JPH07236230A - Controller for voltage fluctuation suppresser - Google Patents

Controller for voltage fluctuation suppresser

Info

Publication number
JPH07236230A
JPH07236230A JP6024657A JP2465794A JPH07236230A JP H07236230 A JPH07236230 A JP H07236230A JP 6024657 A JP6024657 A JP 6024657A JP 2465794 A JP2465794 A JP 2465794A JP H07236230 A JPH07236230 A JP H07236230A
Authority
JP
Japan
Prior art keywords
phase
voltage
fluctuation
reactive power
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6024657A
Other languages
Japanese (ja)
Inventor
Hideki Yamamura
英機 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP6024657A priority Critical patent/JPH07236230A/en
Publication of JPH07236230A publication Critical patent/JPH07236230A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Abstract

PURPOSE:To efficiently compensate for the instantaneous voltage fluctuation of each phase and three-phase imbalance voltage fluctuation caused by the three-phase imbalance voltage of receiving power and the fluctuation in reactive power consumption of a load. CONSTITUTION:In the DELTAV detection control for a thyristor control reactor(TCR) where a bias voltage having a waiting operation point at about half of the maximum output of the TCR is added to the voltage fluctuation DELTAV of a system detected for each phase, the bias voltage is shifted by the imbalance component of each phase detected by comparing each phase voltage VU, VV, VW detected as a DC voltage with a three-phase average voltage V3 represented as a DC voltage thus suppressing the three-phase imbalance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、3相電力系統の電圧
変動を抑制する目的で配置する無効電力補償装置(以下
SVCという。)の制御装置に関し、特に各相の電圧変
動の抑制と同時に、3相不平衡電圧変動の抑制を行なう
制御装置を提供することを目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a reactive power compensator (hereinafter referred to as SVC) arranged for the purpose of suppressing voltage fluctuations in a three-phase power system, and particularly, at the same time as suppressing voltage fluctuations in each phase. An object of the present invention is to provide a control device that suppresses three-phase unbalanced voltage fluctuations.

【0002】[0002]

【従来の技術】SVCは、無効電力ΔQSVCの増減補償
によって、電力系統に設置される電力変換器などの負荷
の無効電力変動ΔQLによる電圧変動ΔV(≒XS・ΔQ
L)を抑制する〔但し、XSは電源側インピーダンス〕。
2. Description of the Related Art SVC is a voltage fluctuation ΔV (≈X S · ΔQ due to a reactive power fluctuation ΔQ L of a load such as a power converter installed in a power system by compensating an increase / decrease of reactive power ΔQ SVC.
L ) is suppressed (however, X S is the impedance on the power supply side).

【0003】このSVCは、上記電圧変動の抑制を各相
毎に行なう他、系統電圧の3相不平衡の抑制にも利用さ
れる。
This SVC is used not only for suppressing the above-mentioned voltage fluctuation for each phase, but also for suppressing three-phase unbalance of the system voltage.

【0004】この従来例である特開昭59−18512
4号公報の電圧変動抑制装置は、各相毎に検出した電圧
を、固定基準値Vrefと比較して、各相の電圧変動ΔV
を検出し、これをSVCが直接に補償の対象とする線間
電圧の変動成分に変換した後、SVCを制御している。
This prior art example is Japanese Patent Laid-Open No. 59-18512.
The voltage fluctuation suppressing device disclosed in Japanese Patent No. 4 compares the voltage detected for each phase with a fixed reference value V ref and compares the voltage fluctuation ΔV for each phase.
Is detected, and the SVC is directly converted into a fluctuation component of the line voltage to be compensated, and then the SVC is controlled.

【0005】上記従来方式は、検出した相電圧を共通の
固定基準値Vrefと比較し、その差分を0とするように
補償を行うので、各相の電圧変動の抑制とともに、3相
電圧不平衡をも抑制することになる。
In the above-mentioned conventional method, the detected phase voltage is compared with a common fixed reference value V ref, and compensation is performed so that the difference becomes 0. Therefore, the voltage fluctuation of each phase is suppressed and the three-phase voltage is not applied. Equilibrium will also be suppressed.

【0006】[0006]

【発明が解決しようとする課題】SVCの設備容量Q
SVCは、経済上の理由から予定した電圧変動ΔVの範囲
(例えば系統の定格電圧の10%)を補償し得る大きさ
に定められる。そして、所定の待機動作点を中心に、電
圧の低下に対して出力を絞り込み、電圧上昇に対して出
力を増加させるという増減制御によって、電圧変動を抑
制する。したがって、待機動作点を約1/2QSVCに調
整して、補償動作を増減いずれの方向にも均等に行なえ
るようにすることが、設備を有効利用し性能を向上する
ために好ましい。
[Problems to be Solved by the Invention] Installed capacity Q of SVC
The SVC is set to a size capable of compensating for a predetermined range of the voltage fluctuation ΔV (for example, 10% of the rated voltage of the system) for economic reasons. Then, the voltage fluctuation is suppressed by the increase / decrease control in which the output is narrowed down with respect to the voltage decrease and the output is increased with respect to the voltage increase around the predetermined standby operation point. Therefore, it is preferable to adjust the standby operation point to about ½Q SVC so that the compensation operation can be performed uniformly in either the increase or decrease direction in order to effectively use the equipment and improve the performance.

【0007】しかし、上記従来方式は、検出した系統電
圧を固定基準値Vrefと比較し、その差分によってSV
Cの出力を決定しているため、待機動作点が系統の状態
によって変動し、不明確になる問題があった。例えば、
受電トランスのタップ位置及び受電電圧の変動によっ
て、系統電圧の長周期成分が変動すると、SVCの待機
動作点が上限又は下限に移動することがあり、この場合
はΔVに応じて出力を増減させるというSVC本来の補
償動作ができないばかりか、3相不平衡電圧変動をさら
に増大させることにもなる。
However, in the above-mentioned conventional method, the detected system voltage is compared with a fixed reference value V ref, and SV is determined by the difference between them.
Since the output of C is determined, there is a problem that the standby operating point varies depending on the state of the system and becomes unclear. For example,
If the long-cycle component of the system voltage fluctuates due to fluctuations in the tap position of the power receiving transformer and the power receiving voltage, the standby operating point of the SVC may move to the upper or lower limit. In this case, the output is increased or decreased according to ΔV. Not only the original compensation operation of the SVC cannot be performed, but also the three-phase unbalanced voltage fluctuation is further increased.

【0008】また、電圧変動抑制装置に要求される性能
を考えると、例えば、重粒子加速電源などの負荷運転に
伴う電圧変動を補償する場合においては、3相不平衡分
も含めて、ΔV≒10%変動をΔVε≒1%程度まで抑
制する必要がある。ここで、3相不平衡は受電電源のわ
ずかな3相不平衡電圧が3相負荷の定電流制御により増
長された結果であり、ΔV3≒数%不平衡が予想され、
これをΔV3ε≒0.数%に補償する必要がある。
Considering the performance required of the voltage fluctuation suppressing device, for example, in the case of compensating for voltage fluctuations due to load operation of a heavy particle accelerating power source, ΔV≈, including the three-phase imbalance. It is necessary to suppress the 10% fluctuation to about ΔVε≈1%. Here, the three-phase unbalance is the result of a slight increase in the three-phase unbalanced voltage of the power source due to the constant current control of the three-phase load, and ΔV 3 ≈ several% unbalance is expected,
It is necessary to compensate for this by ΔV 3 ε≈0.

【0009】このような補償性能を得るためには、各相
の電圧変動及び3相電圧不平衡を、なるべく瞬時に補償
し、応答遅れによる制御誤差を小さくする必要がある。
In order to obtain such compensation performance, it is necessary to compensate for voltage fluctuations in each phase and three-phase voltage imbalance as instantaneously as possible to reduce the control error due to response delay.

【0010】そこで、この発明は、待機動作点を適正化
するとともに、3相不平衡を解消しながら、各相の瞬時
電圧変動を高速な応答速度をもって抑制できるSVCの
制御方式を提供することを目的とする。
Therefore, the present invention provides a control system of SVC capable of suppressing the instantaneous voltage fluctuation of each phase with a high response speed while eliminating the three-phase imbalance while optimizing the standby operating point. To aim.

【0011】[0011]

【課題を解決するための手段】この発明は、3相電力系
統の電圧変動を、サイリスタ制御リアクトルによる無効
電力の増減補償によって抑制する電圧変動抑制装置とし
て、次の2方式を提案する。
The present invention proposes the following two systems as a voltage fluctuation suppressing device for suppressing voltage fluctuations in a three-phase power system by compensating the increase / decrease of reactive power by a thyristor control reactor.

【0012】第1の制御方式は、系統電圧を検出してS
VCを制御するもので、各相毎に検出した電圧変動ΔV
に、サイリスタ制御リアクトルの最大出力の約1/2を
待機動作点とするバイアス電圧を加算して、サイリスタ
制御リアクトルの各相の制御信号VCを作成する制御信
号発生回路と、直流化して検出した各相の電圧VU
V,VWを、直流化した3相平均電圧V3と比較し、そ
の差分によって、3相電圧不平衡を解消するように上記
各相のバイアス電圧をシフトさせる不平衡抑制回路とを
具備したことを特徴とする。
The first control method is to detect the system voltage and
It controls VC, and voltage fluctuation ΔV detected for each phase
To the control signal generating circuit for adding a bias voltage having about 1/2 of the maximum output of the thyristor control reactor as a standby operation point to generate a control signal V C for each phase of the thyristor control reactor, and converting it to a direct current for detection. Voltage V U of each phase
An imbalance suppression circuit that compares V V and V W with a DC-converted three-phase average voltage V 3 and shifts the bias voltage of each phase so as to eliminate the three-phase voltage imbalance by the difference. It is characterized by having done.

【0013】第2の制御方式は、負荷の無効電力QL
検出してSVCを制御するもので、各相毎に検出した負
荷の無効電力変動ΔQに、待機動作点を決定するバイア
ス電圧を加算して、サイリスタ制御リアクトルの各相の
制御信号VCを作成する制御信号発生回路と、直流化し
て検出した各相の負荷の無効電力QLU,QLV,QLWを、
直流化した3相平均の無効電力Q3と比較し、その差分
によって、3相の無効電力不平衡を解消するように上記
各相のバイアス電圧をシフトさせる不平衡抑制回路とを
具備したことを特徴とする。
[0013] The second control method is for controlling the SVC detects the reactive power Q L of the load, the reactive power fluctuation ΔQ of the load detected for each phase, a bias voltage that determines the standby operating point A control signal generation circuit that adds up the control signal V C of each phase of the thyristor control reactor and the reactive power Q LU , Q LV , and QL W of the load of each phase detected by converting it to DC,
An imbalance suppression circuit that compares the reactive power Q 3 of the averaged three-phase DC and shifts the bias voltage of each phase so as to eliminate the reactive power imbalance of the three phases by the difference. Characterize.

【0014】[0014]

【作用】上記第1の制御方式は、制御信号発生回路にお
いて、各相毎に検出した電圧変動ΔVで、SVC出力を
所定の待機動作点から増減制御して、電圧の瞬時変圧を
抑制する。
In the first control method, the SVC output is controlled to increase or decrease from a predetermined standby operation point by the voltage fluctuation ΔV detected for each phase in the control signal generating circuit to suppress the instantaneous voltage transformation.

【0015】この電圧変動ΔVの検出は、直流化した各
相電圧を比例積分(PI)しながら、その出力の長周期
成分を負帰還除去することによって、高速に行なえる。
また、不平衡抑制回路は、直流検出した各相の電圧を3
相平均電圧V3と比較して各相の不平衡電圧を検出し、
前記待機動作点を、SVCの最大出力の約1/2から、
この不平衡電圧分だけシフトさせることによって、電圧
不平衡を抑制する。この不平衡電圧検出に用いる3相平
均電圧は、各相の電圧を2乗したものをアナログ加算器
で瞬時加算して得ることにより、この応答遅れをなくし
不平衡抑制を精度高く行なえる。
This voltage fluctuation ΔV can be detected at high speed by removing the long-cycle component of its output by negative feedback while proportionally integrating (PI) the DC-converted phase voltages.
In addition, the unbalance suppression circuit reduces the DC voltage of each phase to 3
The unbalanced voltage of each phase is detected by comparing with the phase average voltage V 3 .
From the half of the maximum output of SVC, the standby operating point
By shifting by this unbalanced voltage, the voltage unbalance is suppressed. The three-phase average voltage used for detecting the unbalanced voltage can be obtained by instantaneously adding the squared voltages of the respective phases with an analog adder, thereby eliminating the response delay and accurately controlling the unbalanced voltage.

【0016】また上記第2の制御方式は、電圧変動の原
因となる負荷の無効電力を検出してSVCを制御するも
ので、検出対象が異なるだけで原理的には第1の制御方
式と同様である。第2の制御方式は、フィードフォワー
ド制御となり、第1の方式に比べ高速応答が得られ、補
償性能の向上が期待できる。
The second control method controls the SVC by detecting the reactive power of the load that causes the voltage fluctuation. In principle, it is the same as the first control method except that the detection target is different. Is. The second control method is feed-forward control, a faster response is obtained compared to the first method, and improvement in compensation performance can be expected.

【0017】[0017]

【実施例】図1は、系統電圧VU,VV,VWを検出して
SVCの制御を行なう本発明の第1の制御方式を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a first control system of the present invention for detecting system voltages V U , V V and V W to control SVC.

【0018】図1の3相電力系統において、1は系統母
線で、変電所電源ESに電源側インピーダンスXSを通し
てつながれ電力変換器などの3相負荷2に給電してい
る。この系統母線1には、電圧変動を抑制するSVCが
設置される。
[0018] In 3-phase power system of Figure 1, 1 denotes a system bus, connected to the substation power E S through the power side impedance X S are powering the three-phase load 2 such as the power converter. An SVC that suppresses voltage fluctuations is installed on the system bus 1.

【0019】SVCは、サイリスタ制御リアクトル(以
下TCRという。)とフィルタ(以下FLという。)を
系統母線1に並列接続したもので、TCRは、高インピ
ーダンス変圧器3と逆並列接続サイリスタ4を直列接続
して構成される。なお、この高インピーダンス変圧器3
は、通常の変圧器とリアクトルで構成してもよい。この
TCR及びFLは、各相毎に設置される。
The SVC is a system in which a thyristor control reactor (hereinafter referred to as TCR) and a filter (hereinafter referred to as FL) are connected in parallel to a system bus 1. In the TCR, a high impedance transformer 3 and an antiparallel connection thyristor 4 are connected in series. Connected and configured. In addition, this high impedance transformer 3
May consist of a conventional transformer and reactor. The TCR and FL are installed for each phase.

【0020】このSVCの制御装置5は、各相の電圧を
直流検出する直流化回路6と、3相平均電圧を算出する
平均電圧検出器7と、各相毎にSVCの制御信号VC
作成する制御信号発生回路8U,8V,8Wと、各相の不
平衡電圧を検出し、これに応じて制御信号VCのバイア
ス電圧をシフトさせる不平衡制御回路9と、制御信号V
Cに応じてTCRのゲートパルスを発生する位相制御回
路10U,10V,10Wとから構成される。これらの回
路は、共用される平均電圧検出器7を除き、各相とも同
一構成である。
The SVC control device 5 includes a DC conversion circuit 6 for DC-detecting the voltage of each phase, an average voltage detector 7 for calculating a three-phase average voltage, and an SVC control signal V C for each phase. The control signal generation circuits 8 U , 8 V , and 8 W to be created, and the unbalanced control circuit 9 that detects the unbalanced voltage of each phase and shifts the bias voltage of the control signal V C accordingly, and the control signal V.
It is composed of phase control circuits 10 U , 10 V and 10 W for generating a gate pulse of TCR according to C. These circuits have the same configuration for each phase except the shared average voltage detector 7.

【0021】まず直流化回路6について説明する。11
は2乗検波器で、電圧変成器PTで取り出した各相の電
圧VU,VV,VWを2乗して直流化を行なう。12はバ
ンドリジェクトフィルタ(以下BRFという。)で、2
乗演算によって生じたリップル分を除去する。
First, the DC conversion circuit 6 will be described. 11
Is a square-law detector, which squares the voltages V U , V V , and V W of each phase extracted by the voltage transformer PT to convert the voltage into DC. Reference numeral 12 is a band reject filter (hereinafter referred to as BRF).
The ripple component generated by the multiplication operation is removed.

【0022】この直流化回路6における、2乗検波器1
1およびBRF12を用いた相電圧の直流検出の原理に
ついて説明する。
The square wave detector 1 in the DC conversion circuit 6
The principle of DC voltage detection of the phase voltage using 1 and BRF 12 will be described.

【数1】 となる。[Equation 1] Becomes

【0023】通常、系統電圧VSは、第3高調波、第5
高調波等で波形歪みが生じているので、実際の(1) 式
は、以下のように高調波成分を含有したものとなる。 V2 S=V2 L(cos2ωt+1)+VL・VN・{cos(ωN+ω)t +cos(ωN−ω)t}+V2 N・cos(2ωnt+1) ………(2) VL>>VNであるので、(2) 式中右辺3項は≒0とな
る。
Normally, the system voltage V S is the third harmonic and the fifth harmonic.
Since waveform distortion occurs due to harmonics, etc., the actual equation (1) contains harmonic components as follows. V 2 S = V 2 L ( cos2ωt + 1) + V L · V N · {cos (ω N + ω) t + cos (ω N -ω) t} + V 2 N · cos (2ωnt + 1) ......... (2) V L> since in> V N, a (2) wherein the right side third term ≒ 0.

【0024】そこで、1項、2項のリップル分の除去を
考慮すれば良く、リップル除去に
Therefore, it suffices to consider the removal of the ripple components of the first and second terms.

【数2】 のTwinT回路(BRF)12を使用する。[Equation 2] The TwinT circuit (BRF) 12 of is used.

【0025】このBRFは、ハード回路定数によりThis BRF depends on the hard circuit constant.

【数3】 と近似できるものである。[Equation 3] Can be approximated.

【0026】すなわち、(2) 式中右辺1項に対しては、
ωN=2π・fNのBRFを、2項に対しては、ωN=4
π・fNのBRFを2乗検波器11に縦続接続して、各
成分を個々に除去させる。
That is, with respect to the first term on the right side of the equation (2),
BRF of ω N = 2π · f N is ω N = 4 for 2 terms.
The BRF of π · f N is cascade-connected to the square wave detector 11 to individually remove each component.

【0027】この結果、V2 Lが求められ、開平の演算を
することにより、系統電圧VSの直流成分VLを取出すこ
とができる。但し、ΔV変化分のみを検出して行なう増
減補償では、検出値の線形性の要求度が小さいので、図
示例では開平器は省略している。
As a result, V 2 L is obtained, and the DC component V L of the system voltage V S can be taken out by performing square root calculation. However, in the increase / decrease compensation performed by detecting only the ΔV change amount, the linearity of the detected value is small, and therefore the square root breaker is omitted in the illustrated example.

【0028】次に平均電圧検出器7について説明する。
平均電圧検出器7は、前記2乗検波器11で作成した各
相電圧の2乗値を3相一括して加算する加算器13と、
所定の係数を掛けるとともにリップル分を除去するロー
パスフィルタ(LPF)14とから構成されるもので、
その動作原理は次のようになる。
Next, the average voltage detector 7 will be described.
The average voltage detector 7 includes an adder 13 that collectively adds the squared values of the phase voltages created by the square detector 11 in three phases,
And a low pass filter (LPF) 14 for multiplying a predetermined coefficient and removing a ripple component,
The operating principle is as follows.

【0029】[0029]

【数4】 [Equation 4]

【0030】3相加算器13で、これら3相分の2乗値
を一括加算すると、三角関数で表される第2項の総和は
0となり、加算値(VTA2は、
When the squared values for these three phases are collectively added by the three-phase adder 13, the sum of the second term represented by the trigonometric function becomes 0, and the added value (V TA ) 2 becomes

【数5】 従って、加算のゲインを1/3とし、開閉器にて開平す
れば、3相平均電圧VL3が直流信号として求められるこ
とになる。
[Equation 5] Therefore, if the addition gain is set to ⅓ and the switch is used for square root extraction, the three-phase average voltage V L3 is obtained as a DC signal.

【0031】但し、受電電圧の不平衡及び検出系誤差等
により、リップルの発生が予想されるので、LPF20
でこれを除去する。
However, since the ripple is expected to occur due to the unbalance of the received voltage and the error of the detection system, the LPF 20
To remove this.

【0032】例えば、本発明の解決すべき課題として、
先に述べた具体的数値例〔約10%の6倍リップルを、
1/100に低減する目標〕の対策を考える。商用周波
数f a=50HZとすると、fr=50×6=300HZ
リップル率≒10%〔2sin(θ+π/3)〕であ
る。
For example, as a problem to be solved by the present invention,
The concrete numerical example mentioned above [6 times ripple of about 10%,
Target to reduce to 1/100]. Commercial frequency
Number f a= 50HZThen, fr= 50 × 6 = 300HZ,
Ripple rate ≈ 10% [2 sin (θ + π / 3)]
It

【0033】このリップル率≒10%を1/100(−
40dB)にするには、LPFのfCは、fC=300H
Z/100=3HZから、T3=1/(2πfC)≒50m
sとする。また、加算のゲインを1/3にする必要があ
るため、LPFの伝達関数は〔−1/3/(1+S
3)〕とする。なお、上述した開平演算は、図示例で
は直流化回路6の処理に対応させるため、省略してい
る。
This ripple rate ≈ 10% is 1/100 (-
40 C ), the LPC f C is f C = 300H
From Z / 100 = 3H Z , T 3 = 1 / (2πf C ) ≈50 m
Let s. Since the addition gain needs to be reduced to 1/3, the transfer function of the LPF is [-1 / 3 / (1 + S
T 3 )]. The square root calculation described above is omitted because it corresponds to the processing of the DC circuit 6 in the illustrated example.

【0034】次に制御信号発生回路8U,8V,8Wにつ
いて説明する。制御信号発生回路8U,8V,8Wは、比
例積分回路15、積分回路16、及び減算器17によっ
て構成される電圧変動検出器18と、この検出器18の
出力にSVCの待機動作点を決定するバイアス電圧を加
算する加算器19及び集合器20から構成される。
Next, the control signal generating circuits 8 U , 8 V and 8 W will be described. The control signal generation circuits 8 U , 8 V , and 8 W are a voltage fluctuation detector 18 composed of a proportional integration circuit 15, an integration circuit 16, and a subtractor 17, and an SVC standby operating point at the output of the detector 18. It is composed of an adder 19 and an aggregator 20 that add a bias voltage that determines

【0035】上記電圧変動検出器18の出力は、直流化
信号を伝達関数K2/(1+ST2)で表わされる比例積
分回路15に通して得られる比例積分(PI)出力であ
るが、この出力を伝達関数(−1/ST3)で表される
積分回路16によって通して取り出した長周期成分を、
減算器17で負帰還することによって、完全積分器の構
成となり、直流化信号の変動分ΔVのみを定常偏差0
で、高速に取り出すことができる。
The output of the voltage fluctuation detector 18 is a proportional integral (PI) output obtained by passing the direct current signal through a proportional integral circuit 15 represented by a transfer function K 2 / (1 + ST 2 ). By the integration circuit 16 represented by the transfer function (−1 / ST 3 )
By performing negative feedback in the subtractor 17, a complete integrator configuration is obtained, and only the fluctuation component ΔV of the DC signal is subjected to the steady deviation 0.
Therefore, it can be taken out at high speed.

【0036】次に、各相の不平衡電圧を検出し、これに
応じて制御信号VCのバイアス電圧をシフトさせる不平
衡制御回路9について説明する。この回路9は、加算器
21、比例積分回路22、基準電圧発生器23、加算器
24、及び係数器25から構成される。
Next, the unbalanced control circuit 9 for detecting the unbalanced voltage of each phase and shifting the bias voltage of the control signal V C according to the detected unbalanced voltage will be described. The circuit 9 includes an adder 21, a proportional integration circuit 22, a reference voltage generator 23, an adder 24, and a coefficient unit 25.

【0037】加算器21は、自相の直流化回路6の電圧
検出値VU,VV,VWと上記平均電圧検出器18の出力
3(−の反転出力)とを加算して、各相の不平衡電圧
ΔV3を検出する。
The adder 21 adds the voltage detection values V U , V V and V W of the DC conversion circuit 6 of its own phase and the output V 3 (the inverted output of −) of the average voltage detector 18, The unbalanced voltage ΔV 3 of each phase is detected.

【0038】伝達関数K4/(1+ST4)で表される比
例積分回路22は、不平衡電圧ΔV3の検出応答速度
を、各相の電圧変動ΔVの検出応答速度と一致させる
〔ST4=ST2とする〕とともに、係数K4によって不
平衡抑制の感度を調整する。
The proportional-integral circuit 22 represented by the transfer function K 4 / (1 + ST 4 ) matches the detection response speed of the unbalanced voltage ΔV 3 with the detection response speed of the voltage fluctuation ΔV of each phase [ST 4 = with the ST 2], to adjust the sensitivity of the unbalanced suppressed by factor K 4.

【0039】加算器24は、比例積分回路22の出力
に、基準電圧発生器23の出力するSVCの最大出力Q
SVCに相当する基準電圧を加算する。
The adder 24 outputs the maximum output Q of the SVC output from the reference voltage generator 23 to the output of the proportional-plus-integral circuit 22.
Add the reference voltage corresponding to SVC .

【0040】係数器25は、加算器24の出力を1/2
倍することにより、各相毎のバイアス電圧を、基準とな
るSVCの最大出力の約1/2相当の電圧から、各相の
不平衡分を解消するだけシフトした値とし、制御信号発
生回路8U,8V,8Wの加算器19に出力する。
The coefficient unit 25 halves the output of the adder 24.
By doubling, the bias voltage for each phase is set to a value shifted from the voltage corresponding to about 1/2 of the maximum output of the SVC, which is the reference, by a value that eliminates the unbalanced component of each phase, and the control signal generation circuit 8 Output to the adder 19 for U , 8 V , and 8 W.

【0041】位相制御回路10U,10V,10Wは、上
記制御信号VCと電源同期回路26で作成したノコギリ
波状の電源周期信号VPLLと比較し、商用周波の各半波
期間毎に、その交差タイミングでTCRのゲートパルス
を発生する。制御信号VC、点弧角β、及びTCR電流
TCRは、図1中右下部分に図示したような関係とな
る。制御信号VCが最小の0Vのとき点弧角βは最小
で、1制御サイクルの最も早い時期に点弧を開始して、
TCR電流ITCRを最大、すなわち各相に供給する無効
電力QTCRを最大とし、制御信号VCが増加するにつれて
点弧角βを遅らせ、無効電力QTCRを減少させる。
The phase control circuits 10 U , 10 V and 10 W are compared with the control signal V C and the sawtooth wave power supply cycle signal V PLL generated by the power supply synchronizing circuit 26, and are compared for each half-wave period of the commercial frequency. , TCR gate pulse is generated at the crossing timing. The control signal V C , the firing angle β, and the TCR current I TCR have the relationship shown in the lower right part of FIG. When the control signal V C is 0V which is the minimum, the ignition angle β is the minimum, and the ignition is started in the earliest one control cycle,
The TCR current I TCR is maximized, that is, the reactive power Q TCR supplied to each phase is maximized, the firing angle β is delayed and the reactive power Q TCR is decreased as the control signal V C increases.

【0042】この補償動作は、系統電圧VLの瞬時電圧
変動ΔVを、待機動作点1/2QSVCからの無効電力の
出力変化ΔQSVCによって打ち消すものである(ΔV−
S・ΔQTCR≒0)。
This compensation operation cancels the instantaneous voltage fluctuation ΔV of the system voltage V L by the output change ΔQ SVC of the reactive power from the standby operation point 1 / 2Q SVC (ΔV-
X S · ΔQ TCR ≈ 0).

【0043】すなわち、3相平衡時はΔV3=0である
ので、SVCの各相の待機動作点は1/2ΔQSVCとな
り、SVCはこの位置を中心に出力が増減制御され、各
相の瞬時電圧変動ΔVを抑制する。
That is, since ΔV 3 = 0 at the time of three -phase equilibrium, the standby operation point of each phase of the SVC is 1 / 2ΔQ SVC , and the output of the SVC is controlled to increase or decrease around this position, and the instantaneous value of each phase is increased. The voltage fluctuation ΔV is suppressed.

【0044】3相不平衡になると、各相毎に検出された
不平衡電圧ΔV3によって、各相の待機動作点は1/2
(ΔSVC±ΔV3)に自動的にシフトされ、このシフ
ト量による無効電力ΔQ3の補償により、不平衡を抑制
して、系統電圧を3相平衡にしながら、瞬時電圧変動の
抑制をも行なう。
When three-phase unbalance occurs, the standby operating point of each phase becomes 1/2 due to the unbalance voltage ΔV 3 detected for each phase.
It is automatically shifted to (ΔSVC ± ΔV 3 ), and by compensating the reactive power ΔQ 3 by this shift amount, unbalance is suppressed and the instantaneous voltage fluctuation is also suppressed while making the system voltage three-phase balanced.

【0045】次に、電圧変動の抑制応答時間を検討す
る。上記実施例で、瞬時電圧変動ΔVの抑制を行なうΔ
V検出制御の性能は、系統の電圧変動(交流)をいかに
高速・正確にSVC制御信号(リップルのない直流信
号)に変換するかによって決まる。これを行なう直流化
回路6の遅れ要素は、2乗検波器11の出力中の2ωt
成分を除去するBRF12であるが、その応答時間は5
ms程度にでき、実用上十分なものとなっている。
Next, the suppression response time of voltage fluctuation will be examined. In the above-mentioned embodiment, Δ that suppresses the instantaneous voltage fluctuation ΔV
The performance of V detection control depends on how quickly and accurately the voltage fluctuation (AC) of the system is converted into an SVC control signal (DC signal without ripple). The delay element of the DC conversion circuit 6 that performs this is 2ωt in the output of the square-law detector 11.
BRF12, which removes components, has a response time of 5
It can be about ms, which is sufficient for practical use.

【0046】この直流化回路6を採用した場合、制御信
号発生回路8U,8V,8Wの自動制御ループ定数は、5
0HZベースで、以下の値にできる。
When this DC conversion circuit 6 is adopted, the automatic control loop constant of the control signal generating circuits 8 U , 8 V and 8 W is 5
In 0H Z basis, can the following values.

【0047】 ループゲインGLW)=ΔV・K2……1倍 ループ時定数τL≒ST2……(半サイクル/10ms) リファレンス時定数性τref≒ST3……(数サイクル/
50ms)である。
Loop gain G L ( W ) = ΔV · K 2 …… 1 time Loop time constant τ L ≈ST 2 …… (half cycle / 10 ms) Reference time constant τ ref ≈ST 3 …… (several cycles /
50 ms).

【0048】また、平均電圧検出器7は、2乗検波出力
を瞬時に交流加算するので、この検出応答時間は原理的
には0となる。しかし、実系統では受電点の3相不平衡
及び各相の電圧検出系誤差を考慮する必要があり、商用
電源の6倍リップル(10%程度)を除去するLPF1
4を付加している。このLPF14の応答時間は約50
msであり、不平衡電圧の検出応答時間として十分高速
である。
Further, since the average voltage detector 7 instantaneously adds the squared detection outputs by alternating current, the detection response time becomes 0 in principle. However, in the actual system, it is necessary to consider the three-phase unbalance at the power receiving point and the voltage detection system error of each phase, and the LPF1 that removes the 6 times ripple (about 10%) of the commercial power supply
4 is added. The response time of this LPF14 is about 50
ms, which is sufficiently fast as the detection response time of the unbalanced voltage.

【0049】次に、各相の負荷の無効電力QLU,QLV
LWを検出し、Q制御により、各相の瞬時電圧変動ΔV
と不平衡電圧ΔV3を抑制する本発明の第2の制御方式
を説明する。
Next, the reactive powers Q LU , Q LV of the loads of each phase,
QLW is detected and the Q control controls the instantaneous voltage fluctuation ΔV of each phase.
A second control method of the present invention for suppressing the unbalanced voltage ΔV 3 will be described.

【0050】この場合の構成例は図2に示すようにな
る。この回路は、系統電圧VLの検出に代え、電圧変成
器PTで検出した各相の系統電圧VU,VV,VWと、電
流変成器CTで検出した各相の負荷電流ILU,ILV,I
LWから、無効電力検出器27によって、各相の負荷の無
効電力QLU,QLV,QLWを算出し、これから各相の瞬時
無効電力変動ΔQLと無効電力の不平衡ΔQ3を検出す
る。各相の瞬時負荷変動ΔQLU,ΔQLV,ΔQLWは、B
RF12でリップル分を取り除いて得た無効電力の直流
検出値に対し、その長周期成分を積分回路28で取り出
し、減算器29で減算することによって得られる。系統
電圧の3相不平衡ΔV3は、受電電源のわずかな3相不
平衡電圧が3相負荷の定電流制御により増長された結果
であるので、無効電力の不平衡分ΔQ3を検出すること
により、系統電圧の3相不平衡ΔV3の抑制が可能にな
る。図2において、図1と同一符号を付した他の部分
は、同等物の使用を表す。
A configuration example in this case is as shown in FIG. In this circuit, instead of detecting the system voltage V L , the system voltages V U , V V , and V W of each phase detected by the voltage transformer PT and the load currents I LU of each phase detected by the current transformer CT, I LV , I
From LW, by reactive power detector 27, the reactive power Q LU of each phase of the load, and calculates the Q LV, Q LW, now detects the instantaneous reactive power fluctuation Delta] Q L and reactive power imbalance Delta] Q 3 of each phase . The instantaneous load fluctuations ΔQ LU , ΔQ LV , and ΔQ LW of each phase are B
It is obtained by extracting the long-period component of the DC detection value of the reactive power obtained by removing the ripple component at RF12 by the integrating circuit 28 and subtracting it by the subtracter 29. The 3-phase unbalanced ΔV 3 of the system voltage is the result of the slight 3-phase unbalanced voltage of the power receiving source being increased by the constant current control of the 3-phase load, so the unbalanced component ΔQ 3 of the reactive power should be detected. This makes it possible to suppress the three-phase unbalance ΔV 3 of the system voltage. In FIG. 2, the other parts denoted by the same reference numerals as those in FIG. 1 represent the use of equivalent products.

【0051】図2の構成は、瞬時電圧変動ΔVの抑制と
3相不平衡の抑制を、その原因となる負荷の瞬時無効電
力変動ΔQ及び無効電力不平衡分ΔQ3の検出によって
フィードフォワード制御するので、ΔV検出制御のよう
な応答遅れがなく、性能向上が期待できる。なお、3相
不平衡の抑制については、図1に示す直流検出器6、平
均電圧検出器7を用い、系統電圧VLのみからバイアス
電圧のシフト量を決定することも可能である。
In the configuration of FIG. 2, the suppression of the instantaneous voltage fluctuation ΔV and the suppression of the three-phase imbalance are feedforward-controlled by detecting the instantaneous reactive power fluctuation ΔQ of the load and the reactive power imbalance ΔQ 3 which cause the suppression. Therefore, there is no response delay as in the ΔV detection control, and improvement in performance can be expected. To suppress the three-phase imbalance, it is possible to determine the shift amount of the bias voltage only from the system voltage V L using the DC detector 6 and the average voltage detector 7 shown in FIG.

【0052】[0052]

【発明の効果】本発明の第1の発明は、SVC各相の待
機動作点を3相不平衡電圧に追従させたこと、及び各相
のΔV補償量を検出する電圧変動検出器18を完全積分
器構成としたことから、受電電源の長周期変動及び3相
不平衡があっても、SVCは制御動作領域内で効率良
く、ΔV補償することができる。本方式によると、各相
ΔV変動は1サイクル以下の応答、3相不平衡補償は数
サイクルの応答が実現できる。
According to the first aspect of the present invention, the standby operation point of each SVC phase is made to follow the three-phase unbalanced voltage, and the voltage fluctuation detector 18 for detecting the ΔV compensation amount of each phase is completely provided. Because of the integrator configuration, the SVC can efficiently perform ΔV compensation within the control operation region even if there is a long-cycle fluctuation of the power receiving power source and a three-phase imbalance. According to this method, a response of 1 cycle or less for each phase ΔV fluctuation and a response of several cycles for 3-phase unbalance compensation can be realized.

【0053】本発明の第2の発明は、各相ΔV変動及び
3相不平衡の原因となる負荷の無効電力を直接検出し、
オープンループ制御にて補償を行なうからΔV制御の応
答遅れがなく、さらに補償性能を向上できる。
The second invention of the present invention directly detects the reactive power of the load which causes the ΔV fluctuation of each phase and the three-phase imbalance,
Since the compensation is performed by the open loop control, there is no response delay of the ΔV control, and the compensation performance can be further improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】系統電圧を検出してΔV制御を行なう、第1の
発明の電圧変動抑制装置の制御装置の実施例を示す回路
ブロック図
FIG. 1 is a circuit block diagram showing an embodiment of a control device for a voltage fluctuation suppressing device of the first invention, which detects a system voltage and performs ΔV control.

【図2】負荷の無効電力を検出してQ制御を行なう、第
2の発明の電圧変動抑制装置の制御装置の実施例を示す
回路ブロック図
FIG. 2 is a circuit block diagram showing an embodiment of the control device of the voltage fluctuation suppressing device of the second invention, which detects the reactive power of the load and performs Q control.

【符号の説明】[Explanation of symbols]

5 SVCの制御装置 6 直流化回路 7 平均電圧検出器 8U,8V,8W 制御信号発生回路 9 不平衡抑制回路 10U,10V,10W 位相制御回路 SVC 無効電力補償装置 TCR サイリスタ制御リアクトル5 SVC control device 6 DC conversion circuit 7 Average voltage detector 8 U , 8 V , 8 W control signal generation circuit 9 Unbalance suppression circuit 10 U , 10 V , 10 W phase control circuit SVC reactive power compensator TCR thyristor control Reactor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 3相電力系統の電圧変動を、サイリスタ
制御リアクトルによる無効電力の増減補償によって抑制
する電圧変動抑制装置において、 各相毎に検出した電圧変動ΔVに、サイリスタ制御リア
クトルの最大出力の約1/2を待機動作点とするバイア
ス電圧を加算して、サイリスタ制御リアクトルの各相の
制御信号VCを作成する制御信号発生回路と、 直流化して検出した各相の電圧VU,VV,VWを、直流
化した3相平均電圧V3と比較し、その差分によって、
3相電圧不平衡を解消するように上記各相のバイアス電
圧をシフトさせる不平衡抑制回路とを具備したことを特
徴とする電圧変動抑制装置の制御装置。
1. A voltage fluctuation suppressing device for suppressing voltage fluctuations of a three-phase power system by compensating reactive power increase / decrease by a thyristor control reactor, wherein the voltage fluctuation ΔV detected for each phase corresponds to the maximum output of the thyristor control reactor. A control signal generation circuit for adding a bias voltage having a standby operation point of about 1/2 to generate a control signal V C for each phase of the thyristor control reactor, and a voltage V U , V for each phase detected by converting to DC V and V W are compared with the DC-converted three-phase average voltage V 3, and the difference between
An unbalance suppression circuit that shifts the bias voltage of each phase so as to eliminate a three-phase voltage imbalance.
【請求項2】 3相電力系統の電圧変動を、サイリスタ
制御リアクトルによる無効電力の増減補償によって抑制
する電圧変動抑制装置において、 各相毎に検出した負荷の無効電力変動ΔQに、サイリス
タ制御リアクトルの最大出力の約1/2を待機動作点と
するバイアス電圧を加算して、サイリスタ制御リアクト
ルの各相の制御信号VCを作成する制御信号発生回路
と、 直流化して検出した各相の負荷の無効電力QLU,QLV
LWを、直流化した3相平均の無効電力Q3と比較し、
その差分によって、3相の無効電力不平衡を解消するよ
うに上記各相のバイアス電圧をシフトさせる不平衡抑制
回路とを具備したことを特徴とする電圧変動抑制装置の
制御装置。
2. A voltage fluctuation suppressing device for suppressing voltage fluctuations of a three-phase power system by increasing and decreasing compensation of reactive power by a thyristor control reactor, wherein a reactive power fluctuation ΔQ of a load detected for each phase corresponds to a thyristor control reactor. A control signal generation circuit that adds a bias voltage with about 1/2 of the maximum output as a standby operation point to create a control signal V C of each phase of the thyristor control reactor, and a load of each phase detected by converting to DC Reactive power Q LU , Q LV ,
The Q LW, compared to the reactive power Q 3 of 3-phase average which is direct current,
An unbalance suppression circuit that shifts the bias voltage of each phase so as to eliminate the reactive power imbalance of the three phases by the difference, and a control device of the voltage fluctuation suppressing device.
JP6024657A 1994-02-23 1994-02-23 Controller for voltage fluctuation suppresser Withdrawn JPH07236230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6024657A JPH07236230A (en) 1994-02-23 1994-02-23 Controller for voltage fluctuation suppresser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6024657A JPH07236230A (en) 1994-02-23 1994-02-23 Controller for voltage fluctuation suppresser

Publications (1)

Publication Number Publication Date
JPH07236230A true JPH07236230A (en) 1995-09-05

Family

ID=12144223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6024657A Withdrawn JPH07236230A (en) 1994-02-23 1994-02-23 Controller for voltage fluctuation suppresser

Country Status (1)

Country Link
JP (1) JPH07236230A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320719C (en) * 2001-11-28 2007-06-06 Abb股份有限公司 Method and apparatus for compensating industrial load reactive power dissipation
JP2007259567A (en) * 2006-03-22 2007-10-04 Toshiba Mitsubishi-Electric Industrial System Corp Control device for power conversion circuit
JP2008040733A (en) * 2006-08-04 2008-02-21 Mitsubishi Electric Corp Reactive power control system and reactive power compensation system
CN110912159A (en) * 2019-11-12 2020-03-24 许继变压器有限公司 Three-phase unbalanced load governing system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1320719C (en) * 2001-11-28 2007-06-06 Abb股份有限公司 Method and apparatus for compensating industrial load reactive power dissipation
JP2007259567A (en) * 2006-03-22 2007-10-04 Toshiba Mitsubishi-Electric Industrial System Corp Control device for power conversion circuit
JP2008040733A (en) * 2006-08-04 2008-02-21 Mitsubishi Electric Corp Reactive power control system and reactive power compensation system
CN110912159A (en) * 2019-11-12 2020-03-24 许继变压器有限公司 Three-phase unbalanced load governing system

Similar Documents

Publication Publication Date Title
US5212630A (en) Parallel inverter system
CA2066490C (en) Parallel operation system of ac output inverters
JP5003819B2 (en) System stabilization device
Zhou et al. Time delay compensation-based fast current controller for active power filters
JPH03183324A (en) Voltage variation and harmonic wave suppressor
Leon et al. Software sensor-based STATCOM control under unbalanced conditions
JP3130694B2 (en) Voltage fluctuation and harmonic suppression device
JP5979404B1 (en) Distributed power control method and control apparatus
JPH07236230A (en) Controller for voltage fluctuation suppresser
JPH0515070A (en) Parallel operation control device
JP3598871B2 (en) Power conversion system for grid connection with islanding detection function
JPH0698469A (en) Control system of voltage detection-type reactive-power compensation apparatus
JPH08140268A (en) Controller of reactive power compensator
Acuña et al. Simple and robust multi-objective predictive control method for a single-phase three-level NPC converter based active power filter
JP2000276243A (en) Controller for semiconductor switch
JP7326635B1 (en) PHASE SYNCHRONIZATION CONTROL CIRCUIT AND POWER CONVERSION DEVICE USING THE SAME
JPS62222166A (en) Ac signal detector
EP4318917A1 (en) Power conversion device and control device
JP3142029B2 (en) Reverse charge detection circuit in distributed power supply equipment
JP2725538B2 (en) Voltage fluctuation suppression device
JP2606946Y2 (en) Control device for voltage fluctuation suppression device
JP2792085B2 (en) Control method of reactive power compensator
Visairo-Cruz et al. A single nonlinear current control for PWM rectifier robust to input disturbances and dynamic loads
JPH0731301Y2 (en) Controller for reactive power compensator
JPH11178322A (en) Controller for phase synchronization

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010508