JP2725538B2 - Voltage fluctuation suppression device - Google Patents

Voltage fluctuation suppression device

Info

Publication number
JP2725538B2
JP2725538B2 JP4238307A JP23830792A JP2725538B2 JP 2725538 B2 JP2725538 B2 JP 2725538B2 JP 4238307 A JP4238307 A JP 4238307A JP 23830792 A JP23830792 A JP 23830792A JP 2725538 B2 JP2725538 B2 JP 2725538B2
Authority
JP
Japan
Prior art keywords
current
circuit
phase component
reactive
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4238307A
Other languages
Japanese (ja)
Other versions
JPH0690527A (en
Inventor
昇太郎 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP4238307A priority Critical patent/JP2725538B2/en
Publication of JPH0690527A publication Critical patent/JPH0690527A/en
Application granted granted Critical
Publication of JP2725538B2 publication Critical patent/JP2725538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、不平衡負荷を有する
電力系統に接続されたインバータにより、電力系統の無
効電力を制御して受電点の電圧変動を抑制する電圧変動
抑制装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage fluctuation suppressing device which controls a reactive power of a power system by an inverter connected to a power system having an unbalanced load to suppress a voltage fluctuation at a power receiving point.

【0002】[0002]

【従来の技術】従来この種装置として、例えば、「三菱
電機技報」Vol.65・No.6・1991・P60
〜65に提案された無効電力補償装置がある。図4は、
その無効電力補償装置の制御回路を示す回路図であり、
1は電源、2は系統のインピーダンスR,Xを介して上
記電源1に接続された受電変圧器、3はアーク炉等の負
荷4を受電変圧器2に接続する交流遮断器、5は多重変
圧器6を上記受電変圧器2に接続する交流遮断器、7は
その出力を変化させることにより系統との間で無効電力
の発生、消費を行う、GTOサイリスタ等で構成される
自励式インバータ、8は交流遮断器9を介して系統に接
続された高調波フィルタ、10は負荷電流iLを検出す
る負荷電流検出用変流器、11はインバータ7の出力電
流を検出するインバータ電流検出用変流器、12は負荷
電流検出用、及びインバータ電流検出用変流器10、1
1の検出する負荷電流、及びインバータ出力電流を導入
し、上記自励式インバータの点弧信号を演算し、出力す
る制御装置である。
2. Description of the Related Art Conventionally, as this type of apparatus, for example, "Mitsubishi Electric Technical Report" Vol. 65 No. 6, 1991, P60
There are proposed reactive power compensating devices. FIG.
It is a circuit diagram showing a control circuit of the reactive power compensator,
Reference numeral 1 denotes a power source, 2 denotes a power receiving transformer connected to the power source 1 via system impedances R and X, 3 denotes an AC circuit breaker that connects a load 4 such as an arc furnace to the power receiving transformer 2, and 5 denotes a multiple transformer. An AC circuit breaker that connects the power transformer 6 to the power receiving transformer 2; a self-excited inverter 7 configured by a GTO thyristor or the like that generates and consumes reactive power with the system by changing its output; Is a harmonic filter connected to the system via an AC circuit breaker 9, 10 is a load current detecting current transformer for detecting a load current i L , 11 is an inverter current detecting current transformer for detecting an output current of the inverter 7. Current transformers 12 and 1 for load current detection and inverter current detection.
1 is a control device that introduces a load current and an inverter output current detected by the control circuit 1 and calculates and outputs a firing signal of the self-excited inverter.

【0003】即ち、アーク炉等の負荷4の発生する有効
電力と無効電力が電源系統のインピーダンスZS=R+
jXと作用して受電点電圧を変動させるが、一般にX》
Rの関係であるため無効電力変動分ΔQLと電源系統の
リアクタンス成分Xとが作用して受電点電圧変動ΔV=
X・ΔQLを生じる。この受電点電圧の変動を抑制する
ため、負荷の発生した無効電力変動分を打ち消すように
自励式インバータ7の出力が制御される。
That is, the active power and the reactive power generated by the load 4 such as an arc furnace are determined by the impedance Z S = R + of the power supply system.
It acts on jX to fluctuate the receiving point voltage, but generally X >>
Because of the relationship of R, the reactive power fluctuation ΔQ L and the reactance component X of the power supply system act, and the voltage fluctuation ΔV =
Resulting in X · ΔQ L. In order to suppress the fluctuation of the power receiving point voltage, the output of the self-excited inverter 7 is controlled so as to cancel the reactive power fluctuation generated by the load.

【0004】図5は、自励式インバータ7の出力を制御
する制御装置12の詳細ブロック図であり、12−1は
負荷電流検出用変流器10の検出した負荷電流iLを導
入し、3相2相変換して、有効分iPA+iPB、及び無効
分iqA+iqBを出力する3相2相変換回路である。但
し、iPAは有効分電流の正相分、iPBは有効分電流の逆
相分(高調波分を含む。)、iqAは無効分電流の正相
分、iqBは無効分電流の逆相分(高調波分を含む。)で
ある。12−2はフィルタ回路であり、3相2相変換回
路から導入した有効分電流、及び無効分電流から補償用
電流成分とするiPB、及びiqA+iqBを抽出し、出力す
る。12−3はフィルタ回路12−2の導出した補償基
準指令を2相3相変換する2相3相変換回路、12−4
はこの2相3相変換回路の出力する3相の補償基準とイ
ンバータ電流検出用変流器11の検出するインバータ出
力電流との偏差を出力する減算器、12−5はこの減算
器の出力に基づいてインバータ電圧基準を出力する電流
制御回路、12−6はこの電流制御回路の電圧基準に従
った点弧信号を自励式インバータ7へ出力するインバー
タ点弧回路である。
FIG. 5 is a detailed block diagram of a control device 12 for controlling the output of the self-excited inverter 7. Reference numeral 12-1 denotes a load current i L detected by the load current detecting current transformer 10; This is a three-phase to two-phase conversion circuit that performs phase-to-phase conversion and outputs an effective component i PA + i PB and an invalid component i qA + i qB . Where i PA is the positive phase component of the active component current, i PB is the negative phase component (including the harmonic component) of the active component current, iqA is the positive phase component of the reactive component current, and iqB is the reactive component current. It is a negative phase component (including a harmonic component). Reference numeral 12-2 denotes a filter circuit that extracts i PB and i qA + i qB as compensation current components from the active component current and the reactive component current introduced from the three-phase to two-phase conversion circuit, and outputs the extracted components. 12-3 is a two-phase to three-phase conversion circuit for performing two-phase to three-phase conversion of the compensation reference command derived by the filter circuit 12-2;
Is a subtractor that outputs the deviation between the three-phase compensation reference output from the two-phase to three-phase conversion circuit and the inverter output current detected by the inverter current detecting current transformer 11, and 12-5 is the output of the subtractor. A current control circuit 12-6 outputs an inverter voltage reference based on the reference voltage. An inverter firing circuit 12-6 outputs a firing signal to the self-excited inverter 7 according to the voltage reference of the current control circuit.

【0005】即ち、自励式インバータ7が発生する無効
電力を制御するため、制御装置12は負荷電流検出用変
流器10から負荷電流iLを入力し、3相2相変換器1
2−1に導入する。3相2相変換器12−1は導入した
3相電流を2相に変換し、2相変換した有効分電流iPA
+iPB、及び無効分電流iqA+iqBをフィルタ回路12
−2に出力する。フィルタ回路12−2では、3相2相
変換器12−1の出力から自励式インバータ7によって
補償すべき負荷の有効分電流の変化分iPB(逆相分+高
調波分)、無効分電流の平均値iqA(正相分)と変化分
qB(逆相分+高調波分)を検出する。フィルタ回路1
2−2の出力は2相3相変換器12−3により3相補償
電流基準に変換される。この3相補償電流基準は、減算
器12−4により、インバータ電流検出用変流器11の
検出値との偏差がとられ、電流制御回路12−5に入力
される。電流制御回路12−5は入力する偏差信号に基
づいて偏差を零とする自励式インバータ7の電圧基準を
演算する。この電圧基準はインバータ点弧回路12−6
に入力され、電圧基準に基づいたインバータ素子の点弧
信号が導出され、自励式インバータ7を駆動制御する。
That is, in order to control the reactive power generated by the self-excited inverter 7, the control device 12 receives the load current i L from the load current detecting current transformer 10, and controls the three-phase to two-phase converter 1.
Introduce to 2-1. The three-phase to two-phase converter 12-1 converts the introduced three-phase current into two phases, and converts the two-phase converted effective component current i PA
+ I PB and the reactive current i qA + i qB are filtered by the filter circuit 12.
-2. In the filter circuit 12-2, a change i PB (a negative phase component + a harmonic component) of a load effective current of a load to be compensated by the self-excited inverter 7 from the output of the three-phase / two-phase converter 12-1, and a reactive current The average value iqA (positive phase component) and the variation iqB (negative phase component + harmonic component) are detected. Filter circuit 1
The output of 2-2 is converted to a three-phase compensation current reference by a two-phase to three-phase converter 12-3. The difference between the three-phase compensation current reference and the value detected by the inverter current detection current transformer 11 is calculated by the subtractor 12-4, and is input to the current control circuit 12-5. The current control circuit 12-5 calculates the voltage reference of the self-excited inverter 7 that makes the deviation zero based on the input deviation signal. This voltage reference is the inverter firing circuit 12-6.
And a firing signal of the inverter element based on the voltage reference is derived, and drives and controls the self-excited inverter 7.

【0006】このように、負荷4の発生する有効電流の
逆相分、及び無効電流の正相分と逆相分を自励式インバ
ータ7の出力で補償することにより受電点の電圧変動を
抑制するとともに3相平衡化を行うことができる。ま
た、高調波フィルタ8は、自励式インバータ7の発生す
る高調波分を吸収するとともに、力率改善のために併設
されている。
As described above, the voltage fluctuation at the receiving point is suppressed by compensating the negative phase component of the active current generated by the load 4 and the positive phase component and the negative phase component of the reactive current by the output of the self-excited inverter 7. Together with the three-phase equilibration. In addition, the harmonic filter 8 is provided to absorb the harmonic components generated by the self-excited inverter 7 and to improve the power factor.

【0007】[0007]

【発明が解決しようとする課題】従来の電圧変動抑制装
置は、以上のように構成されているので、負荷の無効電
力変動幅が予め判っていれば、その変動幅に応じてイン
バータ容量を決定できたが、無効電力変動幅の大きさが
その都度変化するようなものには、最大考えられる容量
を選定せざるを得ず、インバータ容量が大きくなり、高
価となる。また、図6に示すように、無効電力変動幅が
インバータ容量を超えてしまうと、受電点電圧の変動を
抑制することができず、電圧変動を生じてしまう問題点
があった。なお、図6において、aは受電点電圧の変動
ΔV、bは負荷変動、cは負荷変動を補償すべくインバ
ータから出力する無効電力を示す。図から明らかなよう
に、負荷変動がインバータ容量を超えない限りは受電点
電圧は一定値に抑制されるが、負荷変動がインバータの
最大容量を超えると、受電点電圧がΔV1変動してしま
う。
Since the conventional voltage fluctuation suppressing device is configured as described above, if the reactive power fluctuation width of the load is known in advance, the inverter capacity is determined according to the fluctuation width. However, if the reactive power fluctuation width changes each time, the maximum possible capacity must be selected, and the inverter capacity becomes large and expensive. Further, as shown in FIG. 6, when the reactive power fluctuation width exceeds the inverter capacity, the fluctuation of the power receiving point voltage cannot be suppressed, and there is a problem that the voltage fluctuation occurs. In FIG. 6, a indicates a variation ΔV of the power receiving point voltage, b indicates a load variation, and c indicates a reactive power output from the inverter to compensate for the load variation. As is clear from the figure, the receiving point voltage is suppressed to a constant value as long as the load fluctuation does not exceed the inverter capacity, but if the load fluctuation exceeds the maximum capacity of the inverter, the receiving point voltage fluctuates by ΔV 1. .

【0008】この発明は、このような問題点に鑑みてな
されたものであり、負荷の無効電力の値がインバータ容
量より大きくなっても、その変動値(変動幅)がインバ
ータ容量以下である間は、受電点電圧の変動を抑制でき
る電圧変動抑制装置を得ることを目的としている。
The present invention has been made in view of such a problem, and the value of the reactive power of the load is reduced by the inverter capacity.
Even if it becomes larger than the amount, the fluctuation value (fluctuation range)
It is an object of the present invention to obtain a voltage fluctuation suppressing device capable of suppressing fluctuations in the voltage of the receiving point as long as the voltage is equal to or less than the data capacity .

【0009】[0009]

【課題を解決するための手段】この発明の電圧変動抑制
装置は、交流電源に接続された負荷と、この負荷にそれ
ぞれ並列に接続された無効電力補償用インバータと高調
波フィルターとでなる無効電力補償装置で構成されたも
のであって、前記負荷に流れる負荷電流を導入し、この
負荷電流から補償用電流成分とするべき有効電流の逆相
分(ipB)と無効電流の正相分(iqA)、無効電流
の逆相分(iqB)を選択して抽出し出力する第1のフ
ィルタ手段、この第1のフィルタ手段の抽出した前記無
効電流正相分から前記高調波フィルターに流れる無効電
流正相分(iqL)を減じて前記交流電源側に流れる無
効電流正相分を導出する第1の回路、この交流電源側の
無効電流正相分の時間平均値を導出する第2のフィルタ
手段、上記第1の回路の導出した前記交流電源側の無効
電流正相分から上記第2のフィルタ手段の出力を減算す
る第2の回路、この第2の回路の出力と、上記第1のフ
ィルタ手段の抽出した前記有効電流逆相分、及び前記無
効電流逆相分とにより、前記無効電力補償用インバータ
の3相補償電流基準を導出する第3の回路を備えたもの
である。
Means for Solving the Problems Voltage fluctuation suppression according to the present invention
The device is connected to a load connected to the
Reactive power compensation inverter and harmonic connected in parallel
A reactive power compensator consisting of a wave filter.
Introducing a load current flowing through the load,
Negative phase of active current to be used as compensation current component from load current
(IpB), positive phase component of reactive current (iqA), reactive current
The first file that selects and extracts and outputs the reverse phase component (iqB) of
Filter means, the filter extracted by the first filter means.
Reactive current flowing from the positive current component to the harmonic filter
Flow positive phase component (iqL) to reduce
The first circuit for deriving the active current positive phase component,
Second filter for deriving the time average of the reactive current positive phase
Means, invalidation of the AC power supply side derived by the first circuit
Subtract the output of the second filter means from the current positive phase component
A second circuit, the output of the second circuit and the first
The effective current negative phase component extracted by the filter means;
The reactive current compensating inverter
With a third circuit for deriving the three-phase compensation current reference of
It is.

【0010】また、この発明の電圧変動抑制装置は、交
流電源に接続された負荷、この負荷にそれぞれ並列に接
続された無効電力補償用インバータと高調波フィルター
とでなる無効電力補償装置で構成された電圧変動抑制装
置であって、前記負荷に流れる負荷電流を導入し、この
負荷電流から、有効電流の正相分(ipA)と、補償用
電流成分とするべき有効電流の逆相分(ipB)と無効
電流の正相分(iqA)、無効電流の逆相分(iqB)
を選択して抽出し出力する第4のフィルタ手段、この第
4のフィルタ手段の抽出した前記無効電流正相分から前
記高調波フィルターに流れる無効電流正相分(iqL)
を減じて、前記交流電源側に流れる無効電流正相分を導
出する第1の回路、この交流電源側の無効電流正相分の
時間平均値を導出する第2のフィルタ手段、上記第1の
回路の導出した前記交流電源側の無効電流正相分から上
記第2のフィルタ手段の出力を減算する第2の回路、前
記第4のフィルタ手段の抽出した前記有効電流正相分に
所定の力率設定値を乗じて得た補償用インバータの無効
電流の正相分指令値(iq1)から前記第1の回路の導
出した電源側の無効電流正相分を減算して力率制御のた
めのインバータ無効電流指令を得る第5の回路、この無
効電流指令値を上記第2の回路の出力から減算してイン
バータ無効電流正相分指令を得る第6の回路、この第6
の回路の出力と、上記第4のフィルタ手段の抽出した有
効電流逆相分、及び無効電流逆相分とにより、前記無効
電力補償用インバータの3相補償電流基準を導出する第
3の回路を備えたものである。
Further , the voltage fluctuation suppressing device according to the present invention
Load connected to the
Independent inverter and harmonic filter for reactive power compensation
Voltage fluctuation suppression device composed of a reactive power compensator
And introducing a load current flowing through the load.
From the load current, the positive phase component (ipA) of the effective current and the compensation
Negative phase component (ipB) of active current to be current component and invalid
Positive phase component of current (iqA), negative phase component of reactive current (iqB)
A fourth filter means for selecting and extracting and outputting
4 before the reactive current positive phase component extracted by the filter means 4
Reactive current positive phase component (iqL) flowing through the harmonic filter
To introduce the positive phase of the reactive current flowing to the AC power supply.
The first circuit that generates the positive phase of the reactive current on the AC power supply side
Second filter means for deriving a time average value, the first filter means
From the positive phase of the reactive current on the AC power supply side derived by the circuit
A second circuit for subtracting the output of the second filter means,
The positive current component extracted by the fourth filter means
Invalidation of the compensation inverter obtained by multiplying the specified power factor setting
Derivation of the first circuit from the positive-phase current command value (iq1)
Power factor control is performed by subtracting the
A fifth circuit for obtaining an inverter reactive current command for
The effective current command value is subtracted from the output of the second circuit to
A sixth circuit for obtaining a command for the positive phase component of the barter reactive current,
And the output of the fourth filter means.
Due to the negative phase of the active current and the negative phase of the reactive current,
Deriving a three-phase compensation current reference for an inverter for power compensation
3 is provided.

【0011】[0011]

【作用】この発明の請求項1における電圧変動抑制装置
は補償用電流成分としている無効電流正相分の時間平均
をインバータの無効電流基準から減ずることにより、負
荷変動時の無効電流基準は正相分と逆相分との電流基準
となるが、時間の経過とともに正相分が減じられ、逆相
分のみの電流基準となり、次の負荷変動時のインバータ
補償容量を大きく確保することができる。
The voltage fluctuation suppressing device according to the first aspect of the present invention subtracts the time average of the reactive current positive phase as the compensation current component from the reactive current reference of the inverter, so that the reactive current reference at the time of load change is positive phase. The current reference for the negative phase component and the negative phase component are used. However, the positive phase component is reduced with the passage of time, and the current reference is used only for the negative phase component. As a result, a large inverter compensation capacity during the next load change can be secured.

【0012】この発明の請求項2における電圧変動抑制
装置はインバータの無効電流正相分基準から所定の力率
を得るための無効電流正相分を減ずることにより、イン
バータ補償容量を大きく確保することができるととも
に、所定の力率に制御することができる。
In the voltage fluctuation suppressing apparatus according to a second aspect of the present invention, the reactive current positive phase component for obtaining a predetermined power factor is reduced from the reactive current positive phase component reference of the inverter, thereby securing a large inverter compensation capacity. And a power factor can be controlled to a predetermined value.

【0013】[0013]

【実施例】実施例1.以下、この発明の実施例1を図に
基づいて説明する。図1はこの発明の実施例1を示す電
圧変動抑制装置の制御回路ブロック図であり、図4と同
一部分には同一符号を付してある。図1において、13
はフィルタ回路12−2の抽出した負荷の無効電流正相
分iqAから高調波フィルタ8の無効電流正相分iqLを減
じる減算器、14はこの減算器13の出力の時間平均を
演算する低周波フィルタで、この低周波フィルタ14は
時定数が長いので、リングカウンタ、又はPCで実現す
ることができる。15は減算器13の出力から低周波フ
ィルタ14の出力を減じる減算器、12−7はフィルタ
回路12−2の抽出した無効電流逆相分iqBと減算器1
5の出力を加算する加算器である。
[Embodiment 1] Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a control circuit block diagram of a voltage fluctuation suppressing apparatus according to a first embodiment of the present invention, and the same parts as those in FIG. 4 are denoted by the same reference numerals. In FIG. 1, 13
The subtractor for subtracting the reactive current positive-phase component i qL harmonic filter 8 from reactive current positive phase component i qA load extracted from the filter circuit 12-2, 14 calculates a time average of the output of the subtracter 13 Since the low-frequency filter 14 has a long time constant, it can be realized by a ring counter or a PC. Reference numeral 15 denotes a subtractor for subtracting the output of the low-frequency filter 14 from the output of the subtractor 13, and 12-7 denotes a reactive current antiphase component iqB extracted by the filter circuit 12-2 and the subtractor 1.
5 is an adder for adding the outputs of the five.

【0014】即ち、減算器13により、フィルタ回路1
2−2の抽出した無効電流正相分iqAから高調波フィル
タ8の無効電流正相分iqLを減じ電源側の無効電流正相
分を導出する。この無効電流正相分は低周波フィルタ1
4に入力され、その時間平均がとられる。そして、減算
器15により低周波フィルタ14の出力を減算器13の
出力から減算することにより、減算器15は負荷変動時
には無効電流正相分の内の変動分がその変動分の大きさ
のまま出力されるが、時間の経過とともにこの変動分が
減少して行く出力を発生する。
That is, the filter circuit 1 is operated by the subtractor 13.
The reactive current positive phase component iqL of the harmonic filter 8 is subtracted from the extracted reactive current positive phase component iqA of 2-2 to derive the reactive current positive phase component on the power supply side. This reactive current positive phase component is applied to the low frequency filter 1
4 and its time average is taken. Then, the output of the low-frequency filter 14 is subtracted from the output of the subtractor 13 by the subtractor 15, so that the change in the positive phase of the reactive current during the load change is the magnitude of the change.
While the output of, but to generate an output that this variation is going to decrease with time.

【0015】減算器15の出力は加算器12−7により
フィルタ回路12−2の抽出した無効電流逆相分iqBと
加算されて、2相3相変換器12−3に出力される。2
相3相変換器12−3はフィルタ回路12−2から有効
電流逆相分ipBも入力しており、従来と同様に2相3
相変換した電流基準を出力する。なお、図1の3相2相
変換器12−1と有効電流正相分ipAを出力しないフ
ィルター回路12−2は、第1のフィルター手段とい
う。また、高調波フィルター8の無効電流正相分の検出
回路(図示しない)と減算器13は第1の回路、低周波
フィルター14は第2のフィルター手段、減算器15は
第2の回路、加算器12−7と2相3相変換器12−3
とは第3の回路である。
The output of the subtractor 15 is added by the adder 12-7 to the reactive current negative phase component iqB extracted by the filter circuit 12-2 and output to the two-phase to three-phase converter 12-3. 2
The phase-to-phase converter 12-3 also receives the active current negative phase ipB from the filter circuit 12-2, and performs the two-phase
The phase-converted current reference is output. The three-phase two-phase in FIG.
The converter 12-1 and a signal that does not output the active current positive phase component ipA
The filter circuit 12-2 is called first filter means.
U. Also, detection of the reactive current positive phase of the harmonic filter 8
The circuit (not shown) and the subtractor 13 are a first circuit, a low frequency
The filter 14 is a second filter means, and the subtractor 15 is
Second circuit, adder 12-7 and two-phase to three-phase converter 12-3
Is the third circuit.

【0016】図2は実施例1における各部の動作を示す
波形図であり、aは受電点での電圧変動、bは負荷変
動、cはインバータの出力を示す。即ち、負荷変動に対
して、自励式インバータ7は負荷変動に対応した出力を
発生するが、低周波フィルタ14で決まる時定数でその
出力は徐々に減少することになる。この時、電圧変動Δ
Vはゆっくりとした変動を生じることになる。そして、
大きな負荷変動が生じたとしても、自励式インバータ7
は最大容量に達することがなく出力している。これは、
常に負荷の無効電流の正相分を監視することにより、自
励式インバータ7の出力を調整し、負荷の変動に対して
最大の対応ができるようにしているためである。電圧変
動もゆっくりと変動しており単位時間で規定された変動
としては小さくなる。
FIG. 2 is a waveform diagram showing the operation of each part in the first embodiment, where a indicates the voltage fluctuation at the power receiving point, b indicates the load fluctuation, and c indicates the output of the inverter. That is, the self-excited inverter 7 generates an output corresponding to the load change in response to the load change, but the output gradually decreases with a time constant determined by the low frequency filter 14. At this time, voltage fluctuation Δ
V will cause a slow fluctuation. And
Even if a large load change occurs, the self-excited inverter 7
Output without reaching the maximum capacity. this is,
This is because the output of the self-excited inverter 7 is adjusted by always monitoring the positive phase component of the reactive current of the load so that the maximum response can be made to the fluctuation of the load. The voltage fluctuation also fluctuates slowly, and becomes small as the fluctuation defined in unit time.

【0017】実施例2. なお、実施例1では力率をすこし犠牲にして電圧変動耐
量の増加を図った制御回路構成としているが、図3に示
すように、力率設定器16を設け、負荷の有効電流正相
分と力率設定器16の出力とを掛算器17で乗算して無
効電流の正相分指令値iq1を演算する。そして、減算器
18により電源の無効電流正相分を減じることにより
率制御のためのインバータ無効電流指令(無効電力補償
用インバータを力率制御を目的とした動作を行わせるた
めの無効電流指令値)を演算し、さらに減算器19によ
って減算器15の出力を減じることによりインバータ無
効電流正相分指令を得るようにしてもよい。上記のよう
な回路を追加することにより、電源側の平均的な力率を
設定制御することができる。なお、図3の3相2相変換
器12−1とフィルター回路12−2は有効電流正相分
も出力するものでありこれを第4のフィルター手段とい
う。力率設定器16と掛算器17と減算器18は第5の
回路、減算器19は第6の回路である。
Embodiment 2 FIG. In the first embodiment, the control circuit is configured to increase the voltage fluctuation tolerance at the expense of the power factor. However, as shown in FIG. And the output of the power factor setting unit 16 are multiplied by a multiplier 17 to calculate a positive-phase command value iq1 of the reactive current. Then, the force by the subtractor 18 subtracts the reactive current positive phase component of the power supply
Inverter reactive current command (reactive power compensation) for rate control
The inverter for power supply to operate for power factor control.
It calculates a reactive current command value) of the order, may be obtained inverter reactive current positive phase component command by further reducing the output of the subtracter 15 by the subtractor 19. By adding such a circuit, the average power factor on the power supply side can be set and controlled. Note that the three-phase to two-phase conversion shown in FIG.
The filter 12-1 and the filter circuit 12-2 are for the active current positive phase.
And this is called the fourth filter means.
U. The power factor setting unit 16, the multiplier 17, and the subtractor 18
The circuit and the subtractor 19 are a sixth circuit.

【0018】[0018]

【発明の効果】以上述べたように、この発明によれば、
電源側の無効電流正相分から時間平均した無効電流正相
分を減算した出力と、負荷電流から求めた有効電流逆相
分、及び無効電流逆相分とにより、電源に接続された無
効電力補償用インバータの3相補償電流基準を導出する
ようにしたので、負荷の無効電力の値がインバータ容量
を超えても、その変動分(変動幅)がインバータ容量以
下である間は、受電点電圧の変動を抑制することができ
る。また、無効電力補償用インバータの無効電流正相分
基準から所定の力率を得るための無効電流正相分指令値
減ずるようにしたので、平均的な力率一定制御も行う
ことができる。
As described above, according to the present invention,
Reactive power compensation connected to the power supply based on the output obtained by subtracting the time-reactive reactive current positive phase component from the power source reactive current positive phase component, and the active current negative phase component and reactive current negative phase component obtained from the load current. Derived the three-phase compensation current reference of the inverter, so that the reactive power value of the load
Exceeds the inverter capacity,
While it is below, fluctuations in the receiving point voltage can be suppressed. Further, the reactive current for obtaining a predetermined power factor from the reactive current positive phase component reference reactive power compensating inverter positive-phase component command value
Since to reduce, it can be performed average power factor constant control.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施例1を示す電圧変動抑制装置の
制御回路ブロック図である。
FIG. 1 is a control circuit block diagram of a voltage fluctuation suppressing device according to a first embodiment of the present invention.

【図2】この発明の実施例1の各部の動作を示す波形図
である。
FIG. 2 is a waveform chart showing the operation of each unit according to the first embodiment of the present invention.

【図3】この発明の実施例2を示す電圧変動抑制装置の
制御回路ブロック図である。
FIG. 3 is a control circuit block diagram of a voltage fluctuation suppressing device according to a second embodiment of the present invention.

【図4】無効電力補償装置の制御回路を示す回路図であ
る。
FIG. 4 is a circuit diagram showing a control circuit of the reactive power compensator.

【図5】従来の電圧変動抑制装置を示す制御回路ブロッ
ク図である。
FIG. 5 is a control circuit block diagram showing a conventional voltage fluctuation suppressing device.

【図6】従来の電圧変動抑制装置の各部の動作を示す波
形図である。
FIG. 6 is a waveform chart showing the operation of each part of the conventional voltage fluctuation suppression device.

【符号の説明】[Explanation of symbols]

1 電源 4 負荷 6 多重変圧器 7 自励式インバータ 12 制御装置 12−1 3相2相変換器 12−2 フィルタ回路 12−3 2相3相変換器 12−5 電流制御回路 12−6 インバータ点弧回路 14 低周波フィルタ 16 力率設定器 DESCRIPTION OF SYMBOLS 1 Power supply 4 Load 6 Multiple transformer 7 Self-excited inverter 12 Controller 12-1 Three-phase two-phase converter 12-2 Filter circuit 12-3 Two-phase three-phase converter 12-5 Current control circuit 12-6 Inverter ignition Circuit 14 Low frequency filter 16 Power factor setting device

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 交流電源、この交流電源に接続された負
荷、この負荷にそれぞれ並列に接続された無効電力補償
用インバータと高調波フィルターとでなる無効電力補償
装置で構成された電圧変動抑制装置であって、 前記負荷に流れる負荷電流を導入し、この負荷電流から
補償用電流成分とするべき有効電流の逆相分(ipB)
と無効電流の正相分(iqA)、無効電流の逆相分(i
qB)を選択して抽出し出力する第1のフィルタ手段、 この第1のフィルタ手段の抽出した前記無効電流正相分
から前記高調波フィルターに流れる無効電流正相分(i
qL)を減じて、前記交流電源側に流れる無効電流正相
分を導出する第1の回路、 この交流電源側の無効電流正相分の時間平均値を導出す
る第2のフィルタ手段、 上記第1の回路の導出した前記交流電源側の無効電流正
相分から上記第2のフィルタ手段の出力を減算する第2
の回路、 この第2の回路の出力と、上記第1のフィルタ手段の抽
出した前記有効電流逆相分、及び前記無効電流逆相分と
により、前 記無効電力補償用インバータの3相補償電流
基準を導出する第3の回路を備えたことを特徴とする電
圧変動抑制装置。
1. An AC power supply, a negative power supply connected to the AC power supply.
Load, reactive power compensation connected in parallel to this load
Power Compensation Using Inverter and Harmonic Filter
A voltage fluctuation suppression device configured by a device, wherein a load current flowing through the load is introduced, and
Negative phase component (ipB) of active current to be used as compensation current component
And the positive phase component (iqA) of the reactive current, and the negative phase component (i
qB) to select and extract and output the reactive current positive phase component extracted by the first filter means.
And the reactive current positive phase component (i
qL) to reduce the positive phase of the reactive current flowing on the AC power supply side.
A first circuit for deriving a minute value, for deriving a time average value of the reactive current positive phase on the AC power supply side.
Second filter means for detecting a reactive current on the AC power supply side derived from the first circuit.
A second subtraction of the output of the second filter means from the phase component
Circuit, the output of the second circuit, and the extraction of the first filter means.
And the active current negative phase component and the reactive current negative phase component
The three-phase compensation current before Symbol reactive power compensation for the inverter
A voltage fluctuation suppressing device comprising a third circuit for deriving a reference .
【請求項2】 交流電源、この交流電源に接続された負
荷、この負荷にそれぞれ並列に接続された無効電力補償
用インバータと高調波フィルターとでなる無効電力補償
装置で構成された電圧変動抑制装置であって、 前記負荷に流れる負荷電流を導入し、この負荷電流か
ら、有効電流の正相分(ipA)と、補償用電流成分と
するべき有効電流の逆相分(ipB)と無効電流の正相
分(iqA)、無効電流の逆相分(iqB)を選択して
抽出し出力する第4のフィルタ手段、 この第4のフィルタ手段の抽出した前記無効電流正相分
から前記高調波フィルターに流れる無効電流正相分(i
qL)を減じて、前記交流電源側に流れる無効電流正相
分を導出する第1の回路、 この交流電源側の無効電流正相分の時間平均値を導出す
る第2のフィルタ手段、 上記第1の回路の導出した前記交流電源側の無効電流正
相分から上記第2のフィルタ手段の出力を減算する第2
の回路、 前記第4のフィルタ手段の抽出した前記有効電流正相分
に所定の力率設定値を乗じて得た補償用インバータの無
効電流の正相分指令値(iq1)から前記第1の回路の
導出した電源側の無効電流正相分を減算して力率制御の
ためのインバータ無効電流指令を得る第5の回路、 この無効電流指令値を上記第2の回路の出力から減算し
てインバータ無効電流正相分指令を得る第6の回路、 この第6の回路の出力と、上記第4のフィルタ手段の抽
出した有効電流逆相分、及び無効電流逆相分とにより、
記無効電力補償用インバータの3相補償電流基準を
出する第3の回路を備えたことを特徴とする電圧変動抑
制装置。
2. An AC power supply, a negative power supply connected to the AC power supply.
Load, reactive power compensation connected in parallel to this load
Power Compensation Using Inverter and Harmonic Filter
A voltage fluctuation suppression device configured by a device, wherein a load current flowing through the load is introduced, and the load current
From the positive phase component (ipA) of the effective current,
Negative phase component (ipB) of active current and positive phase of reactive current
Min (iqA) and the negative phase component (iqB) of the reactive current
Fourth filter means for extracting output, the reactive current positive-phase component extracted in the fourth filter means
And the reactive current positive phase component (i
qL) to reduce the positive phase of the reactive current flowing on the AC power supply side.
A first circuit for deriving a minute value, for deriving a time average value of the reactive current positive phase on the AC power supply side.
Second filter means for detecting a reactive current on the AC power supply side derived from the first circuit.
A second subtraction of the output of the second filter means from the phase component
Circuit, the active current positive phase component extracted by the fourth filter means
Of the compensation inverter obtained by multiplying
From the positive-phase command value (iq1) of the active current, the first circuit
By subtracting the derived reactive current positive phase on the power supply side, the power factor control
Circuit for obtaining an inverter reactive current command for subtracting the reactive current command value from the output of the second circuit.
A sixth circuit for obtaining an inverter reactive current positive phase component command by an inverter, an output of the sixth circuit, and extraction of the fourth filter means.
With the output active current negative phase component and reactive current negative phase component,
Voltage fluctuation suppression device, characterized in that it comprises a third circuit for output guide <br/> the 3-phase compensation current reference before Symbol reactive power compensation inverter.
JP4238307A 1992-09-07 1992-09-07 Voltage fluctuation suppression device Expired - Lifetime JP2725538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4238307A JP2725538B2 (en) 1992-09-07 1992-09-07 Voltage fluctuation suppression device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4238307A JP2725538B2 (en) 1992-09-07 1992-09-07 Voltage fluctuation suppression device

Publications (2)

Publication Number Publication Date
JPH0690527A JPH0690527A (en) 1994-03-29
JP2725538B2 true JP2725538B2 (en) 1998-03-11

Family

ID=17028264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4238307A Expired - Lifetime JP2725538B2 (en) 1992-09-07 1992-09-07 Voltage fluctuation suppression device

Country Status (1)

Country Link
JP (1) JP2725538B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6078416B2 (en) * 2013-05-20 2017-02-08 田淵電機株式会社 Inverter

Also Published As

Publication number Publication date
JPH0690527A (en) 1994-03-29

Similar Documents

Publication Publication Date Title
KR100934311B1 (en) Inverter device
KR900005766B1 (en) Control system for pwm inverter
JP2714195B2 (en) Voltage fluctuation and harmonic suppression device
KR920010407B1 (en) Apparatus for transforming of 3 phase
JP4935617B2 (en) Active filter function device
JP2793327B2 (en) Reactive power compensator
JP3130694B2 (en) Voltage fluctuation and harmonic suppression device
JP2725538B2 (en) Voltage fluctuation suppression device
JPH11143562A (en) Controller for active filter device
JP3181859B2 (en) Power converter
JPH0783599B2 (en) Control method of circulating current type cycloconverter
JP2003324847A (en) Method and apparatus for compensating voltage flicker
JPH10174291A (en) Inverter device linked to system
JP3312178B2 (en) Control device for self-excited inverter
JPH11313449A (en) Single conversion type ups
JP2747804B2 (en) Power supply for playback type device
JP3779061B2 (en) Active filter device
JP3322983B2 (en) Fault current suppression device
JPH07236230A (en) Controller for voltage fluctuation suppresser
JP3309894B2 (en) Control method of self-excited var compensator
JP2906923B2 (en) Voltage fluctuation suppression device
JPH10222235A (en) Control circuit of active filter device
JPH05336663A (en) Harmonic suppressor
JPH06133458A (en) Current command circuit for active filter
JP2000071821A (en) Power leveling device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 15