JPH07100603B2 - Composite carbonitride manufacturing method - Google Patents

Composite carbonitride manufacturing method

Info

Publication number
JPH07100603B2
JPH07100603B2 JP20305487A JP20305487A JPH07100603B2 JP H07100603 B2 JPH07100603 B2 JP H07100603B2 JP 20305487 A JP20305487 A JP 20305487A JP 20305487 A JP20305487 A JP 20305487A JP H07100603 B2 JPH07100603 B2 JP H07100603B2
Authority
JP
Japan
Prior art keywords
nitrogen
composite carbonitride
temperature
torr
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20305487A
Other languages
Japanese (ja)
Other versions
JPS6445707A (en
Inventor
和孝 磯部
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20305487A priority Critical patent/JPH07100603B2/en
Publication of JPS6445707A publication Critical patent/JPS6445707A/en
Publication of JPH07100603B2 publication Critical patent/JPH07100603B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、極めて強靱で高品質な窒素含有サーメツトの
製造に必要とする硬質原料の、Ti,Ta,W,Moの複合炭窒化
物の製造法に関する。本発明による複合炭窒化物を原料
とした窒素含有サーメツトは例えば高速,高送り条件下
で使用する切削工具等に有効に利用できる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a hard carbon material, Ti, Ta, W, Mo composite carbonitride, which is a hard raw material required for the production of an extremely tough and high quality nitrogen-containing cermet. Regarding manufacturing method. The nitrogen-containing cermet made of the composite carbonitride according to the present invention can be effectively used for a cutting tool used under high speed and high feed conditions.

〔従来の技術〕[Conventional technology]

Ti,Ta,W,Mo等の炭窒化物をNaやCo等の金属で結合した窒
素含有サーメツトは、従来の窒素を含有しないサーメツ
トに比べ、その硬質分散相が著しく微粒になるため、切
削工具としての耐塑性変形性、耐熱疲労性が大幅に改善
されることが知られている(特公昭49−1364号公報)。
Nitrogen-containing cermets in which carbonitrides such as Ti, Ta, W, Mo, etc. are bonded with metals such as Na and Co are more difficult to cut than conventional cermets that do not contain nitrogen. It is known that the plastic deformation resistance and the heat fatigue resistance are significantly improved (Japanese Patent Publication No. 49-1364).

ところで、この種のサーメツトの作製において、真空中
での焼結を行うと、サーメツト合金中に含有される炭窒
化物が分解し、いわゆる脱窒現象が起きて窒素添加の効
果が減少したり、また、その際に生じた窒素ガスが焼結
体から充分に抜けずに焼結後にボアとして残存し、いず
れも窒素含有サーメツトの工具としての信頼性を著しく
低下させることになる。
By the way, in the production of this type of cermet, when sintering is performed in a vacuum, carbonitrides contained in the cermet alloy are decomposed, so-called denitrification phenomenon occurs and the effect of nitrogen addition is reduced, or In addition, the nitrogen gas generated at that time does not sufficiently escape from the sintered body and remains as a bore after sintering, both of which significantly reduce the reliability of the nitrogen-containing cermet as a tool.

そのために、上記特公昭49−1364号公報には、該サーメ
ツトを真空中ではなく窒素雰囲気中で焼結することによ
り、窒化物の分解を抑えるという技術が開示されてい
る。さらに、含有窒素量が増すと脱窒量も増すため、そ
の抑制のためには雰囲気窒素圧を80Torr以上必要とする
が、焼結時の該サーメツトからの脱ガスが不充分となる
欠点があつた。
Therefore, Japanese Patent Publication No. 49-1364 discloses a technique of suppressing decomposition of nitrides by sintering the thermite in a nitrogen atmosphere instead of in a vacuum. Further, as the nitrogen content increases, the denitrification amount also increases, and therefore, the atmospheric nitrogen pressure needs to be 80 Torr or more to suppress it, but there is a drawback that degassing from the thermite during sintering becomes insufficient. It was

その克服法として、サーメツト中に含有される金属元素
の複合炭窒化物を予め製造して、窒素解離圧を下げ、焼
結中の脱窒を極力抑える方法が提案されている(例えば
特公昭56−51201号公報等)。
As a method of overcoming this, a method has been proposed in which a composite carbonitride of a metal element contained in the thermite is manufactured in advance, the nitrogen dissociation pressure is lowered, and denitrification during sintering is suppressed as much as possible (for example, Japanese Patent Publication No. −51201 publication).

さらに、該複合炭窒化物の粉末を微粒にするために、酸
化物を出発原料とし、これに炭素粉末を混合し、窒素気
流中にて加熱させるという試みがなされている(例えば
特開昭61−291408号公報等)。
Furthermore, in order to make the powder of the composite carbonitride into fine particles, an attempt has been made to use an oxide as a starting material, mix it with carbon powder, and heat it in a nitrogen stream (for example, Japanese Patent Laid-Open No. 61-61). -291408, etc.).

また、このような従来の複合炭窒化物の製造法は、開放
型ボート送りの連続炉で、窒素を流したままの状態にし
て、ボートを順次送つていく方式で行なうのが一般的で
あつた。
In addition, such a conventional method for producing a composite carbonitride is generally performed by an open boat-type continuous furnace in which nitrogen is kept flowing and the boat is sequentially fed. It was

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、従来の酸化物と炭素との混合物に窒素を
流して複合炭窒化物を作製するという方法では、遊離炭
素,酸素が残存し、得られた複合炭窒化物を原料に用い
たサーメツトを作製する際の焼結過程における焼結性を
劣化させ、その結果、工具としての特性である耐摩耗性
や靱性を低下させてしまうという問題があつた。
However, in the conventional method of producing a composite carbonitride by flowing nitrogen into a mixture of oxide and carbon, free carbon and oxygen remain, and a cermet using the obtained composite carbonitride as a raw material is produced. However, there is a problem in that the sinterability in the sintering process at the time of deterioration is deteriorated, and as a result, the wear resistance and the toughness, which are the characteristics of the tool, are reduced.

本発明はこの問題点を解決して、金属酸化物と炭素粉末
を原料として、酸素や遊離炭素の残存を防止し、しかも
微細な粉末で焼結性の良いTi,Ta,W,Moの複合炭窒化物の
製造法を提案することを目的とするものである。
The present invention solves this problem by using metal oxide and carbon powder as raw materials to prevent oxygen and free carbon from remaining, and is a fine powder of good sinterability of Ti, Ta, W, Mo composites. The purpose is to propose a method for producing carbonitrides.

〔問題点を解決するための手段及び作用〕[Means and Actions for Solving Problems]

上記の問題点の解決手段を求めて本発明者らは、酸化物
を出発原料とした複合炭窒化物の生成過程について詳細
な検討を行つた。
In search of a solution to the above-mentioned problems, the present inventors have conducted a detailed study on the production process of a composite carbonitride using an oxide as a starting material.

その結果、前記のように窒素を流した状態で開放型ボー
ト送り方式で、酸化物原料から複合炭窒化物を作製する
従来法は、明らかに製造工程が簡略化されており、かつ
酸化物原料自体が元来微粒な粉末であるため、生成する
複合炭窒化物粉末も微粒になる点で有効なものである
が、その反応は非常に複雑であることが判つた。これ
は、還元反応に加え、炭化,窒化各反応が起こり、さら
に固溶化反応も生じるためであり、加熱に伴い、まず各
酸化物の還元反応がCoガスの発生として進行し、引き続
き窒化,炭化が重なり合うように起こるものであるとい
う知見を得た。
As a result, the conventional method of producing a composite carbonitride from an oxide raw material by the open boat feeding method with nitrogen flowing as described above clearly has a simplified manufacturing process, and Since the powder itself is originally fine particles, the resulting composite carbonitride powder is also effective in that it becomes fine particles, but it has been found that the reaction is very complicated. This is because, in addition to the reduction reaction, carbonization and nitriding reactions also occur, and further a solid solution reaction also occurs. With heating, first, the reduction reaction of each oxide proceeds as Co gas generation, and then nitriding and carbonization continue. We have found that the two occur in an overlapping manner.

従つてこの知見によれば、酸素を完全除去するために
は、還元終了温度まで高真空に保ち、その後窒素を供給
するのが理想的手段であるといえる。しかし、実際には
窒素を流さなければある温度から粒成長が始まり、当初
の目的である微粒化が充分には図れない。
Therefore, according to this finding, in order to completely remove oxygen, it can be said that the ideal means is to maintain high vacuum up to the reduction end temperature and then supply nitrogen. However, in reality, unless nitrogen is flown, grain growth starts from a certain temperature, and the original purpose of atomization cannot be sufficiently achieved.

本発明者らは、これらの状況に鑑みて、酸化物を原料と
し、酸化除去,遊離炭素の残留防止と微粒化の両方を達
成できるような加熱方法、特に雰囲気条件と温度条件に
ついて研究を重ね、TiO2,Ta2O5,WO3,MoO3及び炭素粉末
を出発原料として混合し、該混合物を真空中で加熱した
後、1200℃以上1500℃以下の温度で雰囲気中に窒素供給
を開始し、引き続き該窒素雰囲気中で1500℃以上2100℃
以下の温度に保持して反応せしめることを特徴とするT
i,Ta,W,Moの複合炭窒化物の製造法である本発明に到達
したのである。
In view of these circumstances, the present inventors have made repeated studies on a heating method using an oxide as a raw material, which can achieve both removal of oxidation, prevention of residual free carbon and atomization, particularly atmospheric conditions and temperature conditions. , TiO 2 , Ta 2 O 5 , WO 3 , MoO 3 and carbon powder are mixed as a starting material, the mixture is heated in a vacuum, and then nitrogen is supplied into the atmosphere at a temperature of 1200 ° C. or higher and 1500 ° C. or lower. And then 1500 ° C or more and 2100 ° C in the nitrogen atmosphere.
T characterized by holding at the following temperature to react
The present invention, which is a method for producing a composite carbonitride of i, Ta, W, and Mo, has been reached.

本発明はTi,Ta,W,MoをそれぞれTiO2,Ta2O3,WO3,MoO3
いう酸化物で供給し、これに炭素粉末を混合し、これを
加熱処理するに際し、まず還元反応が進行する低温側で
は真空雰囲気で加熱し、加熱昇温を続けて1200℃以上15
00℃以下までの範囲において雰囲気への窒素供給を開始
し、引き続きこの窒素雰囲気中で1500℃以上2100℃以下
で加熱することにより、炭窒化反応をさせてTi,Ta,W,Mo
の複炭窒化物を得る方法である。窒素雰囲気圧力を30To
rr以上10気圧以下とすることが特に好ましい。
In the present invention, Ti, Ta, W, Mo are respectively supplied as oxides of TiO 2 , Ta 2 O 3 , WO 3 and MoO 3 , carbon powder is mixed with this, and when this is heat-treated, the reduction reaction is first performed. On the low temperature side where the
Nitrogen supply to the atmosphere is started in the range of up to 00 ° C or lower, and subsequently, heating is performed at 1500 ° C or higher and 2100 ° C or lower in this nitrogen atmosphere to cause carbonitriding reaction and Ti, Ta, W, Mo.
This is a method for obtaining the double carbonitride. Nitrogen atmosphere pressure 30To
It is particularly preferable that the pressure is rr or more and 10 atm or less.

このように酸化物を出発原料に用いることで、微粉末が
得られ、また、酸化物の還元反応中は充分に真空を保持
するので、酸素含有量を著しく低下させることができ、
かつ、酸素はCoガスとして抜けるため、炭化するために
必要な量の炭素以外に還元のために混合しておいた炭素
も、その役割を果して抜けてゆく。その結果、残留酸素
や遊離炭素の著しく少ない良質な複合炭窒化物が得られ
る。
By using the oxide as a starting material in this way, a fine powder is obtained, and since the vacuum is sufficiently maintained during the reduction reaction of the oxide, the oxygen content can be significantly reduced,
Moreover, since oxygen escapes as Co gas, carbon mixed for reduction in addition to the amount of carbon necessary for carbonization also fulfills its role. As a result, a high-quality composite carbonitride containing significantly less residual oxygen and free carbon can be obtained.

従つて、本発明の複合炭窒化物を用いてサーメツトを作
製すると、非常に焼結性が良く、切削特性においても耐
摩耗性,靱性,耐熱亀裂性の極めて優れた、信頼性の高
い合金が得られるのである。
Therefore, when a thermite is produced using the composite carbonitride of the present invention, a highly reliable alloy having very good sinterability and excellent cutting resistance in wear resistance, toughness, and heat cracking resistance can be obtained. You can get it.

以下、本発明における一般的方法と制限理由を述べる。The general method and the reasons for limitation in the present invention will be described below.

1) 真空加熱条件 真空度は10-3Torr以上10Torr以下とする。10-3Torr未満
では効果に差異がなく、10Torrを越えると酸素,遊離炭
素を充分に除去することができない。真空に保持する時
間については特に制限するところはない。
1) Vacuum heating conditions The degree of vacuum is 10 -3 Torr or more and 10 Torr or less. If it is less than 10 -3 Torr, there is no difference in effect, and if it exceeds 10 Torr, oxygen and free carbon cannot be sufficiently removed. There is no particular limitation on the time for holding in vacuum.

2) 昇温速度 常温(加熱処理開始)から1500℃以上2100℃以下の最高
到達温度までの全温度域で1〜100℃/分が好ましい。
1℃/分より小さいと粒成長するし、100℃/分より大
きいと、酸素,遊離炭素を充分に除去することができな
い。
2) Rate of temperature increase 1 to 100 ° C./minute is preferable in the entire temperature range from room temperature (start of heat treatment) to the maximum reached temperature of 1500 ° C. or more and 2100 ° C. or less.
If it is less than 1 ° C / min, grain growth occurs, and if it is more than 100 ° C / min, oxygen and free carbon cannot be sufficiently removed.

3) 窒素供給開始温度 1200℃以上1500℃以下で窒素供給を開始する。1200℃未
満で供給すると、該複合炭窒化物中に酸素が残留し、15
00℃を越えても窒素供給しないでおくと粒成長をきた
し、合金の硬度を低下させることになるので好ましくな
い。
3) Nitrogen supply is started at a nitrogen supply start temperature of 1200 ° C or higher and 1500 ° C or lower. When supplied below 1200 ° C, oxygen remains in the composite carbonitride,
Even if the temperature exceeds 00 ° C., if nitrogen is not supplied, grain growth will occur and the hardness of the alloy will be reduced, which is not preferable.

4) 加熱処理中の窒素雰囲気圧力 30Torr以上10気圧以下とする。30Torr未満では窒素供給
による微細化の効果が得られず、また10気圧を越えても
その効果に差異はないに加え、設備的に無駄が生じるの
で好ましくない。
4) Nitrogen atmosphere pressure during heat treatment is 30 Torr or more and 10 atm or less. If it is less than 30 Torr, the effect of refining by nitrogen supply cannot be obtained, and even if it exceeds 10 atm, there is no difference in the effect, and waste is generated in equipment, which is not preferable.

5) 反応温度 窒素雰囲気中で1500℃以上2100℃以下で保持し反応させ
る。1500℃未満では固溶が不充分で好ましくなく、一
方、2100℃を越えると粒生長が著しくなるので好ましく
ない。
5) Reaction temperature Hold the reaction at 1500 ° C or higher and 2100 ° C or lower in a nitrogen atmosphere to react. If it is less than 1500 ° C, solid solution is not sufficient, which is not preferable, while if it exceeds 2100 ° C, grain growth becomes remarkable, which is not preferable.

6) 最高到達温度での保持時間 10分以上5時間以下が好ましい。10分未満では還元反応
が不充分であり、5時間を越えると粒成長をきたすので
好ましくない。
6) The holding time at the highest temperature is preferably 10 minutes or more and 5 hours or less. If it is less than 10 minutes, the reduction reaction is insufficient, and if it exceeds 5 hours, grain growth is caused, which is not preferable.

〔実施例〕〔Example〕

以下、実施例により本発明を具体的に説明する。各実施
例,比較例において、真空度は炉から排気管に20cm入つ
た位置で測定した。
Hereinafter, the present invention will be specifically described with reference to examples. In each of the examples and comparative examples, the degree of vacuum was measured at a position 20 cm from the furnace into the exhaust pipe.

実施例1 TiO2粉末,Ta2O5粉末,WO3粉末,MoO3粉末とC粉末を混合
して水練り造粒し、1400℃まで0.1Torrの真空中で加熱
の後、PN2=400Torrの窒素を導入し、1600℃で1時間保
持し、本発明の複合炭窒化物Aを得た。なお、加熱処理
開始から1600℃までの昇温速度は10℃/分で行なつた。
Example 1 TiO 2 powder, Ta 2 O 5 powder, WO 3 powder, MoO 3 powder and C powder were mixed and kneaded with water and granulated, and heated to 1400 ° C. in a vacuum of 0.1 Torr, and then PN 2 = 400 Torr. Nitrogen was introduced and the mixture was kept at 1600 ° C. for 1 hour to obtain a composite carbonitride A of the present invention. The temperature rising rate from the start of the heat treatment to 1600 ° C was 10 ° C / min.

比較として、同様に造粒したものをPN2=400Torrの窒素
雰囲気下で1600℃まで10℃/分の昇温速度で加熱し、こ
の条件で1時間保持した比較品Bを得た。
For comparison, similarly granulated product was heated in a nitrogen atmosphere of PN 2 = 400 Torr up to 1600 ° C. at a heating rate of 10 ° C./min, and a comparative product B was obtained which was held for 1 hour under these conditions.

A,B各試料の分析結果を第1表に示す。第1表から、本
発明品Aと比較品Bは粒度では殆んど差がないものの、
本発明品Aでは遊離炭素及び酸素量が著しく減少してい
ることが明らかに判る。
Table 1 shows the analysis results of the A and B samples. From Table 1, although the product A of the present invention and the comparative product B have almost no difference in particle size,
It is clearly seen that the product A of the present invention has significantly reduced free carbon and oxygen contents.

得られた複合炭窒化物A,BにそれぞれNi,Coを8重量ずつ
添加して、サーメツト合金を作製すべく、1450℃で1時
間焼結した。得られた合金は、本発明品Aを原料とした
ものには巣が殆んど存在しなかつたのに対し、比較品B
を原料としたものは、A06タイプ(超硬工具協会規格CIS
006B−1983)の巣が認められた。
To each of the obtained composite carbonitrides A and B, 8 parts by weight of Ni and Co were added, and sintered at 1450 ° C. for 1 hour to prepare a thermite alloy. The obtained alloy had almost no cavities in the alloy obtained by using the product A of the present invention as a raw material, whereas the alloy B of the comparative product B
A06 type (carbide tool association standard CIS
006B-1983).

実施例2 Ti:Ta:Wi:Mo=0.84:0.03:0.07:0.03、C:N=0.52:0.48非
金属成分/金属成分の比が1.0となるように、第1表の
ように金属又は酸化物、炭化物、炭窒化物を混合し、各
試料について1380℃まで0.2Torrの真空加熱後、1380℃
からPN2=1気圧で窒素を導入し、1600℃で1.5時間保持
した。加熱処理開始から1600℃までの昇温は12℃/分で
行なつた。得られた本発明品Cと比較品D,Eの複合炭窒
化物についての分析結果を第2表に示す。
Example 2 Ti: Ta: Wi: Mo = 0.84: 0.03: 0.07: 0.03, C: N = 0.52: 0.48 Metal or oxide as shown in Table 1 so that the ratio of non-metal component / metal component is 1.0. Materials, carbides, and carbonitrides were mixed, and each sample was vacuum heated to 1380 ° C at 0.2 Torr, then 1380 ° C.
Nitrogen was introduced at PN 2 = 1 atm from and the temperature was maintained at 1600 ° C. for 1.5 hours. The temperature was raised from the start of heat treatment to 1600 ° C at 12 ° C / min. Table 2 shows the analysis results of the obtained composite carbonitrides of the present invention product C and the comparative products D and E.

この結果、本発明品Cは酸化物原料を用いず金属粉を用
いた比較品Dに比べ粒度を非常に小さく、遊離炭素量、
酸素量共に減少していること、また炭窒化物、炭化物を
原料とする比較品Dに比べて酸素量はやや多いものの、
遊離炭素は同程度であり、粒度は非常に小さいことが判
る。すなわち本発明品が最も微細であることが認められ
た。
As a result, the product C of the present invention has a much smaller particle size than the comparative product D using the metal powder without using the oxide raw material, and the free carbon amount,
Both the amount of oxygen is reduced, and although the amount of oxygen is slightly higher than that of the comparative product D made of carbonitride or carbide,
It can be seen that the free carbon is comparable and the particle size is very small. That is, it was confirmed that the product of the present invention was the finest.

実施例3 TiO2,Ta2O5,WO3,MoO3,Cの各粉末を第3表の如く配合
し、加熱、還元、炭窒化処理を施した。このときの昇温
速度は12℃/分、真空度は0.1〜0.5Torr、PN2は全て1
気圧とした。得られた本発明品F〜I及び比較品J〜O
の複合炭窒化物の分析結果も合せて第3表に示す。
Example 3 Powders of TiO 2 , Ta 2 O 5 , WO 3 , MoO 3 and C were blended as shown in Table 3 and heated, reduced and carbonitrided. At this time, the rate of temperature rise is 12 ° C / min, the degree of vacuum is 0.1 to 0.5 Torr, and PN 2 is all 1
Atmospheric pressure was used. The present invention products F to I and the comparative products J to O obtained
Table 3 also shows the results of the analysis of the composite carbonitride.

実施例4 実施例1〜3で得た複合炭窒化物A,B,E,H,M,Nを原料と
して用い、これ等にNi,Coを10重量%ずつ添加し、混合
してプレス後、1420℃、PN2=3Torrの窒素雰囲気下で1
時間焼結してサーメツト合金を作製した。得られた合金
をそれぞれP,Q,R,S,T,Uとする。各合金の硬度、抗折力
を第4表に示す。
Example 4 The composite carbonitrides A, B, E, H, M and N obtained in Examples 1 to 3 were used as raw materials, and Ni and Co were added thereto in an amount of 10% by weight, mixed and pressed. , 1420 ℃, PN 2 = 3 Torr under nitrogen atmosphere 1
A cermet alloy was produced by time sintering. The obtained alloys are designated as P, Q, R, S, T and U, respectively. The hardness and transverse rupture strength of each alloy are shown in Table 4.

さらに原料E,Nを用いて、硬度を向上させるべく、Ni,Co
の添加量を7重量%ずつにして、1450℃、PN2=5Torrで
1時間焼結し、合金V,Wを得た。これ等の合金の硬度,
抗折力を第5表に示すが、抗折力が著しく低下した。
Furthermore, using raw materials E and N, Ni and Co are used to improve hardness.
Were added in an amount of 7 wt% each and sintered at 1450 ° C. and PN 2 = 5 Torr for 1 hour to obtain alloys V and W. The hardness of these alloys,
The transverse rupture strength is shown in Table 5, but the transverse rupture strength was remarkably reduced.

次に、上記P〜Wの合金について、下記の条件で切削試
験を行つた。試験結果を第6表に示すが、本発明の複合
炭窒化物を原料とした合金がフランク摩耗量、断続切削
での欠損数、フライス断続切削での熱亀裂発生本数のい
ずれの項目においても優れていることが判る。
Next, a cutting test was performed on the alloys P to W under the following conditions. The test results are shown in Table 6, and the alloy made from the composite carbonitride of the present invention is excellent in any of the items such as flank wear amount, number of defects in interrupted cutting, and number of thermal cracks generated in interrupted milling cutting. You can see that

条件1 連続切削 被削材 S45C(HB=260) 切削速度 200m/min 送 り 0.36mm/rev 切り込み 1.5mm チツプ形状 SNGN120408 ホルダー FN11R−44A 切削時間 10分間 条件2 断続切削 被削材 SNCM439(HB=280)、4溝材 切削速度 100m/min 送 り 0.25mm/rev 切り込み 2.0mm チツプ形状 SNGN120408 ホルダー FN11R−44A 切削時間 欠損まで。最大2分間。Condition 1 Continuous cutting Work material S45C (H B = 260) Cutting speed 200m / min Feed 0.36mm / rev Depth of cut 1.5mm Chip shape SNGN120408 Holder FN11R-44A Cutting time 10 minutes Condition 2 Intermittent cutting Work material SNCM439 (H B = 280), 4-groove material Cutting speed 100m / min Feed 0.25mm / rev Cut 2.0mm Chip shape SNGN120408 Holder FN11R-44A Cutting time up to loss. Up to 2 minutes.

条件3 フライス断続切削 被削材 SCM435(HB=250) 80mm×200mm×角材 切削速度 250m/min 送 り 0.14mm/刃 切り込み 2.0mm チツプ形状 SNGN120408 ホルダー DNF4160R 切削時間 10分間 〔発明の効果〕 以上説明したように、本発明の複合炭窒化物の製造法
は、微細な粉末で、かつ酸素や遊離炭素の著しく少ない
良質なTi,Ta,W,Moの複合炭窒化物が得られるという効果
がある。さらに本発明によるTi,Ta,W,Moの複合炭窒化物
の粉末を用いてサーメツトを作製すると、非常に焼結性
が良く、切削工具特性においても耐摩耗性、靱性、耐熱
亀裂性に極めて優れた合金になるという効果がある。
Condition 3 Milling intermittent cutting Work material SCM435 (H B = 250) 80 mm × 200 mm × square material Cutting speed 250 m / min Feed 0.14 mm / blade cut 2.0 mm Chip shape SNGN120408 Holder DNF4160R Cutting time 10 minutes [Effects of the Invention] As described above, the production method of the composite carbonitride of the present invention is a fine powder, and a high-quality composite carbonitride of Ti, Ta, W, Mo with significantly less oxygen and free carbon. Is obtained. Furthermore, when a thermite is produced by using the powder of the composite carbonitrides of Ti, Ta, W, and Mo according to the present invention, the sinterability is very good, and the cutting tool characteristics are extremely excellent in wear resistance, toughness, and heat crack resistance. It has the effect of becoming an excellent alloy.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】TiO2,Ta2O5,WO3,MoO3及び炭素粉末を出発
原料として混合し、該混合物を真空中で加熱した後、12
00℃以上1500℃以下の温度で雰囲気中に窒素供給を開始
し、引き続き該窒素雰囲気中で1500℃以上2100℃以下の
温度に保持して反応せしめることを特徴とするTi,Ta,W,
Moの複合炭窒化物の製造法。
1. TiO 2 , Ta 2 O 5 , WO 3 , MoO 3 and carbon powder are mixed as a starting material, and the mixture is heated in a vacuum.
Ti, Ta, W, characterized by starting nitrogen supply into the atmosphere at a temperature of 00 ° C or more and 1500 ° C or less, and subsequently maintaining the temperature at 1500 ° C or more and 2100 ° C or less in the nitrogen atmosphere to cause the reaction.
Manufacturing method of Mo composite carbonitride.
【請求項2】加熱処理中の窒素雰囲気圧力を30Torr以上
10気圧以下とする特許請求の範囲第1項に記載されるT
i,Ta,W,Mo複合炭窒化物の製造法。
2. The nitrogen atmosphere pressure during the heat treatment is 30 Torr or more.
T described in claim 1 at 10 atm or less
Manufacturing method of i, Ta, W, Mo composite carbonitride.
JP20305487A 1987-08-17 1987-08-17 Composite carbonitride manufacturing method Expired - Lifetime JPH07100603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20305487A JPH07100603B2 (en) 1987-08-17 1987-08-17 Composite carbonitride manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20305487A JPH07100603B2 (en) 1987-08-17 1987-08-17 Composite carbonitride manufacturing method

Publications (2)

Publication Number Publication Date
JPS6445707A JPS6445707A (en) 1989-02-20
JPH07100603B2 true JPH07100603B2 (en) 1995-11-01

Family

ID=16467578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20305487A Expired - Lifetime JPH07100603B2 (en) 1987-08-17 1987-08-17 Composite carbonitride manufacturing method

Country Status (1)

Country Link
JP (1) JPH07100603B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738353B (en) * 2016-02-25 2018-01-05 济南大学 A kind of preparation method and application of optical electro-chemistry decis sensor
CN105628758B (en) * 2016-02-25 2017-12-01 济南大学 A kind of preparation method and application of the optical electro-chemistry parathion sensor based on two-dimensional nano light-sensitive material
CN105572108B (en) * 2016-02-25 2017-12-05 济南大学 A kind of preparation method and application of electrogenerated chemiluminescence demeton sensor
CN105758994B (en) * 2016-02-25 2017-06-30 济南大学 A kind of preparation method and application of the formaldehyde gas sensor based on carbonitride load additive Mn two-dimensional nano composite
CN105738437B (en) * 2016-02-25 2018-01-05 济南大学 A kind of preparation method and application of the electrochemistry parathion sensor based on metal and metal oxide co-doped nano composite
CN105738350B (en) * 2016-02-25 2017-12-05 济南大学 A kind of preparation method and application of the electrogenerated chemiluminescence carbamate sensor based on cobalt doped two-dimensional nano composite
CN105675685B (en) * 2016-02-25 2018-01-05 济南大学 A kind of preparation method and application of the electrochemistry Spanon sensor based on additive Mn two-dimensional nano composite

Also Published As

Publication number Publication date
JPS6445707A (en) 1989-02-20

Similar Documents

Publication Publication Date Title
EP0438916B1 (en) Coated cemented carbides and processes for the production of same
EP0583853B1 (en) A process for the production of a surface-coated cemented carbide
Ettmayer et al. Ti (C, N) cermets—metallurgy and properties
EP2177639A1 (en) Titanium-base cermet, coated cermet, and cutting tool
US5283030A (en) Coated cemented carbides and processes for the production of same
JP5157056B2 (en) Cubic boron nitride sintered body, coated cubic boron nitride sintered body, and cutting tool for hardened steel comprising the same
JPH07100603B2 (en) Composite carbonitride manufacturing method
JP2706502B2 (en) Cermet for tools
JP3472630B2 (en) Cubic boron nitride sintered body for cutting tools and cutting tools
JPH0475847B2 (en)
JPH07108768B2 (en) Composite carbonitride manufacturing method
JP4105410B2 (en) Multi-component carbonitride powder, method for producing the same, and sintered body using the same
JPH0524851B2 (en)
JPH0513084B2 (en)
JPH0524852B2 (en)
JPH0524855B2 (en)
JPH0450373B2 (en)
JPH0524853B2 (en)
JPH0524854B2 (en)
JPS644989B2 (en)
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JP2004292865A (en) Hard metal superior in fracture resistance and manufacturing method therefor
JP2002187721A (en) Multiple ceramic powder and manufacturing method thereof
JPS62288169A (en) Manufacture of titanium-containing composite carbonitride
JP4382113B2 (en) Method for producing titanium carbonitride powder