JPH07104740B2 - Controller for reactive power compensator - Google Patents

Controller for reactive power compensator

Info

Publication number
JPH07104740B2
JPH07104740B2 JP60107219A JP10721985A JPH07104740B2 JP H07104740 B2 JPH07104740 B2 JP H07104740B2 JP 60107219 A JP60107219 A JP 60107219A JP 10721985 A JP10721985 A JP 10721985A JP H07104740 B2 JPH07104740 B2 JP H07104740B2
Authority
JP
Japan
Prior art keywords
reactive power
circuit
gain
value
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60107219A
Other languages
Japanese (ja)
Other versions
JPS61264417A (en
Inventor
正俊 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP60107219A priority Critical patent/JPH07104740B2/en
Publication of JPS61264417A publication Critical patent/JPS61264417A/en
Publication of JPH07104740B2 publication Critical patent/JPH07104740B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Electrical Variables (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は無効電力補償装置の制御装置に関するもので
ある。
The present invention relates to a control device for a reactive power compensator.

〔従来の技術〕[Conventional technology]

第4図は例えば雑誌「OHM」(1975年1月発行)に示さ
れた従来の静止形無効電力補償装置の制御装置を示す回
路図であり、第4図において、1は交流電源、2は交流
電源1に接続した系統インピーダンス、3は1次側を系
統インピーダンス2に接続した炉用変圧器、4は炉用変
圧器3の2次側に接続したアーク炉、5は系統インピー
ダンス2と炉用変圧器3の接続路とアーク間に接続した
コンデンサである。6はリアクトル、7はリアクトルの
無効電力を制御するサイリスタ装置で、これらリアクト
ル6とサイリスタ装置7を直列にし、前記コンデンサ5
と並列に接続して無効電力補償装置11を構成している。
8は電流変成器、9は電圧変成器、10は制御回路であ
る。
FIG. 4 is a circuit diagram showing a control device of a conventional static var compensator shown in, for example, the magazine “OHM” (issued in January 1975). In FIG. System impedance connected to AC power supply 1, 3 is a furnace transformer whose primary side is connected to system impedance 2, 4 is an arc furnace connected to the secondary side of furnace transformer 3, and 5 is system impedance 2 and furnace It is a capacitor connected between the connection path of the transformer 3 and the arc. 6 is a reactor, 7 is a thyristor device for controlling the reactive power of the reactor. These reactor 6 and thyristor device 7 are connected in series, and the capacitor 5
And a var compensator 11 which is connected in parallel with.
Reference numeral 8 is a current transformer, 9 is a voltage transformer, and 10 is a control circuit.

第5図は上記制御回路10の構成列のブロツク図を示した
もので、順次に接続された電気量演算回路としての無効
電力検出回路12、補償ゲイン設定回路13、サイリスタ点
弧角制御回路14で構成されている。
FIG. 5 shows a block diagram of the configuration of the control circuit 10. The reactive power detection circuit 12, the compensation gain setting circuit 13, the thyristor firing angle control circuit 14 which are sequentially connected as the electric quantity calculation circuit are connected. It is composed of.

次に動作について説明する。アーク炉負荷4に流入する
遅相無効電力QA(以下、QAと略称する)が変動すると、
第4図のA点で下式に従つて電圧変動ΔVAが生じる。
Next, the operation will be described. When the lagging reactive power Q A (hereinafter abbreviated as Q A ) flowing into the arc furnace load 4 changes,
At point A in FIG. 4, a voltage fluctuation ΔV A occurs according to the following equation.

ΔVA=x・QA 但しxは電力系統インピーダンス2のリアクタンス分
(p、u)、 QAはアーク炉負荷に流入する無効電力を示す。
ΔV A = x · Q A where x is the reactance component (p, u) of the power system impedance 2 and Q A is the reactive power flowing into the arc furnace load.

この電圧変動ΔVAを低減するために、コンデンサ5、リ
アクトル6、サイリスタ装置7で構成する無効電力補償
装置11を系統インピーダンス2と炉用変圧器3の1次側
を結ぶ接続路のA点とアースE間に接続し、アーク炉4
に流れる無効電力に比例した補償無効電力−QOを制御し
ている。
In order to reduce this voltage fluctuation ΔV A , the reactive power compensator 11 composed of the capacitor 5, the reactor 6 and the thyristor device 7 is connected to the point A of the connection path connecting the system impedance 2 and the primary side of the reactor transformer 3. Connect between earth E, arc furnace 4
The compensation reactive power −Q O proportional to the reactive power flowing in

この場合、電源側に流れる無効電力QSは、QS=QA−QO
なり、無効電力QSにより生じるA点の電圧変動ΔVAは、 ΔVA=x・QS=x・(QA−QO) で表わされ、無効電力補償装置11により電圧変動ΔVA
低減できることになる。
In this case, the reactive power Q S flowing on the power supply side is Q S = Q A −Q O , and the voltage fluctuation ΔV A at point A caused by the reactive power Q S is ΔV A = x · Q S = x · (Q A− Q O ), and the voltage fluctuation ΔV A can be reduced by the reactive power compensator 11.

そこで、電圧変成器9と電流変成器8により検出された
アーク炉負荷4の電圧Vと電流Iは、第5図に示した制
御回路10の無効電力検出回路12に入力され、アーク炉負
荷4に流入する無効電力QAが検出される。
Therefore, the voltage V and the current I of the arc furnace load 4 detected by the voltage transformer 9 and the current transformer 8 are input to the reactive power detection circuit 12 of the control circuit 10 shown in FIG. Reactive power Q A flowing into is detected.

この検出値QAは次段の補償ゲイン設定回路13へ入力さ
れ、一定ゲインのK倍されてサイリスタ点弧角制御回路
14に入力される。このサイリスタ点弧角制御回路14にお
いては、入力信号K・QAに相当した無効電力を出力する
ためのサイリスタ点弧位相角αを決定し、点弧角αの位
相でゲート点弧指令をサイリスタに与える。この結果、
無効電力補償装置11はK・QAなる無効電力を出力するこ
とになる。
This detected value Q A is input to the compensation gain setting circuit 13 in the next stage, multiplied by a constant gain K times, and then the thyristor firing angle control circuit.
Entered in 14. In the thyristor firing angle control circuit 14, the thyristor firing phase angle α for outputting the reactive power corresponding to the input signal K · Q A is determined, and the gate firing command is issued at the phase of the firing angle α. Give to. As a result,
The reactive power compensator 11 outputs the reactive power of K · Q A.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

従来の無効電力補償装置11の制御回路は以上のように構
成されているので、無効電力補償装置11の出力QOは QO=K・QA で制御されることになり、例えばアーク炉負荷4の無効
電力QAが第6図(a)の実線のように変化した場合、出
力QOは第6図(a)の点線のように制御されることにな
る。
Since the control circuit of the conventional reactive power compensator 11 is configured as described above, the output Q O of the reactive power compensator 11 is controlled by Q O = K · Q A. When the reactive power Q A of No. 4 changes as shown by the solid line in FIG. 6 (a), the output Q O is controlled as shown by the dotted line in FIG. 6 (a).

第4図において、出力QOは固定進相コンデンサ5の無効
電力QCとサイリスタ制御によるリアクトルの遅相無効電
力−QRとの和になるため、出力QOが第6図(a)の点線
のように制御される場合、リアクトルの無効電力QR(以
下、QRと略称する)は第6図(b)の矢印方向に制御さ
れることになり、QRは第6図(d)のような無効電力変
化を辿ることになる。この結果、電源系統側に流出する
無効電力QS(以下、QSと略称する)は、第6図(c)の
ようになり無効電力変動を抑制できる。
In FIG. 4, the output Q O is the sum of the reactive power Q C of the fixed phase advance capacitor 5 and the lagging reactive power −Q R of the reactor by the thyristor control, so that the output Q O of FIG. when controlled as shown by the dotted line, reactor reactive power Q R (hereinafter, referred to as Q R) will be controlled in the direction of the arrow in Figure 6 (b), Q R is FIG. 6 (d ) Will be followed. As a result, the reactive power Q S (hereinafter abbreviated as Q S ) flowing out to the power system side becomes as shown in FIG. 6 (c), and the fluctuation of the reactive power can be suppressed.

しかしながら、QAの小さな領域と領域ではQAが最大
補償容量QC(以下、QCと略称する)以下であるにもかか
わらず、QO=K・QAの大きさに制御されるため、QRを大
きくしておく必要がある。このため、リアクトル6及び
サイリスタ装置7に大きな電流を流すことになり、QA
小さな領域において、リアクトル6及びサイリスタ装置
7の電気損失が大きいという問題点がある。
However, Q A is a small region and the region of Q A maximum compensation capacitor Q C (hereinafter, abbreviated as Q C) despite less, because it is controlled to the magnitude of Q O = K · Q A , Q R needs to be increased. Therefore, a large current flows through the reactor 6 and the thyristor device 7, and there is a problem that the electric loss of the reactor 6 and the thyristor device 7 is large in a region where Q A is small.

また、第6図(a)に示すように、領域及び領域に
おいて、QA<QCであるにもかかわらず、QSは遅相とな
り、力率が低下するという問題点がある。
Further, as shown in FIG. 6 (a), although Q A <Q C in the area and the area, Q S has a delay and the power factor decreases.

この発明は上記のような問題点を解消するためになされ
たもので、アーク炉負荷の軽負荷領域におけるサイリス
タ装置及びリアクトルの損失を軽減すると共に補償後の
力率を向上できる無効電力補償装置の制御装置を得るこ
とを目的とする。
The present invention has been made to solve the above problems, and a reactive power compensator capable of improving the power factor after compensation while reducing the loss of the thyristor device and the reactor in the light load region of the arc furnace load. The purpose is to obtain a control device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る無効電力補償装置の制御装置は、アーク
炉負荷の変動の小さい時に制御回路の制御ゲインを増加
し、変動が大きくなると制御ゲインを元へ戻すようにし
たものである。
The control device of the reactive power compensator according to the present invention increases the control gain of the control circuit when the fluctuation of the arc furnace load is small, and restores the control gain when the fluctuation becomes large.

〔作用〕[Action]

この発明における無効電力補償装置の制御装置は、検出
したアーク炉の無効電力の変動量を演算し、変動量の大
きさに応じて制御ゲインを変えるようにすることによ
り、無効電力変動の小さい領域では制御ゲインを大きく
し、無効電力変動が大きい領域では制御ゲインを元へ戻
すようにする。
The control device of the reactive power compensating device according to the present invention calculates the amount of fluctuation of the detected reactive power of the arc furnace and changes the control gain according to the magnitude of the amount of fluctuation, thereby reducing the reactive power fluctuation region. Then, the control gain is increased, and the control gain is returned to the original value in the region where the reactive power fluctuation is large.

〔実施例〕〔Example〕

以下、この発明の一実施例を前記第5図と同一部分に同
一符号を付した第1図について説明する。第1図におい
て、15は無効電力検出値QAの変化分ΔQA(以下、ΔQA
略称する)を検出する電気量変化分検出回路としてのリ
セツトフイルタ、16はΔQAの絶対値|ΔQA|(以下、|
ΔQA|と略称する)を求めるための絶対値回路、17は|
ΔQA|の平均値ΔQMを求めるための一次遅れ回路、18は
平均値ΔQMと一定値QMとを入力する減算回路、19はゲイ
ン設定回路、20はゲイン設定回路19の出力と一定ゲイン
KOとを入力する加算回路、21は無効電力検出回路12の出
力と加算回路20の出力を入力して、制御ゲインを可変す
るための可変ゲイン回路としての乗算回路でこの乗算回
路21の出力をサイリスタ点弧角制御回路14に入力する構
成である。
An embodiment of the present invention will be described below with reference to FIG. 1 in which the same parts as those in FIG. In FIG. 1, reference numeral 15 is a reset filter as an electric quantity change detection circuit for detecting a change ΔQ A (hereinafter, abbreviated as ΔQ A ) in the reactive power detection value Q A , and 16 is an absolute value of ΔQ A | ΔQ A | (hereinafter, |
Absolute value circuit for obtaining ΔQ A |
A first-order delay circuit for obtaining the average value ΔQ M of ΔQ A |, 18 is a subtraction circuit that inputs the average value ΔQ M and a constant value Q M , 19 is a gain setting circuit, 20 is the output of the gain setting circuit 19, and is constant gain
An addition circuit for inputting K O , 21 is a multiplication circuit as a variable gain circuit for inputting the output of the reactive power detection circuit 12 and the output of the addition circuit 20, and the output of this multiplication circuit 21. Is input to the thyristor firing angle control circuit 14.

次に動作について説明する。第2図,第3図は前記第6
図に示したものと同じ無効電力QAに対する動作を示した
図である。
Next, the operation will be described. 2 and 3 are the same as in FIG.
FIG. 9 is a diagram showing an operation for the same reactive power Q A as shown in the figure.

いま、第3図(a)の実線に示すような第6図(a)と
同じアーク炉負荷4の無効電力QAが生じた場合を考え
る。アーク炉負荷4の無効電力QAは無効電力検出回路12
で演算されて出力される。QAはリセツトフイルタ回路15
に入力され、QAの変化分ΔQAが演算される。ΔQAとして
は第3図(b)に示すように、QAの変動分のみが抽出さ
れた波形となる。ΔQAは次段の絶対値回路16に入力さ
れ、同図(c)に示すように|ΔQA|が演算される。こ
の|ΔQA|は1次遅れ回路17に入力され、同図(d)に
示すように|ΔQA|の平均値ΔQMが求められる。
Now, consider a case where the same reactive power Q A of the arc furnace load 4 as shown in FIG. 6 (a) occurs as shown by the solid line in FIG. 3 (a). The reactive power Q A of the arc furnace load 4 is the reactive power detection circuit 12
Is calculated and output. Q A is the reset filter circuit 15
Is input, the change in Delta] Q A of Q A is calculated. As shown in FIG. 3B, ΔQ A has a waveform in which only the variation of Q A is extracted. ΔQ A is input to the absolute value circuit 16 in the next stage, and | ΔQ A | is calculated as shown in FIG. This | ΔQ A | is input to the first-order delay circuit 17, and the average value ΔQ M of | ΔQ A | is obtained as shown in FIG.

次に減算回路18においては、一定値QKと平均値ΔQMとの
差が求められ、第3図(e)に実線で示すような(QK
ΔQM)が演算される。ここで、一定値QKはΔQAの最大値
にほぼ等しい値に選ばれる。
Then in the subtracting circuit 18 is determined difference between the average value Delta] Q M constant value Q K, in Figure 3 (e), as shown by the solid line (Q K -
ΔQ M ) is calculated. Here, the constant value Q K is chosen to be approximately equal to the maximum value of ΔQ A.

第3図(e)に示すように、QAの変化が大きい時には、
(QK−ΔQM)はほぼ0に近い値になり、QAの変化が小さ
い時には、(QK−ΔQM)はほぼQKに近い値になる。この
(QK−QM)は更に次段のゲイン設定回路19において、一
定ゲインK1倍された後、加算回路20に入力される。加算
回路20においては、一定ゲインK0とゲイン設定回路19の
出力ΔK=K1(QK−ΔQM)との和が演算され、第3図
(f)に示すように{K0+K1(QK−ΔQM)}つまり、
(K0+ΔK)が出力される。ここで、K0は第5図に示し
た従来の制御方式における制御ゲインに選ばれる。
As shown in Fig. 3 (e), when the change in Q A is large,
(Q K −ΔQ M ) becomes a value close to 0, and when the change in Q A is small, (Q K −ΔQ M ) becomes a value close to Q K. This (Q K −Q M ) is further multiplied by a constant gain K 1 in the gain setting circuit 19 in the next stage, and then input to the adder circuit 20. In the adding circuit 20, the sum of the constant gain K 0 and the output ΔK = K 1 (Q K −ΔQ M ) of the gain setting circuit 19 is calculated, and {K 0 + K 1 is obtained as shown in FIG. 3 (f). (Q K −ΔQ M )} That is,
(K 0 + ΔK) is output. Here, K 0 is selected as the control gain in the conventional control method shown in FIG.

上記加算回路20の出力{K0+K1(QK−ΔQM)}は乗算回
路21において、無効電力検出回路12から出力されたQA
乗算され、 {K0+K1(QK−ΔQM)}・QAが出力される。ここで、
{K0+K1(QK−ΔQM)}の値は可変ゲインとして作用
し、第3図(b)に示すようにQAの変化が大きい領域
ではほぼ一定ゲインK0の近傍にありQAの変化の小さい領
域とでは一定ゲインK0より大きな値となる。
The output {K 0 + K 1 (Q K −ΔQ M )} of the adder circuit 20 is multiplied by Q A output from the reactive power detection circuit 12 in a multiplication circuit 21, and {K 0 + K 1 (Q K −ΔQ M M )} ・ Q A is output. here,
The value of {K 0 + K 1 (Q K -ΔQ M)} acts as a variable gain, the area change is large Q A, as shown in FIG. 3 (b) located substantially in the vicinity of the constant gain K 0 Q In a region where the change in A is small, the value is larger than the constant gain K 0 .

第1図のサイリスタ点弧角制御回路14では、{K0+K
1(QK−ΔQM)}・QAに相当したサイリスタ点弧角αを
選択してサイリスタ装置7に点弧信号を与えるように作
用するので、無効電力補償装置11の無効電力QOは QO={K0+K1(QK−QM)}・QA となる。
In the thyristor firing angle control circuit 14 of FIG. 1, {K 0 + K
1 (Q K −ΔQ M )} · Q A The thyristor firing angle α corresponding to Q A is selected and acts to give a firing signal to the thyristor device 7, so the reactive power Q O of the reactive power compensator 11 is Q O = {K 0 + K 1 (Q K −Q M )} · Q A.

この結果、無効電力補償装置11の出力QOは第2図(b)
の実線で示すような波形となり、同図の点線で示した従
来の制御方式の場合に比べるとQAの変化の小さい領域
とではQOは大きな値を示し、最大無効電力補償容量よ
り小さなQAに対してはほぼ完全に補償できるようにな
る。
As a result, the output Q O of the reactive power compensator 11 is shown in FIG. 2 (b).
The waveform becomes as shown by the solid line in Figure 5, and compared with the conventional control method shown by the dotted line in the figure, Q O shows a large value in the region where the change in Q A is small, and Q O smaller than the maximum reactive power compensation capacity. A can be almost completely compensated.

従つて、第2図(c)の実線で示すように、本発明の場
合の制御方式における電源側の無効電力QSは、QAの変動
の小さい領域のとでは同図の点線で示した従来の制
御方式の場合に比べ小さくすることができ、無効電力変
動を小さくすると共に平均力率を向上させることができ
る。
Therefore, as shown by the solid line in FIG. 2 (c), the reactive power Q S on the power source side in the control method of the present invention is shown by the dotted line in the figure in the region where the fluctuation of Q A is small. It can be made smaller than in the case of the conventional control method, the reactive power fluctuation can be reduced, and the average power factor can be improved.

また、第2図(d)の実線で示すように、本発明の制御
装置の場合のリアクトルの無効電力QRは、点線で示した
従来の制御装置の場合のQRに比べ小さくすることができ
るので、前記第4図に示した無効電力補償装置11内のリ
アクトル(6)及びサイリスタ装置7の運転損失を小さ
くすることができることになる。
Further, as shown by the solid line of FIG. 2 (d), the reactive power Q R of the reactor in the case of the control apparatus of the present invention, be reduced compared to Q R in the case of the conventional controller shown in a dotted line Therefore, the operating loss of the reactor (6) and the thyristor device 7 in the reactive power compensator 11 shown in FIG. 4 can be reduced.

なお、上記実施例では無効電力検出値の変動分の大きさ
に応じて、制御ゲインを変化させた場合について示した
が、負荷の電流値や有効電力等の電気量の変化分の大き
さに応じて制御ゲインを変えても良く、上記実施例と同
様の効果を奏する。
In the above embodiment, the control gain is changed according to the amount of change in the reactive power detection value.However, the amount of change in the amount of electricity such as the current value of the load and active power is changed. The control gain may be changed accordingly, and the same effect as that of the above-described embodiment is obtained.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、負荷の電気量の変動
分の大きさに応じて無効電力補償装置の制御ゲインを変
えるようにしたので、補償後の平均力率を向上すること
ができると共に無効電力補償装置の構成要素であるサイ
リスタ装置とリアクトルの運転損失を低減できるという
効果がある。
As described above, according to the present invention, the control gain of the reactive power compensator is changed according to the magnitude of the variation of the electric quantity of the load, so that the average power factor after compensation can be improved. At the same time, there is an effect that the operation loss of the thyristor device and the reactor, which are the components of the reactive power compensator, can be reduced.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の一実施例による無効電力補償装置
の制御装置を示す回路図、第2図と第3図はこの発明の
制御装置の動作を説明する図、第4図は無効電力補償装
置を適用した系統図、第5図は従来の無効電力補償装置
の制御装置を示す回路図、第6図は従来の制御装置の動
作を説明する図である。 8は電流検出手段(電流変成器)、9は電圧検出手段
(電圧変成器)、10は制御回路、11は無効電力補償装
置、12は電気量演算回路(無効電力検出回路)、15は電
気量変化分検出回路(リセツトフイルタ回路)、21は可
変ゲイン回路(乗算回路)。 なお、図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a circuit diagram showing a controller of a reactive power compensator according to an embodiment of the present invention, FIGS. 2 and 3 are diagrams for explaining the operation of the controller of the present invention, and FIG. 4 is a reactive power. FIG. 5 is a system diagram to which a compensator is applied, FIG. 5 is a circuit diagram showing a controller of a conventional reactive power compensator, and FIG. 6 is a diagram for explaining the operation of the conventional controller. 8 is a current detection means (current transformer), 9 is voltage detection means (voltage transformer), 10 is a control circuit, 11 is a reactive power compensator, 12 is an electric quantity calculation circuit (reactive power detection circuit), 15 is electricity Quantity change amount detection circuit (reset filter circuit), 21 is a variable gain circuit (multiplication circuit). In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】変動負荷に供給される電圧と電流から無効
電力を検出する無効電力検出回路と、前記無効電力の変
化分を検出する無効電力変化分検出回路と、前記変化分
の絶対値を求める絶対値回路と、前記絶対値の平均値を
求める一次遅れ回路と、前記平均値から一定値を減算し
た減算値を一定ゲイン倍するゲイン設定回路と、このゲ
イン設定回路の出力に一定ゲインを加算した加算値と前
記無効電力とを入力し該無効電力の変化分の小さい領域
では制御ゲインを大きくし該変化分の大きい領域では制
御ゲインを元に戻す可変ゲイン回路とを備えた無効電力
補償装置の制御装置。
1. A reactive power detection circuit for detecting reactive power from a voltage and a current supplied to a fluctuating load, a reactive power change amount detection circuit for detecting a change amount of the reactive power, and an absolute value of the change amount. An absolute value circuit for obtaining, a first-order delay circuit for obtaining the average value of the absolute values, a gain setting circuit for multiplying a subtraction value obtained by subtracting a constant value from the average value by a constant gain, and a constant gain at the output of the gain setting circuit. Reactive power compensation including a variable gain circuit that inputs the added value and the reactive power, increases the control gain in a region in which the variation of the reactive power is small, and restores the control gain in the region in which the variation in the reactive power is large. The control device of the device.
JP60107219A 1985-05-20 1985-05-20 Controller for reactive power compensator Expired - Lifetime JPH07104740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60107219A JPH07104740B2 (en) 1985-05-20 1985-05-20 Controller for reactive power compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60107219A JPH07104740B2 (en) 1985-05-20 1985-05-20 Controller for reactive power compensator

Publications (2)

Publication Number Publication Date
JPS61264417A JPS61264417A (en) 1986-11-22
JPH07104740B2 true JPH07104740B2 (en) 1995-11-13

Family

ID=14453507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60107219A Expired - Lifetime JPH07104740B2 (en) 1985-05-20 1985-05-20 Controller for reactive power compensator

Country Status (1)

Country Link
JP (1) JPH07104740B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5545048B2 (en) * 2010-06-08 2014-07-09 富士電機株式会社 Control device for reactive power compensator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59165926A (en) * 1983-03-08 1984-09-19 富士電機株式会社 Automatic sensitivity setting circuit of reactive power regulator

Also Published As

Publication number Publication date
JPS61264417A (en) 1986-11-22

Similar Documents

Publication Publication Date Title
JP5062325B2 (en) System stabilization device
EP0239278B1 (en) Capacitor apparatus for reactive power compensation
JP3130694B2 (en) Voltage fluctuation and harmonic suppression device
JPH07104740B2 (en) Controller for reactive power compensator
JP3343711B2 (en) Static var compensator
JPH07104739B2 (en) Controller for reactive power compensator
JPS6399770A (en) Method for controlling circulating current type cycloconverter
JP2003244981A (en) Control device for ac motor
JPH0432621B2 (en)
JPH0731301Y2 (en) Controller for reactive power compensator
JPH0923585A (en) Control of reactive power compensation
JPH07236230A (en) Controller for voltage fluctuation suppresser
JP2581459Y2 (en) Control method of voltage fluctuation suppression device
JP2725538B2 (en) Voltage fluctuation suppression device
JP2792085B2 (en) Control method of reactive power compensator
JPS62118414A (en) Reactive power compensator
JPS6295618A (en) Reactive power compensating device
JPH07212979A (en) Controller of flicker handling equipment
JPH0687631B2 (en) Control Method of Active Filter in Reactive Power Compensation System
JPH07122836B2 (en) Controller for reactive power compensator
JPH0951634A (en) Voltage detection method for self-excited reactive power comprensator
JPH0586566B2 (en)
JPH0642183B2 (en) Coordinated operation control system of reactive power compensator
JPH0628487B2 (en) Control method of reactive power compensator installed in power system
JPH06165385A (en) Power adjuster and controller

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term