JP3055374B2 - Orientation identification method of a multilayer ceramic capacitor - Google Patents

Orientation identification method of a multilayer ceramic capacitor

Info

Publication number
JP3055374B2
JP3055374B2 JP5260043A JP26004393A JP3055374B2 JP 3055374 B2 JP3055374 B2 JP 3055374B2 JP 5260043 A JP5260043 A JP 5260043A JP 26004393 A JP26004393 A JP 26004393A JP 3055374 B2 JP3055374 B2 JP 3055374B2
Authority
JP
Japan
Prior art keywords
ceramic capacitor
multilayer ceramic
internal electrode
direction
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5260043A
Other languages
Japanese (ja)
Other versions
JPH07115033A (en
Inventor
浩昭 高島
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP5260043A priority Critical patent/JP3055374B2/en
Publication of JPH07115033A publication Critical patent/JPH07115033A/en
Application granted granted Critical
Publication of JP3055374B2 publication Critical patent/JP3055374B2/en
Anticipated expiration legal-status Critical
Application status is Expired - Fee Related legal-status Critical

Links

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、強磁性体を内部電極とした積層セラミックコンデンサの方向識別方法に関する。 The present invention relates to a direction identification method of a multilayer ceramic capacitor ferromagnetic as an internal electrode.

【0002】 [0002]

【従来の技術】積層セラミックコンデンサは、複数の誘電体セラミック層と、その誘電体セラミック層を介して互いに積層された状態で配置された複数の内部電極層と、その内部電極層の所定のものに接続された外部電極とからなり、直方体の形状をしている。 BACKGROUND OF THE INVENTION multilayer ceramic capacitor, a plurality of dielectric ceramic layers, and the dielectric ceramic layers a plurality of internal electrode layers disposed in a state of being laminated together via, a predetermined one of the internal electrode layer It consists of a connected external electrodes, and a rectangular parallelepiped shape. また、その内部電極層としてはPd,Pt,Ag等の貴金属系や、内部電極材料のコストダウンを目的としたNi,Cu等の卑金属系の金属が用いられている。 As the inside electrode layer Pd, Pt, noble metal or Ag or the like, Ni for the purpose of cost reduction of the internal electrode material, base metals of metal such as Cu is used.

【0003】この積層セラミックコンデンサにおいて、 [0003] In this multilayer ceramic capacitor,
その実装信頼性や品質を高めるために、その方向、つまり内部電極層の方向の識別を要求される場合がある。 To increase its mounting reliability and quality, its direction, that it may be required to the direction of the identification of the internal electrode layers. 即ち、一般に、積層セラミックコンデンサは、キャビティ内に収容された状態にテーピング包装された後、実装機により回路基板に装着されるが、この実装の信頼性を上げるために、キャビティ内のチップの高さ寸法のばらつきを押さえる必要がある。 That is, in general, multilayer ceramic capacitor, after being taped packaged in a state of being housed in the cavity, but is mounted on a circuit board by mounting machine, in order to increase the reliability of this implementation, the chip in the cavity height it is necessary to suppress the dimensional variations. このため、内部電極層の方向を識別し、チップを同一方向でキャビティ内に収容し、 Therefore, to identify the direction of the internal electrode layers, it is accommodated in the cavity of the chip in the same direction,
テーピングする必要がある。 It is necessary to taping. また、誘電体セラミック層と内部電極層との間に生じるデラミネーション等の内部構造欠陥を検出する方法として、超音波探傷試験機により、積層セラミックコンデンサに超音波を照射し、その反射波を解析することにより欠陥の有無を検査する方法が採用されている。 Further, as a method of detecting an internal structural defects delamination or the like occurring between the dielectric ceramic layers and internal electrode layers, the ultrasonic testing equipment, irradiated with ultrasonic waves in a multilayer ceramic capacitor, analyzes the reflected wave method for inspecting the presence or absence of a defect is employed by. この場合も、デラミネーションの検出感度を上げるためには内部電極層に垂直に超音波を当てる必要があり、そのために超音波探傷試験の前に内部電極層の方向の識別を要求されることがある。 Again, in order to increase the detection sensitivity of delamination must shed vertically ultrasound in the internal electrode layer, it may be required to the direction of identifying internal electrode layer prior to ultrasonic testing for the is there.

【0004】従来、この直方体形状をした積層セラミックコンデンサの内部電極層の方向、特に内部電極層を積み重ねた厚み方向と内部電極層の幅方向の識別は次のようにしていた。 Conventionally, this direction of the internal electrode layers of multilayer ceramic capacitors in which the rectangular shape, in particular the identification of the width direction of the internal electrode layers stacked thickness direction and the internal electrode layer was as follows. 即ち、積層セラミックコンデンサの内部電極層を積み重ねた厚み方向と内部電極層の幅方向との間に設計上明らかな違いがある時は、その寸法の違いにより識別していた。 That is, when there is a difference apparent design between the width direction of the thickness direction and the internal electrode layers stacked internal electrode layers of multilayer ceramic capacitors, have been identified by differences in their dimensions. 一方、内部電極層を積み重ねた厚み方向と内部電極層の幅方向との間に設計上殆ど差がない、即ち略正四角柱の形状の場合には、内部電極層がセラミック表面に透けて見えるときはその色合いを、あるいは一般に内部電極層を積み重ねた厚み方向の面が僅かながら凸形状を示す特徴を有する場合はその特徴を、目視により観察したりして識別していた。 On the other hand, there is little difference in design between the width direction of the internal electrode layers stacked thickness direction and the internal electrode layers, i.e. substantially in the case of the shape of a square pillar, when the internal electrode layer is seen through the ceramic surface It is the hue, or generally its features If the thickness direction of the surface a stack of internal electrode layers having a characteristic indicative of a slightly convex shape, has been identified with or visually observed.

【0005】 [0005]

【発明が解決しようとする課題】従来の、角柱形状の積層セラミックコンデンサのセラミック表面の色合いや凸形状を目視により観察したりして、内部電極層の方向を識別する方法は、視覚に頼る方法でありその識別精度は悪く、テーピングした積層セラミックコンデンサの実装信頼性や超音波探傷試験の精度を悪くする原因となっていた。 Conventional [0007], or by visually observed color and convex shape of the ceramic surface of the multilayer ceramic capacitor of prismatic, how to identify the direction of the internal electrode layers, methods that rely on visual its identification accuracy is wherein worse, causing to deteriorate the accuracy of the mounting reliability and ultrasonic testing of a multilayer ceramic capacitor was taped.

【0006】そこで、本発明の目的は、Ni等の強磁性体の内部電極層が外部磁界で磁化されることに着目して、強磁性体からなる内部電極層を有する角柱形状の積層セラミックコンデンサの方向、つまり内部電極層の方向を非破壊で正確に識別する方法を提供することにある。 An object of the present invention, by paying attention to the ferromagnetic inner electrode layer, such as Ni are magnetized by an external magnetic field, the laminated ceramic capacitor of prismatic shape having an inner electrode layer of a ferromagnetic material direction, i.e. is to provide a method to identify exactly the direction of the internal electrode layers in a non-destructive.

【0007】 [0007]

【課題を解決するための手段】上記目的を達成するため、本発明は、誘電体セラミック層を介して配置された静電容量を形成するための強磁性体からなる複数の内部電極層を有する積層セラミックコンデンサに対し、該積層セラミックコンデンサの内部電極層が導出されていない任意の一面に一定の磁場を加え、該磁場による積層セラミックコンデンサの磁化状態を測定することを特徴とする。 Means for Solving the Problems] To achieve the above object, the present invention has a plurality of internal electrode layers made of a ferromagnetic material for forming a capacitance arranged through the dielectric ceramic layer to a multilayer ceramic capacitor, a constant magnetic field in addition to any one surface of the internal electrode layer is not derived of the laminated ceramic capacitor, and measuring the magnetization state of the multilayer ceramic capacitor according to the magnetic field.

【0008】 [0008]

【作用】本発明の対象とする積層セラミックコンデンサの内部電極層は、Ni等の強磁性体よりなる。 Internal electrode layers of the multilayer ceramic capacitor of interest of the action of the present invention is made of a ferromagnetic material such as Ni. 従って、 Therefore,
内部電極層に平行な方向に磁場を加えた場合と、内部電極層に垂直な方向に磁場を加えた場合とでは、内部電極層を通過する磁束が異なるため積層セラミックコンデンサの磁化の程度が異なる。 And when added to a magnetic field in a direction parallel to the internal electrode layers, in the case of adding a magnetic field in a direction perpendicular to the internal electrode layers, different degrees of magnetization of the multilayer ceramic capacitor for magnetic flux passing through the inner electrode layers are different . 従って、この磁化の違いを判別することにより、積層セラミックコンデンサの方向を識別できる。 Therefore, by determining the difference in the magnetization, it can identify the direction of the laminated ceramic capacitor.

【0009】 [0009]

【実施例】以下、本発明の積層セラミックコンデンサの方向識別方法を実施例に基づき説明する。 BRIEF DESCRIPTION based on examples orientation identification method of a multilayer ceramic capacitor of the present invention. 図1は振動試料型磁力計を用いた積層セラミックコンデンサの磁化測定の斜視図である。 Figure 1 is a perspective view of a magnetic measurement of the multilayer ceramic capacitor using the vibrating sample magnetometer. 同図において、1は内部電極層が強磁性体のNiからなる長さ寸法2.0mm,幅寸法1. In the figure, 1 is length 2.0mm internal electrode layer is made of Ni ferromagnetic, width 1.
25mm,厚み寸法1.25mmの正角柱形状の積層セラミックコンデンサ、2は積層セラミックコンデンサ1 25 mm, the laminated ceramic capacitor positive prismatic thickness 1.25 mm, 2 is laminated ceramic capacitor 1
の内部電極層、3は同じく積層セラミックコンデンサ1 The internal electrode layer 3 is also a multilayer ceramic capacitor 1 of
の外部電極、4は積層セラミックコンデンサ1に磁場を加える振動試料型磁力計の電磁石(ポールピース)である。 External electrodes, 4 is an electromagnet vibrating sample magnetometer applying a magnetic field to the multilayer ceramic capacitor 1 (pole piece). また、Hは積層セラミックコンデンサ1に加える磁場の方向、Mは積層セラミックコンデンサ1の磁化の測定方向である。 Also, H is the direction of the magnetic field applied to the multilayer ceramic capacitor 1, M is the measuring direction of the magnetization of the multilayer ceramic capacitor 1.

【0010】まず、積層セラミックコンデンサ1に加える磁場の方向をパラメータとした場合の磁場−磁化曲線を求めた。 [0010] First, the magnetic field when the direction of the magnetic field applied to the multilayer ceramic capacitor 1 as a parameter - obtained magnetization curves. 即ち、まず、あらかじめ外部電極3の一部を除去して確認しておいた内部電極層2が磁場の方向Hに対して垂直になるように、かつ外部電極3の面が上下に位置するように積層セラミックコンデンサ1を振動試料型磁力計の電磁石4の間に配置した。 That is, first, in advance so that the internal electrode layer 2 partially had been confirmed by removing the external electrode 3 is perpendicular to the direction H of the magnetic field, and as the surface of external electrode 3 is positioned vertically the multilayer ceramic capacitor 1 is arranged between the electromagnets 4 of the vibrating sample magnetometer on. そして、磁場の強さを0Oeから10kOeまで変化させ、そのときの磁場の方向Hと直角で、かつ外部電極3の面に垂直な方向Mの磁化を測定した。 Then, the strength of the magnetic field is varied from 0Oe to 10 kOe, perpendicular to the direction H of the magnetic field at that time, and to measure the magnetization of the perpendicular direction M to the surface of the external electrodes 3. 次に、内部電極層2が磁場の方向Hに対して平行になるように、かつ外部電極3の面が上下に位置するように積層セラミックコンデンサ1を振動試料型磁力計の電磁石4の間に配置した。 Then, as the internal electrode layer 2 is parallel to the direction H of the magnetic field, and a multilayer ceramic capacitor 1 as the surface of the external electrodes 3 are positioned vertically between the electromagnets 4 of the vibrating sample magnetometer It was placed. そして、同様に磁場の強さを0Oeから10kOeまで変化させ、そのときの方向Mの磁化を測定した。 Then, similarly to change the intensity of the magnetic field from 0Oe to 10 kOe, were measured magnetization direction M at that time. その結果を図2に示す。 The results are shown in Figure 2.

【0011】図2に示す通り、積層セラミックコンデンサをその内部電極層が磁場の方向に対して垂直になるように配置した場合は、2kOeで磁化は飽和しているのに対し、内部電極層が磁場の方向に対して平行になるように配置した場合は、磁化の強さはその60〜70%程度であり、また、磁化の飽和についても、約4.5kO [0011] As shown in FIG. 2, when the internal electrode layers laminated ceramic capacitor was disposed so as to be perpendicular to the direction of the magnetic field, whereas the magnetization is saturated with 2 kOe, the internal electrode layers when placed in parallel to the direction of the magnetic field, the intensity of magnetization is its order of 60% to 70%, also, for the saturation magnetization, about 4.5kO
eまで飽和しない。 It does not saturate until e.

【0012】従って、積層セラミックコンデンサの内部電極層が導出されていない任意の一面に、ある一定の磁場を加えて、積層セラミックコンデンサの磁化を測定すれば、その磁化の強さにより積層セラミックコンデンサの内部電極層の方向を識別することができる。 Accordingly, any one surface of the internal electrode layer is not derivation of multilayer ceramic capacitors, in addition to constant magnetic field with, by measuring the magnetization of the multilayer ceramic capacitor, a multilayer ceramic capacitor by the strength of the magnetization it is possible to identify the direction of the internal electrode layers.

【0013】なお、上記実施例の場合は、図2に示すように、0.5kOe〜2kOeの範囲の磁場において、 [0013] In the case of the above embodiment, as shown in FIG. 2, in a magnetic field ranging from 0.5KOe~2kOe,
内部電極層に垂直に磁場を加えた場合と平行に磁場を加えた場合とでの磁化の違いが大きく現れるため好ましいが、この磁場−磁化曲線は積層セラミックコンデンサの寸法、内部電極層の材質、内部電極層の数等により異なる。 Although preferred because the difference in magnetization at the case of adding a parallel magnetic field and when the addition of the magnetic field perpendicular to the internal electrode layer appears large, the magnetic field - the material of the size of the magnetization curve multilayer ceramic capacitor, the internal electrode layers, different the number of internal electrode layers. 従ってセラミックコンデンサの種類ごとに磁場−磁化曲線を求めて、それにより最適な印加磁場の強さと、 Thus the magnetic field for each type of ceramic capacitors - seeking magnetization curve, whereby the strength of optimum applied magnetic field,
内部電極層の方向を識別するための基準となる磁化の強さを決定することが望ましい。 It is desirable to determine the strength of a reference for identifying the direction of the internal electrode layer magnetization. また、本発明は、識別する積層セラミックコンデンサが必ずしも略正角柱のものに限ることはなく、他の直方体のものでもよい。 Further, the present invention is not able to identify a multilayer ceramic capacitor is limited to necessarily substantially positive prism may be of other cuboid.

【0014】 [0014]

【発明の効果】以上の説明で明らかなように、本発明の強磁性体を内部電極層とする積層セラミックコンデンサの方向識別方法によれば、内部電極層に平行な方向に磁場を加えた場合と、内部電極層に垂直な方向に磁場を加えた場合とでは、内部電極層を通過する磁束が異なるため内部電極層の磁化の程度が異なる。 As is apparent from the foregoing description, according to the orientation identification method of a multilayer ceramic capacitor that the ferromagnetic material of the present invention and the internal electrode layer, when added to a magnetic field in a direction parallel to the internal electrode layer If, in the case of adding a magnetic field in a direction normal to the internal electrode layers, the degree of magnetization of the internal electrode layers for the magnetic flux is different passing inside electrode layer different. この磁化の違いを測定することにより、強磁性体を内部電極層とする積層セラミックコンデンサの方向を非破壊で正確に識別することができる。 By measuring the difference in the magnetization, it is possible to accurately identify the direction of a multilayer ceramic capacitor to the ferromagnetic body and the internal electrode layer nondestructively.

【0015】従って、テープ部材のキャビティ内へのチップ収納方向を一定させることができ、キャビティ内のチップ高さばらつきを押えて実装機での実装信頼性を高めることができる。 [0015] Accordingly, it is possible to enhance the mounting reliability of the chip storage direction into the cavity of the tape member it is possible to a certain, in mounting machine presses the chip height variations in the cavities.

【0016】また、同様の構成を転用し、内部電極層に垂直に超音波が照射されるように超音波探傷機へチップを配置し、デラミネーション等の内部構造欠陥を精度良く検査することができる。 Further, diverting the same configuration, arranged tip to the ultrasonic flaw detector as vertically ultrasound in the internal electrode layer is irradiated, the internal structural defects such as delamination be accurately inspected it can. この場合、超音波照射機が先の実施例の電磁石となることはいうまでもない。 In this case, it goes without saying that the ultrasonic irradiation device is an electromagnet in the previous embodiment.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】振動試料型磁力計を用いた積層セラミックコンデンサの磁化測定の斜視図である。 1 is a perspective view of a magnetic measurement of the multilayer ceramic capacitor using the vibrating sample magnetometer.

【図2】積層セラミックコンデンサの磁場−磁化曲線のグラフである。 [Figure 2] of the multilayer ceramic capacitor field - is a graph of the magnetization curve.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 積層セラミックコンデンサ 2 内部電極層 3 外部電極 4 振動試料型磁力計の電磁石 H 磁場の方向 M 磁化の測定方向 1 measuring direction direction M magnetization of the electromagnet H field of the multilayer ceramic capacitor 2 internal electrode layers 3 outside electrode 4 vibrating sample magnetometer

Claims (1)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】 誘電体セラミック層を介して配置された静電容量を形成するための強磁性体からなる複数の内部電極層を有する積層セラミックコンデンサに対し、 該積層セラミックコンデンサの内部電極層が導出されていない任意の一面に一定の磁場を加え、該磁場による積層セラミックコンデンサの磁化状態を測定することを特徴とする積層セラミックコンデンサの方向識別方法。 To 1. A plurality of multilayer ceramic capacitor having internal electrode layers made of a ferromagnetic material for forming a capacitance which is arranged via the dielectric ceramic layers, the internal electrode layers of the laminated ceramic capacitor the constant magnetic field in addition to any one surface that is not derived, the direction identification method of a multilayer ceramic capacitor and measuring the magnetization state of the multilayer ceramic capacitor according to the magnetic field.
JP5260043A 1993-10-18 1993-10-18 Orientation identification method of a multilayer ceramic capacitor Expired - Fee Related JP3055374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5260043A JP3055374B2 (en) 1993-10-18 1993-10-18 Orientation identification method of a multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5260043A JP3055374B2 (en) 1993-10-18 1993-10-18 Orientation identification method of a multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JPH07115033A JPH07115033A (en) 1995-05-02
JP3055374B2 true JP3055374B2 (en) 2000-06-26

Family

ID=17342513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5260043A Expired - Fee Related JP3055374B2 (en) 1993-10-18 1993-10-18 Orientation identification method of a multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP3055374B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951796B2 (en) * 2009-07-07 2012-06-13 日東工業株式会社 Electronic component conveyor
JP5725010B2 (en) 2012-12-28 2015-05-27 株式会社村田製作所 Direction identification method for multilayer ceramic capacitor, direction identification device for multilayer ceramic capacitor, and method for manufacturing multilayer ceramic capacitor
DE102013207559A1 (en) * 2013-04-25 2014-10-30 Continental Teves Ag & Co. Ohg Method and arrangement for testing orientation and / or quality criterion of ceramic multilayer capacitors
JP5790817B2 (en) 2013-11-05 2015-10-07 株式会社村田製作所 Capacitor, capacitor mounting structure and taping electronic component series
JP6179565B2 (en) * 2013-11-05 2017-08-16 株式会社村田製作所 Capacitor, capacitor mounting structure and taping electronic component series
JP6131933B2 (en) * 2014-01-10 2017-05-24 株式会社村田製作所 Taping electronic component series manufacturing apparatus, taping electronic component series manufacturing method, electronic component transport apparatus, electronic component transport method, and taping electronic component series
US9714921B2 (en) * 2014-06-25 2017-07-25 Murata Manufacturing Co., Ltd. Method of identifying direction of multilayer ceramic capacitor, apparatus identifying direction of multilayer ceramic capacitor, and method of manufacturing multilayer ceramic capacitor
JP6241439B2 (en) * 2014-06-25 2017-12-06 株式会社村田製作所 Direction identification method for multilayer ceramic capacitor, direction identification device for multilayer ceramic capacitor, and method for manufacturing multilayer ceramic capacitor
JP6107752B2 (en) * 2014-06-25 2017-04-05 株式会社村田製作所 Direction identification method for multilayer ceramic capacitor, direction identification device for multilayer ceramic capacitor, and method for manufacturing multilayer ceramic capacitor

Also Published As

Publication number Publication date
JPH07115033A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
Houze Jr Domain‐Wall Motion in Grain‐Oriented Silicon Steel in Cyclic Magnetic Fields
Moulder et al. Thickness and conductivity of metallic layers from eddy current measurements
EP0910784B1 (en) Eddy current inspection technique
US20050007108A1 (en) Probes and methods for detecting defects in metallic structures
CA2388269C (en) Pulsed eddy current two-dimensional sensor array inspection probe and system
KR100543992B1 (en) Method for detecting metallic foreign matter and system for detecting metallic foreign matter
US4271393A (en) Apparatus and method for eddy current detection of subsurface discontinuities in conductive bodies
US6040695A (en) Method and apparatus for inspection of components
US9128063B2 (en) Non-contact stress measuring device
US9170234B2 (en) Magnetic sensor array and apparatus for detecting defect using the magnetic sensor array
US20040221652A1 (en) Transducer guided wave electromagnetic acoustic
US20030016026A1 (en) Method and apparatus for inspecting printed circuit boards
US6791319B2 (en) Eddy current probe with transverse polygonal detecting coil
EP0543648A1 (en) Inspection device using electromagnetic induction and method therefor
CN1146729C (en) Magnetic sensor, and magnetic flaw detection method and apparatus using the magnetic sensor
US5514953A (en) Wafer level test structure for detecting multiple domains and magnetic instability in a permanent magnet stabilized MR head
US6888346B2 (en) Magnetoresistive flux focusing eddy current flaw detection
KR100584186B1 (en) Eddy current probe with foil sensor mounted on flexible probe tip and method of use
US4488116A (en) Inductive coin sensor for measuring more than one parameter of a moving coin
US4639669A (en) Pulsed electromagnetic nondestructive test method for determining volume density of graphite fibers in a graphite-epoxy composite material
JP3811039B2 (en) Magnetic leak detection sensor for magnetic flaw detector
CA2357233C (en) Sensor head for acfm based crack detection
GB1262380A (en) Flaw detection in laminated structures using vibration response
JP2001296127A (en) Magnetic field detector
US7626383B1 (en) Apparatus and method for holding a rotatable eddy-current magnetic probe, and for rotating the probe around a boundary

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees