JPH0513084B2 - - Google Patents

Info

Publication number
JPH0513084B2
JPH0513084B2 JP62203053A JP20305387A JPH0513084B2 JP H0513084 B2 JPH0513084 B2 JP H0513084B2 JP 62203053 A JP62203053 A JP 62203053A JP 20305387 A JP20305387 A JP 20305387A JP H0513084 B2 JPH0513084 B2 JP H0513084B2
Authority
JP
Japan
Prior art keywords
nitrogen
temperature
composite carbonitride
atmosphere
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62203053A
Other languages
Japanese (ja)
Other versions
JPS6445706A (en
Inventor
Kazutaka Isobe
Masaaki Tobioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP20305387A priority Critical patent/JPS6445706A/en
Publication of JPS6445706A publication Critical patent/JPS6445706A/en
Publication of JPH0513084B2 publication Critical patent/JPH0513084B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、極めて強靭で高品質な窒素含有サー
メツトの製造に必要とする硬質原料のTi、Nb、
Wの複合炭窒化物の製造法に関する。本発明によ
る複合炭窒化物を原料とした窒素含有サーメツト
は例えば高速、高送り条件下で使用する切削工具
等に有効に利用できる。 〔従来の技術〕 Ti、Nb、W等の炭窒化物をNiやCo等の金属
で結合した窒素含有サーメツトは、従来の窒素を
含有しないサーメツトに比べ、その硬質分散相が
著しく微粒になるため、切削工具としての耐塑性
変形性、耐熱疲労性が大幅に改善されることが知
られている(特公昭49−1364号公報)。 ところで、この種のサーメツトの作製におい
て、真空中での焼結を行うと、サーメツト合金中
に含有される炭窒化物が分解し、いわゆる脱窒現
象が起きて、窒素添加の効果が減少したり、ま
た、その際に生じた窒素ガスが焼結体から充分に
抜けずに、焼結後にポアとして残存し、いずれも
窒素含有サーメツトの工具としての信頼性を著し
く低下させることになる。 そのために、上記特公昭49−1364号公報には、
該サーメツトを真空中ではなく窒素雰囲気中で焼
結することにより、窒化物の分解を抑えるという
技術が開示されている。 さらに、含有窒素量が増すと脱窒量も増すた
め、その抑制のためには雰囲気窒素圧を80Torr
以上必要とするが、焼結時の該サーメツトからの
脱ガスが不充分となる欠点があつた。 その克服法として、サーメツト中に含有される
金属元素の複合炭窒化物を予め製造して、窒素解
離圧を下げ、焼結中の脱量を極力抑える方法が提
案されている(例えば特公昭56−51201号公報
等)。 さらに、該複合炭窒化物の粉末を微粒にするた
めに、酸化物を出発原料とし、これに炭素粉末を
混合し、窒素気流中にて加熱させるという試みが
なされている(例えば特開昭61−291408号公報
等)。 また、このような従来の複合炭窒化物の製造法
は、開放型ボート送りの連続炉で、窒素を流した
ままの状態にして、ボートを順次送つていく方式
で行なうのが一般的であつた。 〔発明が解決しようとする問題点〕 しかしながら、従来の酸化物と炭素との混合物
に窒素を流して複合炭窒化物を作製するという方
法では、遊離炭素、酸素が残存し、得られた複合
炭窒化物を原料に用いたサーメツトを作製する際
の焼結過程における焼結性を劣化させ、その結
果、工具としての特性である耐摩耗性や靭性を低
下させてしまうという問題があつた。 本発明はこの問題点を解決して、金属酸化物と
炭素粉末を原料として、酸素や遊離炭素の残存を
防止し、しかも微細な粉末で焼結性の良いTi、
Nb、Wの複合炭窒化物の製造法を提供すること
を目的とするものである。 〔問題点を解決するための手段及び作用〕 上記の問題点の解決手段を求めて、本発明者ら
は、酸化物を出発原料とした複合炭窒化物の生成
過程について詳細に検討を行つた。 その結果、前記のように連続炉で窒素を流した
状態で開放型ボート送り方式で、酸化物原料から
複合炭窒化物を作製する従来法は、明らかに製造
工程が簡略化されており、かつ酸化物原料自体が
元来微粒な粉末であるため、生成する複合炭窒化
物粉末も微粒になる点で有効なものであるが、そ
の反応は非常に複雑であることが判つた。これ
は、還元反応に加え、炭化、窒化各反応が起こ
り、さらに固溶化反応も生じるためであり、加熱
に伴い、まず各酸化物の還元反応がCOガスの発
生として進行し、引き続き窒化、炭化が重なり合
うように起こるものであるという知見を得た。 この知見に基き検討したところ、酸素を完全に
除去するためには、換言すれば酸化物の還元反応
を促進するためには、加熱中に還元雰囲気をつく
り出す水素を流すとよいことが判明した。そし
て、充分に酸素が抜けた後で窒素を流すのが理想
的手段であると言える。しかし、実際には、窒素
を流さなければ、ある温度から粒成長が始まり、
当初の目的である微粒化が充分には図れない。 本発明者らは、これらの状況に鑑みて、酸化物
を原料とし、酸素除去、遊離炭素の残留防止と微
粒化の両方を達成できるような加熱方法、特に雰
囲気条件と温度条件について研究を重ね、TiO2
Nb2O3、WO3及び炭素粉末を出発原料として混
合し、該混合物を水素雰囲気中で加熱した後、
1200℃以上1500℃以下の温度で窒素雰囲気に切換
えて加熱し、引き続き該窒素雰囲気中で1500℃以
上2100℃以下の温度に保持して反応せしめること
を特徴とするTi、Nb、Wの複合炭窒化物の製造
法である本発明に到達したのである。 本発明はTi、Nb、WをそれぞれTiO2
Nb2O5、WO3という酸化物で供給し、これに炭
素粉末を混合し、これを加熱処理するに際し、ま
ず還元反応が進行する低温側では水素雰囲気で加
熱し、加熱昇温を続けて1200℃以上1500℃未満ま
での温度域に入つた時点で雰囲気を窒素に切換
え、引き続きこの窒素雰囲気中で1500℃以上2100
℃以下で加熱することにより、炭窒化反応をさせ
てTi、Nb、Wの複炭窒化物を得る方法である。
窒素雰囲気圧力を30Torr以上10気圧以下とする
ことが特に好ましい。 このように酸化物を出発原料に用いることで、
微粉末が得られ、また、酸化物の還元反応は水素
雰囲気中に充分に進行できるので、酸素含有量を
著しく低下させることができ、かつ、酸素はCO
ガスとして抜けるため、炭化するために必要な量
の炭素以外に還元のために混合しておいた炭素
も、その役割を果たして抜けてゆく。その結果、
残留酸素や遊離炭素の著しく少ない良質な複合炭
窒化物が得られる。 従つて、本発明の複合炭窒化物を用いてサーメ
ツトを作製すると、非常に焼結性が良く、切削特
性においても耐摩耗性、靭性、耐熱亀裂性の極め
て優れた信頼性の高い合金が得られるのである。 以下、本発明における一般的方法と制限理由を
述べる。 (1) 水素雰囲気加熱条件 水素雰囲気圧力は10-3Torr以上10気圧以下
とする。10-3Torr未満では酸素除去の効果が
なく、10気圧を越えてもその効果に差異がない
上に、高圧製造設備となり設備的に無駄が生じ
るので好ましくない。この雰囲気に保持する時
間については、特に制限するところはない。 (2) 昇温速度 常温(加熱処理開始)から1500℃以上2100℃
以下の最高到達温度までの全温度域で1〜100
℃/分が好ましい。1℃/分より小さいと粒成
長するし、100℃/分より大きいと、酸素、遊
離炭素を充分に除去することができない。 (3) 1200℃以上1500℃以下で窒素供給を開始す
る。1200℃未満で供給すると、該複合炭窒化物
中に酸素が残留し、1500℃を越えても窒素供給
しないでおくと粒成長をきたし、合金の硬度を
低下させることになるので好ましくない。 (4) 加熱処理中の窒素雰囲気圧力 30Torr以上10気圧以下とする。30Torr未満
では窒素供給による微細化の効果が得られず、
また10気圧を越えてもその効果に差異はないに
加え、設備的に無駄が生じるので好ましくな
い。 (5) 反応温度 窒素雰囲気中で1500℃以上2100℃以下で保持
し反応させる。1500℃未満では固溶が不充分で
好ましくなく、一方、2100℃を越えると粒生長
が著しくなるので好ましくない。 (6) 最高到達温度での保持時間 10分以上5時間以下が好ましい。10分未満で
は還元反応が不充分であり、5時間を越えると
粒成長をきたすので好ましくない。 〔実施例〕 以下、実施例により本発明を具体的に説明す
る。 実施例 1 TiO2粉末、Nb2O5粉末、WO3粉末とC粉末を
混合して水練り造粒し、1420℃まで1気圧の水素
雰囲気中で加熱の後、PN2=300Torrの窒素雰囲
気に切換え、1730℃で1時間保持し、本発明の複
合炭窒化物Aを得た。なお、加熱処理開始から
1730℃までの昇温速度は10℃/分で行なつた。 比較として、同様に造粒したものをPN2
300Torrの窒素雰囲気下で1730℃まで10℃/分の
昇温速度で加熱し、この条件で1時間保持した比
較品Bを得た。 A、B各試料の分析結果を第1表に示す。 第1表から、本発明品Aと比較品Bは粒度では
殆んど差がないものの、本発明品Aでは遊離炭素
及び酸素量が著しく減少していることが明らかに
判る。 得られた複合炭窒化物A、BにそれぞれNi、
Coを8重量ずつ添加して、サーメツト合金を作
製すべく、1450℃で1時間焼結した。得られた合
金は、本発明品Aを原料としたものには巣が殆ん
ど存在しなかつたのに対し、比較品Bを原料とし
たものは、AO6タイプ(超硬工具協会規格
ClS006B−1983)の巣が認められた。 実施例 2 Ti:Nb:W=0.80:0.10:0.10、C:N=
0.60:0.40、非金属成分/金属成分の比が1.0とな
るように、第1表のように金属又は酸化物、炭化
物、炭窒化物を混合し、各試料について1350℃ま
では400Torrの水素雰囲気中で加熱後、1350℃か
らPN2=1気圧で窒素雰囲気に切換え、この雰囲
気で1700℃で1時間保持した。加熱処理開始から
1700℃までの昇温は12℃/分で行なつた。得られ
た本発明品Cと比較微D、Eの複合炭窒化物につ
いての分析結果を第2表に示す。 この結果、本発明品Cは酸化物原料を用いず金
属粉を用いた比較品Dに比べ、粒度が非常に小さ
く、遊離炭素量が減少していること、また炭窒化
物、炭化物を原料とする比較品Eに比べて遊離炭
素量はやや多いものの、酸素量は同程度であり、
粒度は非常に小さいことが判る。すなわち本発明
が最も微細であることが認められた。
[Industrial Application Field] The present invention utilizes hard raw materials such as Ti, Nb, and
The present invention relates to a method for producing composite carbonitride of W. The nitrogen-containing cermet made from composite carbonitride according to the present invention can be effectively used, for example, in cutting tools used under high-speed, high-feed conditions. [Prior art] Nitrogen-containing cermets, in which carbonitrides such as Ti, Nb, and W are bonded with metals such as Ni and Co, have significantly finer dispersed hard phases than conventional cermets that do not contain nitrogen. It is known that the plastic deformation resistance and thermal fatigue resistance of cutting tools are significantly improved (Japanese Patent Publication No. 49-1364). By the way, when producing this type of cermet, if sintering is performed in a vacuum, the carbonitrides contained in the cermet alloy will decompose and a so-called denitrification phenomenon will occur, reducing the effect of nitrogen addition. In addition, the nitrogen gas generated at that time does not escape sufficiently from the sintered body and remains as pores after sintering, both of which significantly reduce the reliability of the nitrogen-containing cermet as a tool. For this reason, the above-mentioned Japanese Patent Publication No. 1364-1984 states that
A technique has been disclosed in which the decomposition of nitrides is suppressed by sintering the cermet in a nitrogen atmosphere rather than in a vacuum. Furthermore, as the amount of nitrogen content increases, the amount of denitrification also increases, so to suppress this, it is necessary to increase the atmospheric nitrogen pressure to 80 Torr.
Although the above is necessary, there is a drawback that degassing from the cermet during sintering is insufficient. As a way to overcome this problem, a method has been proposed in which a composite carbonitride of the metal elements contained in the cermet is produced in advance to lower the nitrogen dissociation pressure and to minimize loss during sintering (for example, −51201, etc.). Furthermore, in order to make the composite carbonitride powder into fine particles, attempts have been made to use an oxide as a starting material, mix carbon powder with it, and heat it in a nitrogen stream (for example, in JP-A-61 −291408, etc.). In addition, conventional methods for producing composite carbonitrides are generally carried out in an open boat-fed continuous furnace, in which the boats are fed one after another while nitrogen is kept flowing. Ta. [Problems to be solved by the invention] However, in the conventional method of producing composite carbonitride by flowing nitrogen through a mixture of oxide and carbon, free carbon and oxygen remain, and the resulting composite carbon There has been a problem in that the sinterability in the sintering process when producing cermets using nitrides as a raw material deteriorates, and as a result, the wear resistance and toughness, which are characteristics of tools, decrease. The present invention solves this problem and uses metal oxide and carbon powder as raw materials to prevent oxygen and free carbon from remaining.
The purpose of this invention is to provide a method for producing a composite carbonitride of Nb and W. [Means and effects for solving the problems] In search of a means for solving the above problems, the present inventors conducted a detailed study on the production process of composite carbonitrides using oxides as starting materials. . As a result, the conventional method of producing composite carbonitride from oxide raw materials using an open boat feeding method with nitrogen flowing in a continuous furnace as described above clearly simplifies the production process, and Since the oxide raw material itself is originally a fine powder, it is effective in that the resulting composite carbonitride powder also becomes fine, but it has been found that the reaction is very complicated. This is because, in addition to the reduction reaction, carbonization and nitridation reactions occur, as well as a solid solution reaction. With heating, the reduction reaction of each oxide progresses as CO gas is generated, followed by nitridation and carbonization. We obtained the knowledge that these events occur in a manner that overlaps with each other. Upon investigation based on this knowledge, it was found that in order to completely remove oxygen, in other words to promote the reduction reaction of the oxide, it is effective to flow hydrogen to create a reducing atmosphere during heating. It can be said that the ideal means is to flow nitrogen after sufficient oxygen has been removed. However, in reality, if nitrogen is not supplied, grain growth will begin at a certain temperature.
The initial objective of atomization cannot be achieved sufficiently. In view of these circumstances, the present inventors have conducted repeated research on a heating method that uses oxides as raw materials and can achieve both oxygen removal, prevention of residual free carbon, and atomization, particularly on atmospheric and temperature conditions. , TiO 2 ,
After mixing Nb 2 O 3 , WO 3 and carbon powder as starting materials and heating the mixture in a hydrogen atmosphere,
Composite carbon of Ti, Nb, and W, characterized in that it is heated in a nitrogen atmosphere at a temperature of 1200°C or higher and 1500°C or lower, and then maintained at a temperature of 1500°C or higher and 2100°C or lower for reaction in the nitrogen atmosphere. The present invention, which is a method for producing nitrides, has been achieved. The present invention uses Ti, Nb, and W as TiO 2 and TiO 2 , respectively.
Oxides such as Nb 2 O 5 and WO 3 are supplied, carbon powder is mixed with this, and when this is heat-treated, it is first heated in a hydrogen atmosphere at the low temperature side where the reduction reaction proceeds, and then the temperature is continued to rise. When the temperature reaches a temperature range of 1200°C or higher and lower than 1500°C, switch the atmosphere to nitrogen, and continue to heat the temperature at 1500°C or higher and 2100°C in this nitrogen atmosphere.
In this method, a carbonitriding reaction is carried out by heating at a temperature below .degree. C. to obtain a double carbonitride of Ti, Nb, and W.
It is particularly preferable that the nitrogen atmosphere pressure be 30 Torr or more and 10 atmospheres or less. By using oxides as starting materials in this way,
A fine powder is obtained, and the reduction reaction of the oxide can proceed sufficiently in a hydrogen atmosphere, so the oxygen content can be significantly reduced, and the oxygen is replaced by CO2.
Since it escapes as a gas, in addition to the amount of carbon necessary for carbonization, the carbon mixed in for reduction also plays its role. the result,
A high-quality composite carbonitride with extremely low residual oxygen and free carbon can be obtained. Therefore, when a cermet is made using the composite carbonitride of the present invention, a highly reliable alloy with very good sinterability and excellent cutting properties such as wear resistance, toughness, and heat cracking resistance can be obtained. It will be done. The general method and reasons for limitations in the present invention will be described below. (1) Hydrogen atmosphere heating conditions The hydrogen atmosphere pressure should be 10 -3 Torr or more and 10 atmospheres or less. If it is less than 10 -3 Torr, there is no oxygen removal effect, and even if it exceeds 10 atmospheres, there is no difference in the effect, and it is not preferable because it becomes a high-pressure production facility, which causes waste in terms of equipment. There is no particular restriction on the time to maintain this atmosphere. (2) Temperature increase rate From room temperature (start of heat treatment) to 1500℃ or more to 2100℃
1 to 100 in all temperature ranges up to the following maximum temperatures
C/min is preferred. If it is less than 1°C/min, grains will grow, and if it is more than 100°C/min, oxygen and free carbon cannot be removed sufficiently. (3) Start nitrogen supply at 1200℃ or higher and 1500℃ or lower. If nitrogen is supplied at a temperature lower than 1200°C, oxygen will remain in the composite carbonitride, and if nitrogen is not supplied even if the temperature exceeds 1500°C, grain growth will occur and the hardness of the alloy will decrease, which is not preferable. (4) Nitrogen atmosphere pressure during heat treatment: 30 Torr or more and 10 atmospheres or less. If it is less than 30Torr, the effect of refinement by nitrogen supply cannot be obtained,
Further, even if the pressure exceeds 10 atmospheres, there is no difference in the effect, and it is not preferable because it causes waste in terms of equipment. (5) Reaction temperature The reaction is maintained at 1500°C or higher and 2100°C or lower in a nitrogen atmosphere. If it is less than 1,500°C, solid solution will be insufficient, which is not preferable, while if it exceeds 2,100°C, grain growth will become significant, which is not preferable. (6) Holding time at maximum temperature Preferably 10 minutes or more and 5 hours or less. If the reaction time is less than 10 minutes, the reduction reaction will be insufficient, and if it exceeds 5 hours, grain growth will occur, which is not preferable. [Example] Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 TiO 2 powder, Nb 2 O 5 powder, WO 3 powder and C powder were mixed and granulated by water kneading, heated to 1420°C in a hydrogen atmosphere of 1 atm, and then heated in a nitrogen atmosphere of PN 2 = 300 Torr. The temperature was changed to 1730°C for 1 hour to obtain composite carbonitride A of the present invention. In addition, from the start of heat treatment
The heating rate up to 1730°C was 10°C/min. For comparison, PN 2 =
Comparative product B was obtained by heating to 1730° C. at a temperature increase rate of 10° C./min in a nitrogen atmosphere of 300 Torr and maintaining this condition for 1 hour. The analysis results for each sample A and B are shown in Table 1. From Table 1, it is clearly seen that although there is almost no difference in particle size between product A of the present invention and comparative product B, the amount of free carbon and oxygen is significantly reduced in product A of the present invention. Ni and Ni were added to the obtained composite carbonitrides A and B, respectively.
Co was added in 8 weight portions and sintered at 1450° C. for 1 hour to produce a cermet alloy. The obtained alloy had almost no cavities in the alloy made from product A of the present invention, whereas the alloy made from comparative product B had AO6 type (Cemented Carbide Tool Association standard).
ClS006B-1983) nests were observed. Example 2 Ti:Nb:W=0.80:0.10:0.10, C:N=
Mix metals, oxides, carbides, and carbonitrides as shown in Table 1 so that the ratio of nonmetallic components/metallic components is 0.60:0.40 and 1.0, and each sample is heated in a hydrogen atmosphere of 400 Torr up to 1350℃. After heating in the chamber, the atmosphere was changed from 1350° C. to nitrogen atmosphere at PN 2 =1 atm, and maintained at 1700° C. for 1 hour in this atmosphere. From the start of heat treatment
The temperature was raised to 1700°C at a rate of 12°C/min. Table 2 shows the analysis results for the composite carbonitrides of the invention product C and comparative fines D and E obtained. As a result, the product C of the present invention has a much smaller particle size and a reduced amount of free carbon than the comparative product D, which uses metal powder without using oxide raw materials, and also uses carbonitrides and carbides as raw materials. Compared to comparative product E, the amount of free carbon is slightly higher, but the amount of oxygen is about the same.
It can be seen that the particle size is very small. That is, it was recognized that the present invention is the most minute.

【表】【table】

【表】 実施例 3 TiO2、Nb2O5、WO3、Cの各粉末を第3表の
如く配合し、400Torrの水素中で加熱、還元し、
第3表に示した条件で炭窒化処理を施した。この
ときの昇温速度は10℃/分PN2は全て1気圧とし
た。得られた本発明品F〜I及び比較品J〜Oの
複合炭窒化物の分析結果も合せて第3表に示す。
[Table] Example 3 TiO 2 , Nb 2 O 5 , WO 3 , and C powders were blended as shown in Table 3, heated and reduced in hydrogen at 400 Torr,
Carbonitriding treatment was performed under the conditions shown in Table 3. The temperature increase rate at this time was 10° C./min and PN 2 was all set to 1 atm. Table 3 also shows the analysis results of the composite carbonitrides of the products F to I of the present invention and comparative products J to O.

【表】 実施例 4 実施例1〜3で得た複合炭窒化物A、B、E、
H、M、Nを原料として用い、これ等にNi、Co
を10重量%ずつ添加し、混合してプレス後、1450
℃、PN2=8Torrの窒素雰囲気下で2時間焼結し
てサーメツト合金を作製した。得られた合金をそ
れぞれP、Q、R、S、T、Vとする。各合金の
硬度、抗折力を第4表に示す。
[Table] Example 4 Composite carbonitrides A, B, E, obtained in Examples 1 to 3,
H, M, and N are used as raw materials, and Ni and Co are added to these.
Added 10% by weight, mixed and pressed, 1450
A cermet alloy was produced by sintering in a nitrogen atmosphere at PN 2 =8 Torr for 2 hours. The obtained alloys are designated as P, Q, R, S, T, and V, respectively. Table 4 shows the hardness and transverse rupture strength of each alloy.

【表】 さらに原料E、Nを用いて、硬度を向上させる
べく、Ni、Coの添加量を7重量%ずつにして、
1450℃、PM2=5Torrで1時間焼結し、合金V、
Wを得た。これ等の合金の硬度、抗折力を第5表
に示すが、抗折力が著しく低下した。
[Table] Furthermore, using raw materials E and N, in order to improve the hardness, the amount of Ni and Co added was increased to 7% by weight each.
Alloy V,
I got a W. The hardness and transverse rupture strength of these alloys are shown in Table 5, and the transverse rupture strength was significantly reduced.

【表】 次に上記P〜Wの合金について下記の条件で切
削試験を行つた。試験結果を第6表に示すが、本
発明の複合炭窒化物を原料とした合金がフランク
摩耗量、断続切削での欠損数、フライス断続切削
での熱亀裂発生本数のいずれの項目においても優
れていることが判る。 条 件 1 連続切削 被削材 SCM440(HB=290) 切削速度 200m/min 送 り 0.36mm/rev 切り込み 1.5mm チツプ形状 SNGN140208 ホルダー FN11R−44A 切削時間 7分間 条 件 2 断続切削 被削材 SCM435(HB=250)、4溝材 切削速度 120m/min 送 り 0.22mm/rev 切り込み 2.0mm チツプ形状 SNGN120408 ホルダー FR11R−44A 切削時間 欠損まで。最大2分間 条 件 3 フライス切断切削 被削材 SCM435(HB=250) 70mm×150mmの角材 切削速度 250m/min 送 り 0.12mm/刃 切り込み 2.0mm チツプ形状 SNGN140208 ホルダー DNF4160R 切削時間 5分間
[Table] Next, cutting tests were conducted on the alloys P to W above under the following conditions. The test results are shown in Table 6, and the alloy made from the composite carbonitride of the present invention was superior in all items: flank wear amount, number of chips in interrupted cuts, and number of thermal cracks in interrupted milling cuts. It can be seen that Conditions 1 Continuous cutting workpiece SCM440 (H B = 290) Cutting speed 200m/min Feed 0.36mm/rev Depth of cut 1.5mm Chip shape SNGN140208 Holder FN11R-44A Cutting time 7 minutes Condition 2 Intermittent cutting workpiece SCM435 ( H B = 250), 4-groove material cutting speed 120m/min Feed 0.22mm/rev Depth of cut 2.0mm Chip shape SNGN120408 Holder FR11R-44A Cutting time Until breakage. Maximum 2 minutes Conditions 3 Milling cutting Work material SCM435 (H B = 250) 70mm x 150mm square material Cutting speed 250m/min Feed 0.12mm/blade depth of cut 2.0mm Chip shape SNGN140208 Holder DNF4160R Cutting time 5 minutes

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の複合炭窒化物の
製造法は、微細な粉末で、かつ酸素や遊離炭素の
著しく少ない良質なTi、Nb、Wの複合炭窒化物
が得られるという効果がある。さらに本発明によ
るTi、Nb、Wの複合炭窒化物の粉末を用いてサ
ーメツトを作製すると、非常に焼結性が良く、切
削工具特性においても耐摩耗性、靭性、耐熱亀裂
性に極めて優れた合金になるという効果がある。
As explained above, the method for producing a composite carbonitride of the present invention has the effect of obtaining a fine powder composite carbonitride of Ti, Nb, and W of high quality with significantly less oxygen and free carbon. . Furthermore, when a cermet is made using the composite carbonitride powder of Ti, Nb, and W according to the present invention, it has very good sinterability and has excellent cutting tool properties such as wear resistance, toughness, and heat cracking resistance. It has the effect of forming an alloy.

Claims (1)

【特許請求の範囲】 1 TiO2、Nb2O5、WO3及び炭素粉末を出発原
料として混合し、該混合物を水素雰囲気中で加熱
した後、1200℃以上1500℃以下の温度で窒素雰囲
気に切換えて加熱し、引き続き該窒素雰囲気中で
1500℃以上2100℃以下の温度に保持して反応せし
めることを特徴とするTi、Nb、Wの複合炭窒化
物の製造法。 2 加熱処理中の窒素雰囲気圧力を30Torr以上
10気圧以下とする特許請求の範囲第1項に記載さ
れるTi、Nb、Wの複合炭窒化物の製造法。
[Claims] 1. Mix TiO 2 , Nb 2 O 5 , WO 3 and carbon powder as starting materials, heat the mixture in a hydrogen atmosphere, and then heat it in a nitrogen atmosphere at a temperature of 1200°C or more and 1500°C or less. Switch and heat, then continue in the nitrogen atmosphere.
A method for producing a composite carbonitride of Ti, Nb, and W, characterized in that the reaction is carried out while maintaining the temperature at 1500°C or higher and 2100°C or lower. 2.Nitrogen atmosphere pressure during heat treatment is 30Torr or more.
A method for producing a composite carbonitride of Ti, Nb, and W as set forth in claim 1, wherein the pressure is 10 atmospheres or less.
JP20305387A 1987-08-17 1987-08-17 Production of composite carbon nitride Granted JPS6445706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20305387A JPS6445706A (en) 1987-08-17 1987-08-17 Production of composite carbon nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20305387A JPS6445706A (en) 1987-08-17 1987-08-17 Production of composite carbon nitride

Publications (2)

Publication Number Publication Date
JPS6445706A JPS6445706A (en) 1989-02-20
JPH0513084B2 true JPH0513084B2 (en) 1993-02-19

Family

ID=16467563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20305387A Granted JPS6445706A (en) 1987-08-17 1987-08-17 Production of composite carbon nitride

Country Status (1)

Country Link
JP (1) JPS6445706A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103350156A (en) * 2013-06-28 2013-10-16 宜兴华威封头有限公司 Warm-pressing forming process of stainless steel sealing head

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040229781A1 (en) * 2000-05-10 2004-11-18 Marks Andrew Robert Compounds and methods for treating and preventing exercise-induced cardiac arrhythmias

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100999A (en) * 1975-03-03 1976-09-06 Sumitomo Electric Industries CHITANTOTANGUSUTENOFUKUMUFUKUGOTANCHITSUKABUTSUNO SEIZOHO
JPS58213619A (en) * 1982-06-07 1983-12-12 Mitsubishi Metal Corp Production of powder of composite carbonitride solid solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51100999A (en) * 1975-03-03 1976-09-06 Sumitomo Electric Industries CHITANTOTANGUSUTENOFUKUMUFUKUGOTANCHITSUKABUTSUNO SEIZOHO
JPS58213619A (en) * 1982-06-07 1983-12-12 Mitsubishi Metal Corp Production of powder of composite carbonitride solid solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103350156A (en) * 2013-06-28 2013-10-16 宜兴华威封头有限公司 Warm-pressing forming process of stainless steel sealing head

Also Published As

Publication number Publication date
JPS6445706A (en) 1989-02-20

Similar Documents

Publication Publication Date Title
EP0438916B1 (en) Coated cemented carbides and processes for the production of same
EP0583853B1 (en) A process for the production of a surface-coated cemented carbide
JP2762745B2 (en) Coated cemented carbide and its manufacturing method
KR20170042617A (en) Hard material, sintered body, tool using sintered body, manufacturing method of hard material and manufacturing method of sintered body
EP0578031B1 (en) Sintered carbonitride alloy and method of its production
KR101450661B1 (en) The method of preparation for ternary titanium carbonitride sintered bodies having enhanced mechanical properties and ternary titanium carbonitride sintered bodies prepared thereby
JPH07100603B2 (en) Composite carbonitride manufacturing method
JPH0475847B2 (en)
JPH0513084B2 (en)
JPH0524851B2 (en)
JP4105410B2 (en) Multi-component carbonitride powder, method for producing the same, and sintered body using the same
JPH0524852B2 (en)
JPS644988B2 (en)
JPH0524854B2 (en)
JPH0524853B2 (en)
JPH0524855B2 (en)
JPH07108768B2 (en) Composite carbonitride manufacturing method
JPS644989B2 (en)
JPH0450373B2 (en)
JPH0121857B2 (en)
JPS6335591B2 (en)
JPS6312135B2 (en)
JPS62288169A (en) Manufacture of titanium-containing composite carbonitride
JP2805339B2 (en) High density phase boron nitride based sintered body and composite sintered body
JPS6242988B2 (en)