JPH07100609B2 - 薄膜超電導体の製造方法 - Google Patents
薄膜超電導体の製造方法Info
- Publication number
- JPH07100609B2 JPH07100609B2 JP62262060A JP26206087A JPH07100609B2 JP H07100609 B2 JPH07100609 B2 JP H07100609B2 JP 62262060 A JP62262060 A JP 62262060A JP 26206087 A JP26206087 A JP 26206087A JP H07100609 B2 JPH07100609 B2 JP H07100609B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- thin film
- superconductor
- substrate
- vapor deposition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002887 superconductor Substances 0.000 title claims description 27
- 239000010409 thin film Substances 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000000758 substrate Substances 0.000 claims description 27
- 239000001301 oxygen Substances 0.000 claims description 17
- 229910052760 oxygen Inorganic materials 0.000 claims description 17
- 150000001875 compounds Chemical class 0.000 claims description 14
- -1 oxygen ions Chemical class 0.000 claims description 10
- 239000010408 film Substances 0.000 claims description 9
- 230000007704 transition Effects 0.000 claims description 9
- 239000002131 composite material Substances 0.000 claims description 8
- 238000007740 vapor deposition Methods 0.000 claims description 8
- 238000004544 sputter deposition Methods 0.000 claims description 6
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims description 3
- 238000002425 crystallisation Methods 0.000 claims description 3
- 230000008025 crystallization Effects 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims 1
- 238000000034 method Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000013078 crystal Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 229910009203 Y-Ba-Cu-O Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 3
- 229910052788 barium Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910002480 Cu-O Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 150000002603 lanthanum Chemical class 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052706 scandium Inorganic materials 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910000750 Niobium-germanium Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- CFJRGWXELQQLSA-UHFFFAOYSA-N azanylidyneniobium Chemical compound [Nb]#N CFJRGWXELQQLSA-UHFFFAOYSA-N 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- RTRWPDUMRZBWHZ-UHFFFAOYSA-N germanium niobium Chemical compound [Ge].[Nb] RTRWPDUMRZBWHZ-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 239000011882 ultra-fine particle Substances 0.000 description 1
- 238000005019 vapor deposition process Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Physical Vapour Deposition (AREA)
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は超電導体の製造方法に関するものである。特に
化合物薄膜超電導体の製造方法に関するものである。
化合物薄膜超電導体の製造方法に関するものである。
従来の技術 高温超電導体として、A15型2元系化合物として窒化ニ
オブ(NbN)やゲルマニウムニオブ(Nb3Ge)などが知ら
れていたが、これらの材料の超電導転移温度はたかだか
24゜Kであった。一方、ペロブスカイト系3元化合物
は、さらに高い転移温度が期待され、Ba−La−Cu−O系
の高温超電導体が提案された[J.G.Bendorz and K.A.Mu
ller,ツァイト シュリフト フェアフィジーク(Ze ts
hrift frphysik B)−Condensed Matter64,189−193
(1986)]。さらに、Y−Ba−Cu−O系がより高温の超
電導材料であることが、最近提案された。(文献)[M.
K.Wu等,フィジカル レビュー レターズ(Physical R
eview Letters)Vol,58No9,908−910(1987)] Y−Ba−Cu−O系の材料の超電導機構の詳細は明らかで
はないが、転移温度が液体窒素温度以上に高くなる可能
性があり、高温超電導体として従来の2元系化合物よ
り、より有望な特性が期待される。
オブ(NbN)やゲルマニウムニオブ(Nb3Ge)などが知ら
れていたが、これらの材料の超電導転移温度はたかだか
24゜Kであった。一方、ペロブスカイト系3元化合物
は、さらに高い転移温度が期待され、Ba−La−Cu−O系
の高温超電導体が提案された[J.G.Bendorz and K.A.Mu
ller,ツァイト シュリフト フェアフィジーク(Ze ts
hrift frphysik B)−Condensed Matter64,189−193
(1986)]。さらに、Y−Ba−Cu−O系がより高温の超
電導材料であることが、最近提案された。(文献)[M.
K.Wu等,フィジカル レビュー レターズ(Physical R
eview Letters)Vol,58No9,908−910(1987)] Y−Ba−Cu−O系の材料の超電導機構の詳細は明らかで
はないが、転移温度が液体窒素温度以上に高くなる可能
性があり、高温超電導体として従来の2元系化合物よ
り、より有望な特性が期待される。
発明が解決しようとする問題点 しかしながら、Y−Ba−Cu−O系の材料は、現在の技術
では焼結という過程でしか形成できないため、セラミッ
クの粉末あるいはブロックの形状でしか得られない。一
方、この種の材料を実用化する場合、薄膜状に加工する
ことが強く要望されている。従来の技術では、スパッタ
法で蒸着し、形成された薄膜をさらに900〜1000℃で酸
素中の熱処理を施して超電導特性を実現していた。一
方、薄膜をエレクトロニクス素子で実用化するには、さ
らに500〜600℃以下の低温で形成することが要請されて
いるが、低温に困難とされていた。
では焼結という過程でしか形成できないため、セラミッ
クの粉末あるいはブロックの形状でしか得られない。一
方、この種の材料を実用化する場合、薄膜状に加工する
ことが強く要望されている。従来の技術では、スパッタ
法で蒸着し、形成された薄膜をさらに900〜1000℃で酸
素中の熱処理を施して超電導特性を実現していた。一
方、薄膜をエレクトロニクス素子で実用化するには、さ
らに500〜600℃以下の低温で形成することが要請されて
いるが、低温に困難とされていた。
本発明者らは、この種の材料の薄膜をイオンプロセスに
より付着させると、薄膜状の高温超電導体が形成される
ことを発見するとともに、高温アニール処理が不安な薄
膜超電導体の製造方法を発明した。
より付着させると、薄膜状の高温超電導体が形成される
ことを発見するとともに、高温アニール処理が不安な薄
膜超電導体の製造方法を発明した。
問題点を解決するための手段 本発明の薄膜超電導体の製造方法は、基体表面に少くと
もA、B、Cuを含む酸化物で、元素のモル比率が の複合化合物被膜をスパッタ蒸着する際に、基体表面を
酸素イオンで照射するものである。ここにAはSc,Yおよ
びランタン系列元素(原子番号57−71)のうちすくなく
とも一種、BはBa,Sr,Ca,Be,MgなどII a族元素のうちの
少なくとも一種の元素を示す。
もA、B、Cuを含む酸化物で、元素のモル比率が の複合化合物被膜をスパッタ蒸着する際に、基体表面を
酸素イオンで照射するものである。ここにAはSc,Yおよ
びランタン系列元素(原子番号57−71)のうちすくなく
とも一種、BはBa,Sr,Ca,Be,MgなどII a族元素のうちの
少なくとも一種の元素を示す。
さらに、本発明において、基体表面の温度tsをTcTs
Tcとするものである。ここにTt,Tcはそれぞれ複合化合
物の正方晶/斜方晶転移温度、結晶化温度を示す。
Tcとするものである。ここにTt,Tcはそれぞれ複合化合
物の正方晶/斜方晶転移温度、結晶化温度を示す。
作用 本発明にかかる薄膜超電導体の製造方法は、超電導体を
低温度で薄膜化することが可能となる。すなわち、薄膜
化は超電導体の素材を原子状態という極微粒子に分解し
てから基体上に堆積させるから、形成された超電導体の
組成は本質的に均質であるとともに、蒸着時に基板表面
が酸素イオンで照射されると高温熱処理なしに超電導特
性が得られる。したがって本発明により非常に高精度の
超電導体が本発明の方法を用いて実現される。
低温度で薄膜化することが可能となる。すなわち、薄膜
化は超電導体の素材を原子状態という極微粒子に分解し
てから基体上に堆積させるから、形成された超電導体の
組成は本質的に均質であるとともに、蒸着時に基板表面
が酸素イオンで照射されると高温熱処理なしに超電導特
性が得られる。したがって本発明により非常に高精度の
超電導体が本発明の方法を用いて実現される。
実施例 本発明の実施例を図面とともに説明する。
第1図において、複合化合物被膜12は、スパッタガン13
で素材の原子状14に分解し、これを基板11上に蒸着す
る。この場合、超電導体A−B−Cu−Oは結晶構造や組
成式がまだ明確には決定されていないが、酸素欠損ペロ
ブスカイトA1B2Cu3O7-xともいわれている。本発明者等
は、作製された被膜において元素比率が の範囲にあれば、臨界温度に多少の差があっても超電導
現象が見出されることを確認した。
で素材の原子状14に分解し、これを基板11上に蒸着す
る。この場合、超電導体A−B−Cu−Oは結晶構造や組
成式がまだ明確には決定されていないが、酸素欠損ペロ
ブスカイトA1B2Cu3O7-xともいわれている。本発明者等
は、作製された被膜において元素比率が の範囲にあれば、臨界温度に多少の差があっても超電導
現象が見出されることを確認した。
このようなスパッタ被膜において超電導特性を得るに
は、通常200〜700℃の基板温度で成膜した後、さらに空
気中あるいは酸素雰囲気中で900〜1000℃高温熱処理を
施す必要があった。ところが本発明者らは、スパッタ蒸
着時に基板表面が酸素イオン15に照射されていれば、意
外にも高温熱処理なしに超電導特性が得られることを発
見した。
は、通常200〜700℃の基板温度で成膜した後、さらに空
気中あるいは酸素雰囲気中で900〜1000℃高温熱処理を
施す必要があった。ところが本発明者らは、スパッタ蒸
着時に基板表面が酸素イオン15に照射されていれば、意
外にも高温熱処理なしに超電導特性が得られることを発
見した。
すなわち、酸化マグネシウム単結晶(100)面を基体11
として用い、スパッタガン13により、焼結したY1Ba2Cu5
Oxターゲット17をArガスでスパッタリング蒸発させると
ともに、上記スパッタガン13とは別に設けた酸素イオン
ガン16により、酸素イオン15を基体11に照射し、上記基
体11上に結晶性のY1Ba2Cu3O7.5被膜12を形成した。スパ
ッタガス圧力は0.5Pa、スパッタリング電力150W、スパ
ッタリング時間1時間、基板温度650℃とした。また、
酸素イオンビームは、加速電圧1000V、電流100μAであ
った。成膜後の複合化合物被膜の超電導特性を第2図に
示す。ゼロ抵抗臨界温度は80K以上を示し、良好な特性
が得られたことを本発明者等は確認した。さらに液体窒
素温度(77K)での臨界電流密度が20万A/cm2に達し、実
用上非常に有効であることも合わせて確認した。
として用い、スパッタガン13により、焼結したY1Ba2Cu5
Oxターゲット17をArガスでスパッタリング蒸発させると
ともに、上記スパッタガン13とは別に設けた酸素イオン
ガン16により、酸素イオン15を基体11に照射し、上記基
体11上に結晶性のY1Ba2Cu3O7.5被膜12を形成した。スパ
ッタガス圧力は0.5Pa、スパッタリング電力150W、スパ
ッタリング時間1時間、基板温度650℃とした。また、
酸素イオンビームは、加速電圧1000V、電流100μAであ
った。成膜後の複合化合物被膜の超電導特性を第2図に
示す。ゼロ抵抗臨界温度は80K以上を示し、良好な特性
が得られたことを本発明者等は確認した。さらに液体窒
素温度(77K)での臨界電流密度が20万A/cm2に達し、実
用上非常に有効であることも合わせて確認した。
この場合、なぜ基体表面を酸素イオンビーム中にさらす
と高温熱処理なしに良好な超電導特性が得られるかは明
らかではないが、成膜中のアルゴンあるいは酸素イオン
の照射が被膜の結晶性や酸素濃度に好影響を与えるため
と考えられる。
と高温熱処理なしに良好な超電導特性が得られるかは明
らかではないが、成膜中のアルゴンあるいは酸素イオン
の照射が被膜の結晶性や酸素濃度に好影響を与えるため
と考えられる。
この場合、さらに本発明者らは蒸着中の基板温度が結晶
学的に見て最適範囲であることを発見した。すなわち、
基板温度をTsとすると、TcTsTtが、超電導薄膜を形
成するための最適基板温度範囲であることを本発明者ら
は確認した。ここに、Tcは複合化合物薄膜の結晶化温
度、Ttは複合化合物法膜の結晶構造の正方晶/斜方晶転
移温度を示す。
学的に見て最適範囲であることを発見した。すなわち、
基板温度をTsとすると、TcTsTtが、超電導薄膜を形
成するための最適基板温度範囲であることを本発明者ら
は確認した。ここに、Tcは複合化合物薄膜の結晶化温
度、Ttは複合化合物法膜の結晶構造の正方晶/斜方晶転
移温度を示す。
すなわち、第3図に示すごとく、基板温度TsをTt以上に
して蒸着すると、形成された薄膜の構造は立方晶にな
り、半導体的な特性を示した。一方、基板温度TsをTc以
下にすると、形成された薄膜の構造は非晶質で、高抵抗
の電気絶縁性を示した。超電導特性は、基板温度Tsが、
TcとTtの間において得られ、この場合結晶構造は斜方晶
であった。この場合本発明者らは酸素イオンビームを用
いないで蒸着すると、Tc<Ts<Ttの範囲においても、形
成された薄膜は、半導体的で、超電導は示さなかった。
なおY−Ba−Cu−O系材料では、Tc600℃、Tt700〜
800℃にあることを本発明者らは確認した。ちなみに上
記第1図の特性例は、Ts=650℃,TcTsTtの条件を満
足している。
して蒸着すると、形成された薄膜の構造は立方晶にな
り、半導体的な特性を示した。一方、基板温度TsをTc以
下にすると、形成された薄膜の構造は非晶質で、高抵抗
の電気絶縁性を示した。超電導特性は、基板温度Tsが、
TcとTtの間において得られ、この場合結晶構造は斜方晶
であった。この場合本発明者らは酸素イオンビームを用
いないで蒸着すると、Tc<Ts<Ttの範囲においても、形
成された薄膜は、半導体的で、超電導は示さなかった。
なおY−Ba−Cu−O系材料では、Tc600℃、Tt700〜
800℃にあることを本発明者らは確認した。ちなみに上
記第1図の特性例は、Ts=650℃,TcTsTtの条件を満
足している。
従来の蒸着では、本発明者らの確立した基板温度条件Tc
TsTtと、酸素イオン照射プロセスを用いていないた
め、必ず蒸着後酸化雰囲気中で900℃程度の温度アニー
ル処理を行い超電導特性を実現している。これに対し、
本発明の製造方法では上記高温アニール処理が不要であ
ることが大きな特徴である。
TsTtと、酸素イオン照射プロセスを用いていないた
め、必ず蒸着後酸化雰囲気中で900℃程度の温度アニー
ル処理を行い超電導特性を実現している。これに対し、
本発明の製造方法では上記高温アニール処理が不要であ
ることが大きな特徴である。
この種の3元化合物超電導体A1B2Cu3O7-xの構成元素A
およびBの変化による超電導特性の変化の詳細は明らか
ではない。ただAは、3価,Bは2価を示しているのは事
実ではある。A元素としてYについて例をあげて説明し
たが、ScやLa、さらにランタン系列の元素(原子番号57
〜71)でも、超電導転移温度が変化する程度で本質的な
発明の特性を変えるものではない。
およびBの変化による超電導特性の変化の詳細は明らか
ではない。ただAは、3価,Bは2価を示しているのは事
実ではある。A元素としてYについて例をあげて説明し
たが、ScやLa、さらにランタン系列の元素(原子番号57
〜71)でも、超電導転移温度が変化する程度で本質的な
発明の特性を変えるものではない。
また、B元素においても、Sr、Ca、Ba等II a族元素の変
化は超電導転移温度を10゜K程度変化させるが、本質的
に本発明の特性を変えるものではない。
化は超電導転移温度を10゜K程度変化させるが、本質的
に本発明の特性を変えるものではない。
また、本発明における蒸着プロセスは、スパッタガンに
ついて具体例を示したが、蒸着された薄膜Y,Ba,Cuの化
学組成が所望の比率になっておりさえすればよく、スパ
ッタ以外にMBE、CVDなど熱的、化学的蒸着法も実用され
る。さらに、基板の温度は被覆したい基体の表面さえ温
度が所望の値になっておりさえすればよいことはいうま
でもない。基体の表面のみ照射などで昇温させてもよ
い。
ついて具体例を示したが、蒸着された薄膜Y,Ba,Cuの化
学組成が所望の比率になっておりさえすればよく、スパ
ッタ以外にMBE、CVDなど熱的、化学的蒸着法も実用され
る。さらに、基板の温度は被覆したい基体の表面さえ温
度が所望の値になっておりさえすればよいことはいうま
でもない。基体の表面のみ照射などで昇温させてもよ
い。
発明の効果 とりわけ、本発明にかかる超電導体は、超電導体を低温
で薄膜化できる所に大きな特性がある。すなわち、作製
された薄膜においてA,B,Cu元素の組成比、結晶構造、酸
素濃度の制御を容易に再現性良く行うことができる。し
たがって、非常に高精度の超電導体が本発明で実現され
る。
で薄膜化できる所に大きな特性がある。すなわち、作製
された薄膜においてA,B,Cu元素の組成比、結晶構造、酸
素濃度の制御を容易に再現性良く行うことができる。し
たがって、非常に高精度の超電導体が本発明で実現され
る。
以上の説明のごとく本発明の薄膜超電導体の製造方法に
よると、例えば結晶性基体上に超電導薄膜が低温で形成
されるので焼結体より本質的により精度が高い上Siある
いはGaAsなどのデバイスとの集積化が可能であるととも
に、ジョセフソン素子など各種の超電導デバイスの製造
に実用される。特にこの種の化合物超電導体の転移温度
が室温になる可能性もあり、従来の実用の範囲は広く、
本発明の工業的価値は高い。
よると、例えば結晶性基体上に超電導薄膜が低温で形成
されるので焼結体より本質的により精度が高い上Siある
いはGaAsなどのデバイスとの集積化が可能であるととも
に、ジョセフソン素子など各種の超電導デバイスの製造
に実用される。特にこの種の化合物超電導体の転移温度
が室温になる可能性もあり、従来の実用の範囲は広く、
本発明の工業的価値は高い。
第1図は本発明の一実施例の薄膜超電導体の製造方法の
概略基本構成断面図、第2図は本発明の方法における薄
膜超電導体の基本特性図、第3図は本発明における薄膜
超電導体製造方法の基体概略図である。 11……基体、12……複合化合物被膜、15……酸素イオ
ン。
概略基本構成断面図、第2図は本発明の方法における薄
膜超電導体の基本特性図、第3図は本発明における薄膜
超電導体製造方法の基体概略図である。 11……基体、12……複合化合物被膜、15……酸素イオ
ン。
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // C23C 14/08 ZAA L 8414−4K 14/34 ZAA Q 8414−4K
Claims (3)
- 【請求項1】基体上に少なくともA元素、B元素および
Cuを含む酸化物で、元素のモル比が のイットリウム系複合化合物被膜をスパッタ蒸着する際
に、少なくとも基体表面を酸素イオンで照射し、基体表
面の温度TsをTt>Ts>Tcの範囲に設定することを特徴と
する薄膜超電導体の製造方法。ここに、Tt,Tcはそれぞ
れ複合化合物の正方晶/斜方晶転移温度、結晶化温度を
示す。 - 【請求項2】蒸着をスパッタで行なうことを特徴とする
特許請求の範囲第1項記載の薄膜超電導体の製造方法。 - 【請求項3】蒸着を、熱蒸着で行なうことを特徴とする
特許請求の範囲第1項記載の薄膜超電導体の製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62262060A JPH07100609B2 (ja) | 1987-10-16 | 1987-10-16 | 薄膜超電導体の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62262060A JPH07100609B2 (ja) | 1987-10-16 | 1987-10-16 | 薄膜超電導体の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01105416A JPH01105416A (ja) | 1989-04-21 |
JPH07100609B2 true JPH07100609B2 (ja) | 1995-11-01 |
Family
ID=17370469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62262060A Expired - Lifetime JPH07100609B2 (ja) | 1987-10-16 | 1987-10-16 | 薄膜超電導体の製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07100609B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01220312A (ja) * | 1988-02-29 | 1989-09-04 | Sumitomo Cement Co Ltd | 超電導セラミックス線材の作製方法 |
JPH01261204A (ja) * | 1988-04-11 | 1989-10-18 | Fujikura Ltd | 酸化物系超電導体の製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0778000B2 (ja) * | 1987-03-31 | 1995-08-23 | 住友電気工業株式会社 | 酸化物超電導薄膜の製造方法 |
-
1987
- 1987-10-16 JP JP62262060A patent/JPH07100609B2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01105416A (ja) | 1989-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4988670A (en) | Method of forming oxide superconducting films by in-situ annealing | |
EP0292958B1 (en) | Method for preparing thin film of compound oxide superconductor | |
EP0358545B1 (en) | Improvement in a process for producing thallium type superconducting thin film | |
KR930008648B1 (ko) | 페로브스키트형 초전도체막 준비공정 | |
EP0357500B1 (en) | Process for preparing a bismuth-type superconducting thin film | |
JPH07100609B2 (ja) | 薄膜超電導体の製造方法 | |
US4981839A (en) | Method of forming superconducting oxide films using zone annealing | |
JP2702711B2 (ja) | 薄膜超電導体の製造方法 | |
JP2594271B2 (ja) | 超電導体用薄膜の製造装置および超電導体用薄膜の製造方法 | |
US5296455A (en) | Process for preparing superconductor of compound oxide of Bi-Sr-Ca-Cu system | |
EP0624910A1 (en) | Superconductor and method of fabricating superconductor | |
EP0333513B1 (en) | Oxide superconductor | |
JP2669052B2 (ja) | 酸化物超電導薄膜およびその製造方法 | |
EP0643400B1 (en) | Method for making a superconductor thin film | |
JPH02175613A (ja) | 酸化物超伝導薄膜の作製方法 | |
JPH07106896B2 (ja) | 超電導体 | |
JP2564598B2 (ja) | 酸化物超伝導体及びその製造方法 | |
JPH01219023A (ja) | 超伝導体薄膜の製造方法 | |
JPH0818837B2 (ja) | スパッタリング用ターゲットおよび超電導薄膜の製造方法 | |
JPH05170448A (ja) | セラミックス薄膜の製造方法 | |
JP2555477B2 (ja) | 超伝導薄膜およびその製造方法 | |
JP3025891B2 (ja) | 薄膜超電導体およびその製造方法 | |
JP2748457B2 (ja) | 超伝導膜の製造方法 | |
JP2577056B2 (ja) | 複合酸化物超電導薄膜の作製方法 | |
Kotelyansky et al. | Preparation of epitaxial YBa 2 Cu 3 O 7− x films by magnetron sputtering |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |