magnetic field, the magnetization is saturated at 2 kOe, while the internal electrode layer is When it is arranged so as to be parallel to the direction of the magnetic field, the strength of the magnetization is about 60 to 70%, and the saturation of the magnetization is about 4.5 kO.
Not saturated until e.

【0012】従って、積層セラミックコンデンサの内部
電極層が導出されていない任意の一面に、ある一定の磁
場を加えて、積層セラミックコンデンサの磁化を測定す
れば、その磁化の強さにより積層セラミックコンデンサ
の内部電極層の方向を識別することができる。
Therefore, when the magnetization of the monolithic ceramic capacitor is measured by applying a certain magnetic field to an arbitrary surface on which the internal electrode layers of the monolithic ceramic capacitor are not drawn out, the magnetization of the monolithic ceramic capacitor is determined by the strength of the magnetization. The direction of the internal electrode layers can be identified.

【0013】なお、上記実施例の場合は、図2に示すよ
うに、0.5kOe〜2kOeの範囲の磁場において、
内部電極層に垂直に磁場を加えた場合と平行に磁場を加
えた場合とでの磁化の違いが大きく現れるため好ましい
が、この磁場−磁化曲線は積層セラミックコンデンサの
寸法、内部電極層の材質、内部電極層の数等により異な
る。従ってセラミックコンデンサの種類ごとに磁場−磁
化曲線を求めて、それにより最適な印加磁場の強さと、
内部電極層の方向を識別するための基準となる磁化の強
さを決定することが望ましい。また、本発明は、識別す
る積層セラミックコンデンサが必ずしも略正角柱のもの
に限ることはなく、他の直方体のものでもよい。
In the case of the above embodiment, as shown in FIG. 2, in a magnetic field in the range of 0.5 kOe to 2 kOe,
The magnetic field between the case where a magnetic field is applied perpendicularly to the internal electrode layer and the case where a magnetic field is applied in parallel is large, which is preferable, but this magnetic field-magnetization curve is the dimension of the laminated ceramic capacitor, the material of the internal electrode layer, It depends on the number of internal electrode layers. Therefore, the magnetic field-magnetization curve is calculated for each type of ceramic capacitor, and the optimum applied magnetic field strength and
It is desirable to determine the strength of magnetization that serves as a reference for identifying the direction of the internal electrode layers. Further, in the present invention, the monolithic ceramic capacitor to be identified is not necessarily limited to the one having a substantially rectangular prism, and may be another rectangular parallelepiped.

【0014】[0014]

【発明の効果】以上の説明で明らかなように、本発明の
強磁性体を内部電極層とする積層セラミックコンデンサ
の方向識別方法によれば、内部電極層に平行な方向に磁
場を加えた場合と、内部電極層に垂直な方向に磁場を加
えた場合とでは、内部電極層を通過する磁束が異なるた
め内部電極層の磁化の程度が異なる。この磁化の違いを
測定することにより、強磁性体を内部電極層とする積層
セラミックコンデンサの方向を非破壊で正確に識別する
ことができる。
As is apparent from the above description, according to the method of identifying the direction of a laminated ceramic capacitor having a ferromagnetic material as an internal electrode layer according to the present invention, when a magnetic field is applied in a direction parallel to the internal electrode layer. And the case where a magnetic field is applied in a direction perpendicular to the internal electrode layer, the magnetic flux passing through the internal electrode layer is different, and therefore the degree of magnetization of the internal electrode layer is different. By measuring this difference in magnetization, the direction of the laminated ceramic capacitor having the ferromagnetic material as the internal electrode layer can be accurately identified in a nondestructive manner.

【0015】従って、テープ部材のキャビティ内へのチ
ップ収納方向を一定させることができ、キャビティ内の
チップ高さばらつきを押えて実装機での実装信頼性を高
めることができる。
Therefore, the direction in which the tape member accommodates the chip in the cavity can be made constant, and variations in chip height in the cavity can be suppressed to enhance the mounting reliability in the mounting machine.

【0016】また、同様の構成を転用し、内部電極層に
垂直に超音波が照射されるように超音波探傷機へチップ
を配置し、デラミネーション等の内部構造欠陥を精度良
く検査することができる。この場合、超音波照射機が先
の実施例の電磁石となることはいうまでもない。
Further, by using the same structure, the chip is arranged on the ultrasonic flaw detector so that the internal electrode layers are irradiated with ultrasonic waves vertically, and internal structural defects such as delamination can be accurately inspected. it can. In this case, it goes without saying that the ultrasonic wave irradiation device serves as the electromagnet of the previous embodiment.

【図面の簡単な説明】[Brief description of drawings]

【図1】振動試料型磁力計を用いた積層セラミックコン
デンサの磁化測定の斜視図である。
FIG. 1 is a perspective view of a magnetization measurement of a multilayer ceramic capacitor using a vibrating sample magnetometer.

【図2】積層セラミックコンデンサの磁場−磁化曲線の
グラフである。
FIG. 2 is a graph of a magnetic field-magnetization curve of a monolithic ceramic capacitor.

【符号の説明】[Explanation of symbols]

1 積層セラミックコンデンサ 2 内部電極層 3 外部電極 4 振動試料型磁力計の電磁石 H 磁場の方向 M 磁化の測定方向 1 Multilayer Ceramic Capacitor 2 Internal Electrode Layer 3 External Electrode 4 Electromagnet of Vibrating Sample Magnetometer H Magnetic Field Direction M Magnetization Measurement Direction

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 誘電体セラミック層を介して配置された
静電容量を形成するための強磁性体からなる複数の内部
電極層を有する積層セラミックコンデンサに対し、 該積層セラミックコンデンサの内部電極層が導出されて
いない任意の一面に一定の磁場を加え、該磁場による積
層セラミックコンデンサの磁化状態を測定することを特
徴とする積層セラミックコンデンサの方向識別方法。
1. A multilayer ceramic capacitor having a plurality of internal electrode layers made of a ferromagnetic material for forming a capacitance, which are arranged via dielectric ceramic layers, wherein the internal electrode layers of the multilayer ceramic capacitor are A method for identifying a direction of a monolithic ceramic capacitor, which comprises applying a constant magnetic field to one surface that has not been derived, and measuring the magnetization state of the monolithic ceramic capacitor due to the magnetic field.
JP5260043A 1993-10-18 1993-10-18 Direction identification method for multilayer ceramic capacitors Expired - Fee Related JP3055374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5260043A JP3055374B2 (en) 1993-10-18 1993-10-18 Direction identification method for multilayer ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5260043A JP3055374B2 (en) 1993-10-18 1993-10-18 Direction identification method for multilayer ceramic capacitors

Publications (2)

Publication Number Publication Date
JPH07115033A true JPH07115033A (en) 1995-05-02
JP3055374B2 JP3055374B2 (en) 2000-06-26

Family

ID=17342513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5260043A Expired - Fee Related JP3055374B2 (en) 1993-10-18 1993-10-18 Direction identification method for multilayer ceramic capacitors

Country Status (1)

Country Link
JP (1) JP3055374B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156922A (en) * 2004-11-30 2006-06-15 Tdk Corp Resin burying container and manufacturing method for sample used for observing internal structure of electronic component using it
JP2011018698A (en) * 2009-07-07 2011-01-27 Murata Mfg Co Ltd Electronic component carrier
DE102013207559A1 (en) * 2013-04-25 2014-10-30 Continental Teves Ag & Co. Ohg Method and arrangement for testing orientation and / or quality criterion of ceramic multilayer capacitors
JPWO2013005841A1 (en) * 2011-07-06 2015-02-23 株式会社村田製作所 Stacking direction determination method for stacked electronic components, stacking direction determination device for stacked electronic components, manufacturing method for stacked electronic components, and manufacturing apparatus for stacked electronic components
CN104773317A (en) * 2014-01-10 2015-07-15 株式会社村田制作所 Apparatus and method for manufacturing a series of taped electronic components
JP2015222833A (en) * 2013-11-05 2015-12-10 株式会社村田製作所 Capacitor, capacitor mounting structure, and taping electronic component train
CN105222811A (en) * 2014-06-25 2016-01-06 株式会社村田制作所 The manufacture method of the direction recognizing method of laminated ceramic capacitor, the direction recognition device of laminated ceramic capacitor and laminated ceramic capacitor
JP2016009802A (en) * 2014-06-25 2016-01-18 株式会社村田製作所 Direction discrimination method for multilayer ceramic capacitor, direction discrimination device for multilayer ceramic capacitor, and manufacturing method for multilayer ceramic capacitor
JP2016027612A (en) * 2014-06-25 2016-02-18 株式会社村田製作所 Method of identifying direction of stacking in stacked ceramic capacitor, apparatus for identifying direction of stacking in stacked ceramic capacitor, and method of manufacturing stacked ceramic capacitor
US9431175B2 (en) 2012-12-28 2016-08-30 Murata Manufacturing Co., Ltd. Method of identifying direction of stacking in stacked ceramic capacitor
US9576727B2 (en) 2013-11-05 2017-02-21 Murata Manufacturing Co., Ltd. Capacitor, capacitor mounting structure, and taped electronic component series

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200495452Y1 (en) * 2020-05-26 2022-05-27 (주)나래휴몰드 Functional underwear for male
KR20230027599A (en) * 2021-08-19 2023-02-28 삼성전기주식회사 Defect detection device of electronic components and defect detection method thereof

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156922A (en) * 2004-11-30 2006-06-15 Tdk Corp Resin burying container and manufacturing method for sample used for observing internal structure of electronic component using it
JP2011018698A (en) * 2009-07-07 2011-01-27 Murata Mfg Co Ltd Electronic component carrier
TWI410370B (en) * 2009-07-07 2013-10-01 Murata Manufacturing Co Electronic parts transfer device
TWI490154B (en) * 2009-07-07 2015-07-01 Murata Manufacturing Co Electronic parts conveyor
JPWO2013005841A1 (en) * 2011-07-06 2015-02-23 株式会社村田製作所 Stacking direction determination method for stacked electronic components, stacking direction determination device for stacked electronic components, manufacturing method for stacked electronic components, and manufacturing apparatus for stacked electronic components
US9431175B2 (en) 2012-12-28 2016-08-30 Murata Manufacturing Co., Ltd. Method of identifying direction of stacking in stacked ceramic capacitor
DE102013207559A1 (en) * 2013-04-25 2014-10-30 Continental Teves Ag & Co. Ohg Method and arrangement for testing orientation and / or quality criterion of ceramic multilayer capacitors
JP2015222833A (en) * 2013-11-05 2015-12-10 株式会社村田製作所 Capacitor, capacitor mounting structure, and taping electronic component train
US9576727B2 (en) 2013-11-05 2017-02-21 Murata Manufacturing Co., Ltd. Capacitor, capacitor mounting structure, and taped electronic component series
KR20150083792A (en) 2014-01-10 2015-07-20 가부시키가이샤 무라타 세이사쿠쇼 Apparatus for manufacturing a series of taping electronic components, method for manufacturing a series of taping electronic components, apparatus for conveying electronic component, method for conveying electronic component, and a series of taping electronic components
JP2015147618A (en) * 2014-01-10 2015-08-20 株式会社村田製作所 Manufacturing device of taping electronic component series, manufacturing method of taping electronic component series, conveyance device of electronic component, conveyance method of electronic component, and taping electronic component series
US20150196936A1 (en) * 2014-01-10 2015-07-16 Murata Manufacturing Co., Ltd. Apparatus for manufacturing a series of taped electronic components, method for manufacturing a series of taped electronic components, apparatus for conveying electronic components, method for conveying electronic components, and a series of taped electronic components
CN104773317A (en) * 2014-01-10 2015-07-15 株式会社村田制作所 Apparatus and method for manufacturing a series of taped electronic components
US9884347B2 (en) 2014-01-10 2018-02-06 Murata Manufacturing Co., Ltd. Apparatus for manufacturing a series of taped electronic components, method for manufacturing a series of taped electronic components, apparatus for conveying electronic components, method for conveying electronic components, and a series of taped electronic components
CN105222811A (en) * 2014-06-25 2016-01-06 株式会社村田制作所 The manufacture method of the direction recognizing method of laminated ceramic capacitor, the direction recognition device of laminated ceramic capacitor and laminated ceramic capacitor
JP2016009802A (en) * 2014-06-25 2016-01-18 株式会社村田製作所 Direction discrimination method for multilayer ceramic capacitor, direction discrimination device for multilayer ceramic capacitor, and manufacturing method for multilayer ceramic capacitor
JP2016027612A (en) * 2014-06-25 2016-02-18 株式会社村田製作所 Method of identifying direction of stacking in stacked ceramic capacitor, apparatus for identifying direction of stacking in stacked ceramic capacitor, and method of manufacturing stacked ceramic capacitor

Also Published As

Publication number Publication date
JP3055374B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
JP3055374B2 (en) Direction identification method for multilayer ceramic capacitors
JPS60142246A (en) Device and method of detecting defect in surface region and region under surface of semi-conductive material or conductive material
WO2002033398A1 (en) Leakage magnetism detecting sensor of magnetic penetration apparatus
JP4039578B2 (en) Magnetic probe
JP3055375B2 (en) Direction identification method for multilayer ceramic capacitors
CA1237772A (en) Nondestructive testing of multilayers ceramic capacitors
US5777469A (en) Method and apparatus for detecting flaws in conductive material
KR100523686B1 (en) The Nondestructive Testing Apparatus for Wire Rope
JP2002148300A (en) Method and device for nondestructive insulation testing of small-sized electric machine
JP4175181B2 (en) Magnetic flux leakage flaw detector
Sergeeva-Chollet et al. Eddy current probes based on magnetoresistive array sensors as receivers
US5986452A (en) Apparatus and method for detecting flaws in conductive material
JPS61147158A (en) Defect detecting device for strip
US5648720A (en) Apparatus and method for producing a magnetic image of a conductive pattern using eddy currents
JPH05142204A (en) Electromagnetic-induction type inspecting apparatus
JPS59112257A (en) Method and device for nondestructive inspection of ferromagnetic material
JP4328066B2 (en) Film thickness inspection apparatus and film thickness inspection method
JP3269225B2 (en) Print coil tester
JPH04296648A (en) Method and device for magnetic crack detection
JPS63311165A (en) Method and apparatus for finding flaw with magnetism
JP2003344362A (en) Eddy current flaw detection probe and eddy current flaw detector
Malikov et al. Experimental Studies of Conductive Paths of Printed Circuit Boards by Using Subminiature Eddy Current Transducers
JP3092837B2 (en) Magnetic head for detecting Barkhausen noise and detection system using the same
JP2002221514A (en) Eddy current flaw detection probe
JPH02236446A (en) Method and device for detecting flaw by leaked magnetic flux

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees