JP3055375B2 - Direction identification method for multilayer ceramic capacitors - Google Patents

Direction identification method for multilayer ceramic capacitors

Info

Publication number
JP3055375B2
JP3055375B2 JP5260044A JP26004493A JP3055375B2 JP 3055375 B2 JP3055375 B2 JP 3055375B2 JP 5260044 A JP5260044 A JP 5260044A JP 26004493 A JP26004493 A JP 26004493A JP 3055375 B2 JP3055375 B2 JP 3055375B2
Authority
JP
Japan
Prior art keywords
multilayer ceramic
ceramic capacitor
internal electrode
magnetic field
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5260044A
Other languages
Japanese (ja)
Other versions
JPH07115034A (en
Inventor
浩昭 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP5260044A priority Critical patent/JP3055375B2/en
Publication of JPH07115034A publication Critical patent/JPH07115034A/en
Application granted granted Critical
Publication of JP3055375B2 publication Critical patent/JP3055375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、強磁性体を内部電極と
した積層セラミックコンデンサの方向識別方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for identifying the direction of a multilayer ceramic capacitor using a ferromagnetic material as an internal electrode.

【0002】[0002]

【従来の技術】積層セラミックコンデンサは、複数の誘
電体セラミック層と、その誘電体セラミック層を介して
互いに積層された状態で配置された複数の内部電極層
と、その内部電極層の所定のものに接続された外部電極
とからなり、直方体の形状をしている。また、その内部
電極層としてはPd,Pt,Ag等の貴金属系や、内部
電極材料のコストダウンを目的としたNi,Cu等の卑
金属系の金属が用いられている。
2. Description of the Related Art A multilayer ceramic capacitor includes a plurality of dielectric ceramic layers, a plurality of internal electrode layers arranged in a state of being stacked on each other via the dielectric ceramic layers, and a predetermined one of the internal electrode layers. And an external electrode connected thereto, and has a rectangular parallelepiped shape. As the internal electrode layer, a noble metal such as Pd, Pt, or Ag, or a base metal such as Ni or Cu for the purpose of reducing the cost of the internal electrode material is used.

【0003】この積層セラミックコンデンサにおいて、
その実装信頼性や品質を高めるために、その方向、つま
り内部電極層の方向の識別を要求される場合がある。即
ち、一般に、積層セラミックコンデンサは、キャビティ
内に収容された状態にテーピング包装された後、実装機
により回路基板に装着されるが、この実装の信頼性を上
げるために、キャビティ内のチップの高さ寸法のばらつ
きを押さえる必要がある。このため、内部電極層の方向
を識別し、チップを同一方向でキャビティ内に収容し、
テーピングする必要がある。また、誘電体セラミック層
と内部電極層との間に生じるデラミネーション等の内部
構造欠陥を検出する方法として、超音波探傷試験機によ
り、積層セラミックコンデンサに超音波を照射し、その
反射波を解析することにより欠陥の有無を検査する方法
が採用されている。この場合も、デラミネーションの検
出感度を上げるためには内部電極層に垂直に超音波を当
てる必要があり、そのために超音波探傷試験の前に内部
電極層の方向の識別を要求される場合がある。
In this multilayer ceramic capacitor,
In order to improve the mounting reliability and quality, it may be required to identify the direction, that is, the direction of the internal electrode layer. That is, in general, a multilayer ceramic capacitor is taped and wrapped in a state of being housed in a cavity, and then mounted on a circuit board by a mounting machine. In order to increase the reliability of the mounting, the height of the chip in the cavity is increased. It is necessary to suppress variations in the dimensions. For this reason, the direction of the internal electrode layer is identified, the chip is accommodated in the cavity in the same direction,
Need to tap. In addition, as a method of detecting internal structural defects such as delamination occurring between the dielectric ceramic layer and the internal electrode layer, an ultrasonic flaw detector is used to irradiate the multilayer ceramic capacitor with ultrasonic waves and analyze the reflected waves. In this case, a method of inspecting the presence or absence of a defect is adopted. In this case, too, it is necessary to apply ultrasonic waves vertically to the internal electrode layer in order to increase the detection sensitivity of delamination, and therefore, it is required to identify the direction of the internal electrode layer before the ultrasonic inspection test. is there.

【0004】従来、この直方体形状をした積層セラミッ
クコンデンサの内部電極層の方向、特に内部電極層を積
み重ねた厚み方向と内部電極層の幅方向の識別は次のよ
うにしていた。即ち、積層セラミックコンデンサの内部
電極層を積み重ねた厚み方向と内部電極層の幅方向との
間に設計上明らかな違いがある時は、その寸法の違いに
より識別していた。一方、内部電極層を積み重ねた厚み
方向と内部電極層の幅方向との間に設計上殆ど差がな
い、即ち略正四角柱の形状の場合には、内部電極層がセ
ラミック表面に透けて見えるときはその色合いを、ある
いは一般に内部電極層を積み重ねた厚み方向の面が僅か
ながら凸形状を示す特徴を有する場合はその特徴を、目
視により観察したりて識別していた。
Heretofore, the direction of the internal electrode layers of this multilayer ceramic capacitor having a rectangular parallelepiped shape, in particular, the thickness direction in which the internal electrode layers are stacked and the width direction of the internal electrode layers have been identified as follows. That is, when there is a clear difference in design between the thickness direction in which the internal electrode layers of the multilayer ceramic capacitor are stacked and the width direction of the internal electrode layers, they are identified based on the difference in dimensions. On the other hand, there is little difference in design between the thickness direction in which the internal electrode layers are stacked and the width direction of the internal electrode layers, that is, in the case of a substantially square prism shape, when the internal electrode layers can be seen through the ceramic surface. Has identified the color or, in general, when the surface in the thickness direction in which the internal electrode layers are stacked has a characteristic that is slightly convex, the characteristic is visually observed or discriminated.

【0005】[0005]

【発明が解決しようとする課題】従来の、角柱形状の積
層セラミックコンデンサのセラミック表面の色合いや凸
形状を目視により観察したりして、内部電極層の方向を
識別する方法は、視覚に頼る方法でありその識別精度は
悪く、テーピングした積層セラミックコンデンサの実装
信頼性や超音波探傷試験の精度を悪くする原因となって
いた。
The conventional method of visually observing the color and the convex shape of the ceramic surface of a prismatic multilayer ceramic capacitor and visually identifying the direction of the internal electrode layer is based on a visual method. However, the discrimination accuracy is poor, which causes the mounting reliability of the taped multilayer ceramic capacitor and the accuracy of the ultrasonic inspection test to deteriorate.

【0006】そこで、本発明の目的は、Ni等の強磁性
体の内部電極層が外部磁界で磁化されることに着目し
て、強磁性体からなる内部電極層を有する角柱形状の積
層セラミックコンデンサの方向、つまり内部電極層の方
向を非破壊で正確に識別する方法を提供することにあ
る。
Accordingly, an object of the present invention is to pay attention to the fact that an internal electrode layer made of a ferromagnetic material such as Ni is magnetized by an external magnetic field, and to realize a prismatic multilayer ceramic capacitor having an internal electrode layer made of a ferromagnetic material. Of the internal electrode layer, that is, the direction of the internal electrode layer, is accurately and non-destructively provided.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、本発明は、誘電体セラミック層を介して配置された
静電容量を形成するための強磁性体からなる複数の内部
電極層を有する積層セラミックコンデンサに対し、該積
層セラミックコンデンサに、内部電極層の導出面との平
行を保ちながら該積層セラミックコンデンサの周囲を少
なくとも90度以上回転する一定の磁場を加えて、該積
層セラミックコンデンサに加える磁場の方向を変化させ
て、該積層セラミックコンデンサの磁化状態を測定する
ことを特徴とする。
In order to achieve the above object, the present invention has a plurality of internal electrode layers made of a ferromagnetic material for forming a capacitance, which are arranged via a dielectric ceramic layer. A constant magnetic field that rotates at least 90 degrees around the multilayer ceramic capacitor is applied to the multilayer ceramic capacitor while keeping the multilayer ceramic capacitor parallel to the lead-out surface of the internal electrode layer, and is applied to the multilayer ceramic capacitor. The direction of the magnetic field is changed to measure the magnetization state of the multilayer ceramic capacitor.

【0008】また、積層セラミックコンデンサに加える
磁場の方向を変化させるに当り、磁場を固定して、該積
層セラミックコンデンサを、対向する内部電極層の導出
面を軸として回転させてもよい。
When changing the direction of the magnetic field applied to the multilayer ceramic capacitor, the magnetic field may be fixed and the multilayer ceramic capacitor may be rotated around the lead-out surface of the opposing internal electrode layer.

【0009】[0009]

【作用】本発明の対象とする積層セラミックコンデンサ
の内部電極層は、Ni等の強磁性体よりなる。従って、
積層セラミックコンデンサに加える磁場の方向を変化さ
せると、内部電極層を通過する磁束が変化し、積層セラ
ミックコンデンサの磁化の程度が変化する。従って、磁
化の、積層セラミックコンデンサへの磁場の入射角度依
存性の違いにより、積層セラミックコンデンサの方向を
識別することができる。
The internal electrode layer of the multilayer ceramic capacitor according to the present invention is made of a ferromagnetic material such as Ni. Therefore,
When the direction of the magnetic field applied to the multilayer ceramic capacitor is changed, the magnetic flux passing through the internal electrode layer changes, and the degree of magnetization of the multilayer ceramic capacitor changes. Therefore, the direction of the multilayer ceramic capacitor can be identified by the difference in the magnetization depending on the incident angle of the magnetic field to the multilayer ceramic capacitor.

【0010】[0010]

【実施例】以下、本発明の積層セラミックコンデンサの
方向識別方法を実施例に基づき説明する。図1は振動試
料型磁力計を用いた積層セラミックコンデンサの磁化測
定の斜視図である。同図において、1は内部電極層が強
磁性体のNiからなる長さ寸法2.0mm,幅寸法1.
25mm,厚み寸法1.25mmの正角柱形状の積層セ
ラミックコンデンサ、2は積層セラミックコンデンサ1
の内部電極層、3は同じく積層セラミックコンデンサ1
の外部電極である。そして、4は積層セラミックコンデ
ンサ1に、内部電極層導出面との平行を保ちながらその
積層セラミックコンデンサ1の周囲を回転する一定の磁
場を加える電磁石(ポールピース)である。さらに、H
は磁場の印加方向であり、Rは磁場の回転方向であり、
Mは積層セラミックコンデンサ1の磁化の測定方向であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for identifying the direction of a multilayer ceramic capacitor according to the present invention will be described based on embodiments. FIG. 1 is a perspective view of a magnetization measurement of a multilayer ceramic capacitor using a vibrating sample magnetometer. In the figure, reference numeral 1 denotes a length dimension of 2.0 mm and a width dimension of 1.1, in which an internal electrode layer is made of ferromagnetic Ni.
25 mm, thickness 1.25 mm square prism-shaped multilayer ceramic capacitor, 2 is multilayer ceramic capacitor 1
The internal electrode layer 3 is the same as the multilayer ceramic capacitor 1
External electrodes. Reference numeral 4 denotes an electromagnet (pole piece) for applying a fixed magnetic field rotating around the multilayer ceramic capacitor 1 while keeping the multilayer ceramic capacitor 1 parallel to the internal electrode layer lead-out surface. Furthermore, H
Is the direction of application of the magnetic field, R is the direction of rotation of the magnetic field,
M is a measurement direction of the magnetization of the multilayer ceramic capacitor 1.

【0011】まず、積層セラミックコンデンサ1に加え
る磁場の方向Hを変化させて、積層セラミックコンデン
サ1の磁化の磁場入射角度依存性を求めた。即ち、あら
かじめ外部電極3の一部を除去して確認しておいた内部
電極層2が磁場の方向Hに対して垂直になるように、か
つ外部電極3の面が上下に位置するように積層セラミッ
クコンデンサ1を電磁石4の間に配置した。そして、磁
場の強さを10kOeに固定して、内部電極層導出面と
の平行を保ちながら積層セラミックコンデンサ1の回り
に磁場を回転させ、内部電極層2への磁場の入射角度を
90度から360度変化させて、そのときの磁場の回転
面と垂直な方向Mの磁化を測定した。その結果を図2に
示す。
First, the dependence of the magnetization of the multilayer ceramic capacitor 1 on the incident angle of the magnetic field was determined by changing the direction H of the magnetic field applied to the multilayer ceramic capacitor 1. That is, the internal electrode layer 2, which has been confirmed by removing a part of the external electrode 3 in advance, is stacked so that the internal electrode layer 2 is perpendicular to the direction H of the magnetic field and the surface of the external electrode 3 is positioned vertically. The ceramic capacitor 1 was arranged between the electromagnets 4. Then, the strength of the magnetic field is fixed to 10 kOe, and the magnetic field is rotated around the multilayer ceramic capacitor 1 while keeping parallel to the internal electrode layer lead-out surface, so that the angle of incidence of the magnetic field on the internal electrode layer 2 becomes 90 degrees. The angle was changed by 360 degrees, and the magnetization in the direction M perpendicular to the plane of rotation of the magnetic field at that time was measured. The result is shown in FIG.

【0012】図2に示す通り、積層セラミックコンデン
サの磁化は、その内部電極層への磁場の入射角度が変わ
ることにより変化する。即ち、磁場の内部電極層への入
射角度が垂直あるいは平行なときに、積層セラミックコ
ンデンサの磁化は極大を示し、しかも磁場の内部電極層
への入射角度が垂直なときのほうが平行なときと比較し
て磁化は大きくなる。
As shown in FIG. 2, the magnetization of the multilayer ceramic capacitor changes as the angle of incidence of the magnetic field on its internal electrode layer changes. In other words, when the angle of incidence of the magnetic field on the internal electrode layers is vertical or parallel, the magnetization of the multilayer ceramic capacitor shows a maximum, and when the angle of incidence of the magnetic field on the internal electrode layers is vertical, it is compared with when the angle is parallel. As a result, the magnetization increases.

【0013】従って、たとえば、内部電極層が導出され
ていない任意の一面にほぼ垂直な角度より少なくとも9
0度以上、内部電極層導出面との平行を保ちながら、積
層セラミックコンデンサの回りに磁場を回転させて磁化
を測定して、検出した磁化の複数のピーク値の相対的大
きさとその時系列を調べることで、セラミックコンデン
サの内部電極層の方向を識別することができる。
Therefore, for example, at least 9 degrees more than an angle substantially perpendicular to any surface from which the internal electrode layer is not led out.
Rotate the magnetic field around the multilayer ceramic capacitor and measure the magnetization while maintaining parallel to the internal electrode layer lead-out surface at least 0 degrees, and examine the relative magnitudes and time series of the detected multiple peak values of the magnetization. Thus, the direction of the internal electrode layer of the ceramic capacitor can be identified.

【0014】なお、積層セラミックコンデンサに加える
磁場の強さは、上記実施例の場合には磁化が飽和する1
0kOeの磁場を加えているが、これに限定されること
なく、それ以下の磁化が不飽和の領域の磁場でもよい。
Incidentally, the intensity of the magnetic field applied to the multilayer ceramic capacitor is 1
Although a magnetic field of 0 kOe is applied, the magnetic field is not limited to this and may be a magnetic field in a region where the magnetization is less than that and is unsaturated.

【0015】また、上記実施例においては、磁場を回転
させて積層セラミックコンデンサに加える磁場の方向を
変化させているが、これに限定されることなく、逆に磁
場を固定しておいて、積層セラミックコンデンサを対向
する内部電極層導出面を軸として回転させてもよい。さ
らに本発明は、識別する積層セラミックコンデンサが必
ずしも略正角柱のものに限ることはなく、他の直方体の
ものでもよい。
In the above embodiment, the direction of the magnetic field applied to the multilayer ceramic capacitor is changed by rotating the magnetic field. However, the present invention is not limited to this. The ceramic capacitor may be rotated about the facing internal electrode layer lead-out surface as an axis. Further, in the present invention, the laminated ceramic capacitor to be identified is not necessarily limited to a substantially rectangular prism, but may be another rectangular parallelepiped.

【0016】[0016]

【発明の効果】以上の説明で明らかなように、本発明の
強磁性体を内部電極層とする積層セラミックコンデンサ
の方向識別方法によれば、内部電極層に加える磁場の方
向を変化させると、内部電極層を通過する磁束が変化す
るため内部電極層の磁化の状態が変化する。この磁化の
磁場入射角度依存性を測定することにより、強磁性体を
内部電極層とする積層セラミックコンデンサの方向を非
破壊で正確に識別することができる。
As is apparent from the above description, according to the method for identifying the direction of a multilayer ceramic capacitor having a ferromagnetic material as an internal electrode layer according to the present invention, when the direction of the magnetic field applied to the internal electrode layer is changed, Since the magnetic flux passing through the internal electrode layer changes, the state of magnetization of the internal electrode layer changes. By measuring the magnetic field incident angle dependence of the magnetization, the direction of the multilayer ceramic capacitor having the ferromagnetic material as the internal electrode layer can be accurately and non-destructively identified.

【0017】従って、テープ部材のキャビティ内へのチ
ップ収納方向を一定させることができ、キャビティ内の
チップ高さばらつきを押えて実装機での実装信頼性を高
めることができる。
Accordingly, the direction in which the tape member is housed in the cavity in the tape member can be kept constant, and the variation in chip height in the cavity can be suppressed, so that the mounting reliability in the mounting machine can be improved.

【0018】また、同様の構成を転用し、内部電極層に
垂直に超音波が照射されるように超音波探傷機へチップ
を配置し、デラミネーション等の内部構造欠陥を精度良
く検査することができる。この場合、超音波照射機が先
の実施例の電磁石となることはいうまでもない。
Further, by diverting the same configuration, it is possible to dispose a chip in an ultrasonic flaw detector so that ultrasonic waves are irradiated perpendicularly to the internal electrode layer, and to accurately inspect internal structural defects such as delamination. it can. In this case, it goes without saying that the ultrasonic irradiator is the electromagnet of the previous embodiment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】振動試料型磁力計を用いた積層セラミックコン
デンサの磁化測定の斜視図である。
FIG. 1 is a perspective view of a magnetization measurement of a multilayer ceramic capacitor using a vibrating sample magnetometer.

【図2】積層セラミックコンデンサの磁化の磁場入射角
度依存性を示すグラフである。
FIG. 2 is a graph showing a magnetic field incident angle dependency of magnetization of a multilayer ceramic capacitor.

【符号の説明】[Explanation of symbols]

1 積層セラミックコンデンサ 2 内部電極層 3 外部電極 4 振動試料型磁力計の電磁石 H 磁場の印加方向 R 磁場の回転方向 M 磁化の測定方向 Reference Signs List 1 multilayer ceramic capacitor 2 internal electrode layer 3 external electrode 4 electromagnet of vibrating sample magnetometer H direction of application of magnetic field R direction of rotation of magnetic field M direction of measurement of magnetization

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体セラミック層を介して配置された
静電容量を形成するための強磁性体からなる複数の内部
電極層を有する積層セラミックコンデンサに対し、 該積層セラミックコンデンサに、内部電極層の導出面と
の平行を保ちながら該積層セラミックコンデンサの周囲
を少なくとも90度以上回転する一定の磁場を加えて、
該積層セラミックコンデンサに加える磁場の方向を変化
させて、該積層セラミックコンデンサの磁化状態を測定
することを特徴とする積層セラミックコンデンサの方向
識別方法。
The present invention relates to a multilayer ceramic capacitor having a plurality of internal electrode layers made of a ferromagnetic material for forming a capacitance and arranged via a dielectric ceramic layer. Applying a constant magnetic field rotating at least 90 degrees or more around the multilayer ceramic capacitor while keeping parallel to the outgoing surface of
A direction identification method for a multilayer ceramic capacitor, comprising: changing a direction of a magnetic field applied to the multilayer ceramic capacitor to measure a magnetization state of the multilayer ceramic capacitor.
【請求項2】 積層セラミックコンデンサに加える磁場
の方向を変化させるに当り、磁場を固定して、該積層セ
ラミックコンデンサを、対向する内部電極層の導出面を
軸として少なくとも90度以上回転させることを特徴と
する請求項1記載の積層セラミックコンデンサの方向識
別方法。
2. Changing the direction of a magnetic field applied to the multilayer ceramic capacitor, wherein the magnetic field is fixed, and the multilayer ceramic capacitor is rotated at least 90 degrees or more around the lead-out surface of the opposed internal electrode layer as an axis. 2. The method for identifying the direction of a multilayer ceramic capacitor according to claim 1, wherein:
JP5260044A 1993-10-18 1993-10-18 Direction identification method for multilayer ceramic capacitors Expired - Lifetime JP3055375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5260044A JP3055375B2 (en) 1993-10-18 1993-10-18 Direction identification method for multilayer ceramic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5260044A JP3055375B2 (en) 1993-10-18 1993-10-18 Direction identification method for multilayer ceramic capacitors

Publications (2)

Publication Number Publication Date
JPH07115034A JPH07115034A (en) 1995-05-02
JP3055375B2 true JP3055375B2 (en) 2000-06-26

Family

ID=17342529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5260044A Expired - Lifetime JP3055375B2 (en) 1993-10-18 1993-10-18 Direction identification method for multilayer ceramic capacitors

Country Status (1)

Country Link
JP (1) JP3055375B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5725010B2 (en) * 2012-12-28 2015-05-27 株式会社村田製作所 Direction identification method for multilayer ceramic capacitor, direction identification device for multilayer ceramic capacitor, and method for manufacturing multilayer ceramic capacitor
DE102013207559A1 (en) * 2013-04-25 2014-10-30 Continental Teves Ag & Co. Ohg Method and arrangement for testing orientation and / or quality criterion of ceramic multilayer capacitors
JP6131933B2 (en) 2014-01-10 2017-05-24 株式会社村田製作所 Taping electronic component series manufacturing apparatus, taping electronic component series manufacturing method, electronic component transport apparatus, electronic component transport method, and taping electronic component series
US9714921B2 (en) 2014-06-25 2017-07-25 Murata Manufacturing Co., Ltd. Method of identifying direction of multilayer ceramic capacitor, apparatus identifying direction of multilayer ceramic capacitor, and method of manufacturing multilayer ceramic capacitor
JP6241439B2 (en) * 2014-06-25 2017-12-06 株式会社村田製作所 Direction identification method for multilayer ceramic capacitor, direction identification device for multilayer ceramic capacitor, and method for manufacturing multilayer ceramic capacitor
KR101713088B1 (en) * 2014-06-25 2017-03-07 가부시키가이샤 무라타 세이사쿠쇼 Method of identifying direction of multilayer ceramic capacitor, apparatus identifying direction of multilayer ceramic capacitor, and method of manufacturing multilayer ceramic capacitor
CN116359127B (en) * 2023-02-16 2024-04-16 广东微容电子科技有限公司 Magnetic detection device and magnetic detection method

Also Published As

Publication number Publication date
JPH07115034A (en) 1995-05-02

Similar Documents

Publication Publication Date Title
US7696747B2 (en) Electromagnetic induction type inspection device and method
JP3055374B2 (en) Direction identification method for multilayer ceramic capacitors
US6975108B2 (en) Methods and devices for eddy current PCB inspection
JPS60142246A (en) Device and method of detecting defect in surface region and region under surface of semi-conductive material or conductive material
US4095181A (en) Rotating pot shaped eddy current probe in which only a small fraction of the lip forming the outer core portion is retained
WO2000008458A1 (en) Eddy-current flaw detector probe
GB2292222A (en) Electromagnetic induction type inspection device
JP3055375B2 (en) Direction identification method for multilayer ceramic capacitors
JPWO2003091657A1 (en) Magnetic probe
JP2006215018A (en) Flaw detection method and flaw detector
FR2487969A1 (en) FOUCAULT CURRENT SENSOR FOR NON-DESTRUCTIVE TESTING DEVICES FOR BONES AND TUBES AND METHOD OF MANUFACTURING THE SAME
JPS5886452A (en) Method and device for discriminating, sorting or settling electric conductive substance
JP2001318080A (en) Detection coil and inspecting device using the same
US5777469A (en) Method and apparatus for detecting flaws in conductive material
KR100523686B1 (en) The Nondestructive Testing Apparatus for Wire Rope
US5986452A (en) Apparatus and method for detecting flaws in conductive material
JP4175181B2 (en) Magnetic flux leakage flaw detector
JP5290020B2 (en) Eddy current flaw detection method and eddy current flaw detection sensor
CN211179641U (en) Coil sensor array probe based on alternating current electromagnetic field
US5648720A (en) Apparatus and method for producing a magnetic image of a conductive pattern using eddy currents
Yamada et al. Application of ECT technique for inspection of bare PCB
JPH04221757A (en) Defect detecting device
JP2000310619A (en) Eddy current flaw detector of steel sphere
Touil et al. Simple Giant Magnetoresistance Probe Based Eddy Current System of Defect Characterization for Non-Destructive Testing
JP3140105B2 (en) Electromagnetic induction type inspection equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 14

EXPY Cancellation because of completion of term