JPS62288169A - Manufacture of titanium-containing composite carbonitride - Google Patents

Manufacture of titanium-containing composite carbonitride

Info

Publication number
JPS62288169A
JPS62288169A JP61132211A JP13221186A JPS62288169A JP S62288169 A JPS62288169 A JP S62288169A JP 61132211 A JP61132211 A JP 61132211A JP 13221186 A JP13221186 A JP 13221186A JP S62288169 A JPS62288169 A JP S62288169A
Authority
JP
Japan
Prior art keywords
titanium
carbonitride
solid solution
powder
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61132211A
Other languages
Japanese (ja)
Inventor
靖弘 清水
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61132211A priority Critical patent/JPS62288169A/en
Publication of JPS62288169A publication Critical patent/JPS62288169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〈産業上の利用分野〉 この発明は1liI!質合金を製造する際に原料として
用いられるチタン含有複合炭窒化物の製造方法に関する
ものである。
[Detailed Description of the Invention] 3. Detailed Description of the Invention (Field of Industrial Application) This invention is 1liI! The present invention relates to a method for producing a titanium-containing composite carbonitride used as a raw material in producing a quality alloy.

〈従来の技術〉 チタン含有複合炭窒化物の製造方法としては、従来 (1)  チタンおよび他の金属粉末と炭素粉末を混合
し、これらを窒素を含有する雰囲気中で高温処理する方
法。
<Prior Art> Conventional methods for producing titanium-containing composite carbonitrides include (1) a method in which titanium and other metal powders are mixed with carbon powder, and the mixture is treated at high temperature in a nitrogen-containing atmosphere.

+21  チタンおよび他の金属の炭化物、窒化物、炭
鎗化物粉末を混合し、これらを真空あるいは水素、窒素
、不活性ガス等の雰囲気中で高温処理する方法。
+21 A method of mixing titanium and other metal carbides, nitrides, and carbide powders and treating them at high temperature in vacuum or in an atmosphere of hydrogen, nitrogen, inert gas, etc.

(3)  チタンおよび他の金属の酸化物粉末と炭素粉
末を混合し、これらを窒素を含有する雰囲気中で高温処
理する方法。
(3) A method in which titanium and other metal oxide powders and carbon powder are mixed and treated at high temperature in an atmosphere containing nitrogen.

が主に実施されている。is mainly carried out.

〈発明が解決しようとする問題点〉 しかしながら、上記した従来の各方法は夫々に次のよう
な欠点が指摘されている。即ち、(1)の方法は出発原
料となる金属粉末の微粒状物を得ることが極めて困難で
あり、またそのような微粒状物が得られたとしても、微
粒状物は活性で取扱いが難しく工業的には適していない
<Problems to be Solved by the Invention> However, each of the above-described conventional methods has the following drawbacks. That is, in method (1), it is extremely difficult to obtain fine particles of metal powder as a starting material, and even if such fine particles are obtained, the fine particles are active and difficult to handle. Not suitable for industrial use.

従って粗粒な金属粉末しか使用できないが、この場合前
られる複合炭窒化物も粗粒となり、処理後の粉砕に長時
間が必要となり工業的ではない。
Therefore, only coarse-grained metal powder can be used, but in this case, the composite carbonitride to be prepared also becomes coarse-grained, and a long time is required for pulverization after treatment, which is not industrially practical.

(2)の方法では炭化物、窒化物、炭窒化物を固溶させ
るのに、かなりの高温が必要であり、粗粒化が貸けられ
ず、やはり粉砕に長時間を要する。また。
In method (2), a considerably high temperature is required to form a solid solution of carbides, nitrides, and carbonitrides, making it impossible to coarsen the particles, and also requiring a long time for pulverization. Also.

(3)の方法は酸化物が通常微粒であり、得られる複合
炭窒化物も微粒で粉砕性もよいが、固溶が進みにクク、
炭化物と窒化物の混合体(一部は固溶体)しか得られな
いという問題がある。
In method (3), the oxide is usually fine and the resulting composite carbonitride is also fine and has good grindability, but solid solution progresses and
There is a problem in that only a mixture of carbides and nitrides (partly a solid solution) can be obtained.

〈問題点を解決するための手段〉 本発明者らは上記従来法の欠点を解消すべく鋭意検討の
結果、特に上記した(3)の従来法の改良に至ったもの
である。
<Means for Solving the Problems> As a result of intensive studies by the present inventors in order to eliminate the drawbacks of the above-mentioned conventional method, the present inventors have arrived at the improvement of the above-mentioned conventional method (3) in particular.

即ち、この発明は出発原料としてチタンおよび他の金属
の酸化物粉末と、炭素粉末を用い、これらを混合したの
ち、窒素を含有する雰囲気中で高温処理を行なって還元
、および炭窒化を行なう。
That is, in this invention, titanium and other metal oxide powders and carbon powder are used as starting materials, and after mixing these, a high temperature treatment is performed in a nitrogen-containing atmosphere to perform reduction and carbonitriding.

次いでをられた炭窒化物を再度混合機にかけ、混合する
と同時に粉砕を行なう。この再粉砕された炭窒化物を真
空中あるいはH2、Na、Ayなどの雰囲気中で高温処
理を行ない、固溶を進めるものである。
Next, the removed carbonitride is put into the mixer again, and simultaneously mixed and pulverized. This re-pulverized carbonitride is subjected to high temperature treatment in a vacuum or in an atmosphere of H2, Na, Ay, etc. to promote solid solution.

く作用〉 まず、微粒で粉砕性のよい粉末を得るために出発原料と
して酸化物を用いた。
Effect> First, an oxide was used as a starting material in order to obtain a fine powder with good grindability.

炭素の一部は酸化物を還元するのに用いられ、残部は炭
化するために用いられる。
A portion of the carbon is used to reduce the oxide and the remainder is used to carbonize.

第一段の高温処理では酸化物の還元が行なわれ、これと
平行して炭窒化が進む。この段階では雰囲気を窒素含有
にすることが不可欠である。
In the first stage of high-temperature treatment, oxides are reduced, and carbonitriding progresses in parallel. It is essential at this stage that the atmosphere be nitrogen-containing.

というのは、一旦炭化された場合、炭化物中の炭素を窒
素で置換することは一般に困難であり、還元、炭化と同
時に窒化することが好ましいからである。次に得られた
炭窒化物を再混合し、粉砕を行なう。このプロセスは炭
窒化物の表面にある酸化層、あるいは炭素吸着層を除去
すると同時に炭窒化物を粒内破壊させ、新鮮な面を出す
ために行なわれる。上記した従来技術のうち(3)の方
法では、このプロセスがないため、一旦炭窒化された後
、各炭窒化物の表層には酸化層あるいは炭素吸着層が残
り、これらが固溶を阻害していた。
This is because once carbonized, it is generally difficult to replace carbon in the carbide with nitrogen, and it is preferable to perform nitridation simultaneously with reduction and carbonization. Next, the obtained carbonitride is mixed again and pulverized. This process is performed to remove the oxide layer or carbon adsorption layer on the surface of the carbonitride, and at the same time destroy the carbonitride within its grains to expose a fresh surface. Method (3) of the above-mentioned conventional techniques does not have this process, so after carbonitriding, an oxidized layer or a carbon adsorption layer remains on the surface layer of each carbonitride, which inhibits solid solution. was.

次に第二段の高温処理では炭窒化物の固溶が行なわれる
。上記の再混合プロセスにより、炭窒化物表面は活性が
高く、固溶はスムーズに進む。なおこの第二段目の高温
処理では窒素を含む雰囲気にするか、どうかは任意であ
る。というのは第一段の高温処理で窒素を含んだ炭窒化
物が得られており、二段目で窒化をする必要はなくなっ
ているからである。従って、二段目で窒素雰囲気とする
のは、炭窒化物の分解により窒素が抜けるのを防ぐとい
う意味が強い。よって脱窒の心配がなければ真空、H2
、b、coなどの雰囲気で処理を行なっても一部にかま
わないが、酸化雰囲気にすると、炭窒化物の酸化が進み
、好ましくない。
Next, in the second stage of high temperature treatment, solid solution of carbonitrides is performed. Due to the above remixing process, the carbonitride surface is highly active and solid solution proceeds smoothly. Note that in this second stage high-temperature treatment, it is optional whether or not to use an atmosphere containing nitrogen. This is because a carbonitride containing nitrogen is obtained in the first stage of high temperature treatment, and there is no need for nitriding in the second stage. Therefore, the purpose of creating a nitrogen atmosphere in the second stage is to prevent nitrogen from escaping due to the decomposition of carbonitrides. Therefore, if there is no concern about denitrification, vacuum, H2
, b, co, etc., but an oxidizing atmosphere promotes oxidation of carbonitrides, which is not preferable.

〈実施例〉 以下、実施例によりこの発明を説明する。<Example> The present invention will be explained below with reference to Examples.

実施例1 (Tjw)(C,N)の固溶体粉末を作成するため、T
= Or粉末、w□、粉末、C粉末を混合し、P N2
= 5ooyorrの窒素雰囲気で1800℃に1時間
保持した。
Example 1 To create a solid solution powder of (Tjw)(C,N), T
= Mix Or powder, w□, powder, and C powder, P N2
The temperature was maintained at 1800°C for 1 hour in a nitrogen atmosphere of = 5ooyorr.

得られた炭窒化物をボールミル粉砕したのち、再度同条
件で処理した。
The obtained carbonitride was ball milled and then treated again under the same conditions.

なお比較のため、途中のボールミル粉砕を入れないで同
じ処理を施した試料を作った。
For comparison, a sample was prepared that was subjected to the same treatment without the intermediate ball milling.

各試料の組成分析結果を第1表に、x′mヂャートを第
1図に示した。
The compositional analysis results of each sample are shown in Table 1, and the x'm chart is shown in Figure 1.

第 1 表 ド 上表および第1図のチャートから組成は殆んど変らない
が、本発明品が十分固溶しているのに対し、比較量はw
Qのピークが残っていることが認められた。
As can be seen from Table 1 and the chart in Figure 1, the composition is almost unchanged, but the product of the present invention is sufficiently dissolved in solid solution, whereas the comparative amount is
It was observed that the Q peak remained.

実施例2 各種の酸化物粉末とC粉末を混合し、窒素1気圧の気流
中で1700℃に30分間保持した。その結果得られた
炭窒化物をボールミル粉砕したのち、0.01 Tor
rの真空中で1600℃に1時間保持した。
Example 2 Various oxide powders and C powder were mixed and held at 1700° C. for 30 minutes in a nitrogen flow of 1 atm. The resulting carbonitride was ball milled and then heated to 0.01 Torr.
The temperature was maintained at 1600° C. for 1 hour in a vacuum of r.

なおボールミル粉砕を行なわないで同じ処理を行なった
試料も作成した。
A sample was also prepared which was subjected to the same treatment without ball milling.

得られた複合炭窒化物の組成とそのメインビーりに対す
る他の炭窒化物のメインピークの比を第2表に示した。
Table 2 shows the composition of the obtained composite carbonitride and the ratio of the main peak of other carbonitrides to its main beam.

上表から途中のボールミル粉砕により固溶が著しく促進
されることが認められた。
From the table above, it was found that the solid solution was significantly promoted by ball milling during the process.

実施例3 実施例1と同じ配合組成で同じ1段目の処理を行なった
試料をボールミル粉砕後、第4表に示す各種の雰囲気中
にて1800℃で1時間保持した。
Example 3 Samples having the same composition and the same first-stage treatment as in Example 1 were ground in a ball mill and held at 1800° C. for 1 hour in various atmospheres shown in Table 4.

かくして得られた複合炭窒化物の各試料をX線回折にか
けたところ、十分に固溶していることが確認された。
When each sample of the composite carbonitride thus obtained was subjected to X-ray diffraction, it was confirmed that it was sufficiently dissolved in solid solution.

得られた試料のI成分析結果は第3表に示した。The I-component analysis results of the obtained samples are shown in Table 3.

第   3   表 響を与えないことがわかった。Table 3 I found that it didn't make any noise.

但し、空気を入れた場合は酸化が進んでしまい、好まし
くなかった。
However, when air was introduced, oxidation progressed, which was not desirable.

実施例4 実施例2における試料No、 9と同じ組成になるよう
に、金属あるいは炭窒化物を混合し、熱処理して固溶体
原料を試作した。これらと試料No、 9を24時間の
ボールミル粉砕にかけ、粉砕性を調べたところ、粉砕後
の粒度は第4表に示すとおりであり、本発明による試料
の方が微粒であることが認められた。
Example 4 Metals or carbonitrides were mixed to have the same composition as Sample No. 9 in Example 2, and heat treated to prepare a solid solution raw material. When these and Sample No. 9 were subjected to ball mill grinding for 24 hours and the grindability was examined, the particle size after grinding was as shown in Table 4, and it was recognized that the sample according to the present invention was finer. .

第  4  表 実施例5 実施例2の試料No、 9および10、実施例4の試料
懇23および24を用い、これにNi粉末を加えてボー
ルミル混合し、プレス焼結を行ない、いわゆるサーメッ
ト合金を試作した。得られた各合金の硬度、抗折力は第
5表に示した。
Table 4 Example 5 Using samples Nos. 9 and 10 of Example 2 and samples Nos. 23 and 24 of Example 4, Ni powder was added thereto, mixed in a ball mill, and press sintered to form a so-called cermet alloy. I made a prototype. The hardness and transverse rupture strength of each alloy obtained are shown in Table 5.

第  5  表 次に上記の各合金を次の条件で切削試III!を行なっ
た。結果は第6表に示した。
Table 5 Next, try cutting each of the above alloys under the following conditions! I did it. The results are shown in Table 6.

条件1(連続膜m) 被剛材     845C ■  具        F N IIR−44Aチツ
プ    S N G H120408速  度   
      200m /1n切込み     2.0
ffil 送   リ            0.30  am
/rev寿命判定    Ve = 0.311#I条
件2(断続旋削) 被削材     SCM435満人材 工  具        F N IIR−44Aチツ
プ    S N G H120408速 度    
  100m/1iin切込み     1.51 送   リ             0゜20  i
m/rev時  間        1分 寿命判定    20切刃中での欠損数第  6  表 〈発明の効果〉 以上詳述したように、この発明によると微粒で粉砕性が
よく、また固溶度のよい複合炭窒化物を得ることができ
るのである。そしてこの複合炭窒化物は超硬合金やサー
メットのような硬質合金を粉末冶金で製造する際に原料
として用いると、非常に微粒な合金が得られ、硬度や強
度が高(Xため、耐摩耗性、耐火40性にすぐれたもの
となるのである。
Condition 1 (continuous film m) Rigid material 845C ■ Tool F N IIR-44A chip S N G H120408 Speed
200m/1n depth of cut 2.0
ffil sending ri 0.30 am
/rev life judgment Ve = 0.311 #I condition 2 (intermittent turning) Work material SCM435 fully manned tool F N IIR-44A tip S N G H120408 Speed
100m/1iin depth of cut 1.51 Feed 0゜20i
m/rev time 1 minute Life judgment Number of defects in 20 cutting edges Table 6 <Effects of the invention> As detailed above, according to the present invention, a composite material with fine particles, good crushability, and good solid solubility. Carbonitrides can be obtained. When this composite carbonitride is used as a raw material when manufacturing hard alloys such as cemented carbide and cermet by powder metallurgy, an extremely fine-grained alloy can be obtained, which has high hardness and strength (X, so it is wear resistant). It has excellent heat resistance and fire resistance of 40%.

また、従来Ti C、TL N 1W C、Mo 2C
、Ta Cというような炭化物、窒化物を単体で混合す
る場合に比べてコストも安く、エネルギーの消費も少な
くできるという効果がある。
In addition, conventional Ti C, TL N 1W C, Mo 2C
Compared to the case where carbides and nitrides such as , Ta, C, etc. are mixed alone, the cost is lower and the energy consumption can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの光明の方法で得られた固溶体粉末のX線回
折チャーj・、第2図は従来法による固溶体粉末のX線
回折チャートである。 出願人代理人  弁理士  相 1)昭第1図 奮 回折A2θ(deg) 第2図 回折内 20(deg)
FIG. 1 is an X-ray diffraction chart of the solid solution powder obtained by Komei's method, and FIG. 2 is an X-ray diffraction chart of the solid solution powder obtained by the conventional method. Applicant's agent Patent attorney Ai 1) Showa 1st diffraction A2θ (deg) Fig. 2 diffraction within 20 (deg)

Claims (1)

【特許請求の範囲】[Claims]  酸化チタンおよびチタンを除くIVa、Va、VIa族金
属の酸化物1種以上を炭素とともに混合し、窒素を含む
雰囲気中で高温処理したのち、得られた炭窒化物を粉砕
、混合し、次いで真空あるいは非酸化性雰囲気中で高温
処理することを特徴とするチタン含有複合炭窒化物の製
造方法。
Titanium oxide and one or more oxides of group IVa, Va, and VIa metals excluding titanium are mixed with carbon, treated at high temperature in a nitrogen-containing atmosphere, and the resulting carbonitride is pulverized and mixed, followed by vacuum treatment. Alternatively, a method for producing a titanium-containing composite carbonitride characterized by high temperature treatment in a non-oxidizing atmosphere.
JP61132211A 1986-06-06 1986-06-06 Manufacture of titanium-containing composite carbonitride Pending JPS62288169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61132211A JPS62288169A (en) 1986-06-06 1986-06-06 Manufacture of titanium-containing composite carbonitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61132211A JPS62288169A (en) 1986-06-06 1986-06-06 Manufacture of titanium-containing composite carbonitride

Publications (1)

Publication Number Publication Date
JPS62288169A true JPS62288169A (en) 1987-12-15

Family

ID=15075992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61132211A Pending JPS62288169A (en) 1986-06-06 1986-06-06 Manufacture of titanium-containing composite carbonitride

Country Status (1)

Country Link
JP (1) JPS62288169A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338356A (en) * 2001-05-17 2002-11-27 Honda Motor Co Ltd Multicomponent system carbide nitride powder, its manufacturing method and sintered compact manufactured therefrom
WO2003004712A1 (en) * 2001-07-03 2003-01-16 Honda Giken Kogyo Kabushiki Kaisha Multi-element ceramic powder and method for preparation thereof, and sintered compact and method for preparation thereof
JP2003020285A (en) * 2001-07-03 2003-01-24 Honda Motor Co Ltd Method for producing multicomponent based ceramics powder or sintered compact
CN106238083A (en) * 2016-07-08 2016-12-21 东华大学 A kind of preparation method of graphite phase carbon nitride/composite titania material catalyst

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338356A (en) * 2001-05-17 2002-11-27 Honda Motor Co Ltd Multicomponent system carbide nitride powder, its manufacturing method and sintered compact manufactured therefrom
WO2003004712A1 (en) * 2001-07-03 2003-01-16 Honda Giken Kogyo Kabushiki Kaisha Multi-element ceramic powder and method for preparation thereof, and sintered compact and method for preparation thereof
JP2003020285A (en) * 2001-07-03 2003-01-24 Honda Motor Co Ltd Method for producing multicomponent based ceramics powder or sintered compact
GB2392675A (en) * 2001-07-03 2004-03-10 Honda Motor Co Ltd Multi-Element Ceramic Powder And Method For Preparation Thereof, And Sintered Compact and Method For Preparation Thereof
GB2392675A9 (en) * 2001-07-03 2005-03-14 Honda Motor Co Ltd Multi-element ceramic powder and method for preperation thereof, and sintered compact and method for preperation thereof
GB2392675B (en) * 2001-07-03 2005-05-18 Honda Motor Co Ltd Multicomponent ceramics powder, method of manufacturing multicomponent ceramics powder and sintered body
US7326273B2 (en) 2001-07-03 2008-02-05 Honda Giken Kogyo Kabushiki Kaisha Multi-element ceramic powder and method for preparation thereof, and sintered compact and method for preparation thereof
CN100422362C (en) * 2001-07-03 2008-10-01 本田技研工业株式会社 Multi-element ceramic powder and method for preparation thereof, and sintered compact and method for preparation thereof
US7615185B2 (en) 2001-07-03 2009-11-10 Honda Giken Kogyo Kabushiki Kaisha Multicomponent ceramics powder, method of manufacturing multicomponent ceramics powder, sintered body, and method of manufacturing sintered body
CN106238083A (en) * 2016-07-08 2016-12-21 东华大学 A kind of preparation method of graphite phase carbon nitride/composite titania material catalyst

Similar Documents

Publication Publication Date Title
JP6744519B1 (en) Cubic boron nitride sintered body, cutting tool including the same, and method for manufacturing cubic boron nitride sintered body
JP2990655B2 (en) Composite carbide powder and method for producing the same
SE433503B (en) HARD alloy based on tungsten molybdenum carbide
WO2020059754A1 (en) Production method of cubic boron nitride sintered body, cubic boron nitride sintered body, and cutting tool containing this
CN1796029B (en) Fine tungsten carbide powder
CN109136709A (en) The production method of vanadium carbide nitride magnesium-titanium solid solution and its hard alloy
JPS62288169A (en) Manufacture of titanium-containing composite carbonitride
US11767268B2 (en) Cubic boron nitride sintered material
EP4079707A1 (en) Cubic boron nitride sintered compact
JP4105410B2 (en) Multi-component carbonitride powder, method for producing the same, and sintered body using the same
JP3869681B2 (en) Titanium carbonitride powder for hard materials and method for producing the same
JPH06212341A (en) Sintered hard alloy and its production
JP2502322B2 (en) High toughness cermet
JPS63286549A (en) Nitrogen-containing titanium carbide-base sintered alloy having excellent resistance to plastic deformation
JPS6342346A (en) High-strength sintered hard alloy
JPS636618B2 (en)
JPS61264142A (en) Manufacture of sintered hard alloy
JP2002338356A (en) Multicomponent system carbide nitride powder, its manufacturing method and sintered compact manufactured therefrom
JP5294458B2 (en) Composite powder and method for producing the same
JPH07108768B2 (en) Composite carbonitride manufacturing method
JP2004292865A (en) Hard metal superior in fracture resistance and manufacturing method therefor
JP2002187721A (en) Multiple ceramic powder and manufacturing method thereof
JPH11158569A (en) Regenerated powder of cermet chip and its regenerating method
JPH0524851B2 (en)
JPH08120352A (en) Method for reproducing cemented carbide composition and production of cemented carbide