JP4382113B2 - Method for producing titanium carbonitride powder - Google Patents
Method for producing titanium carbonitride powder Download PDFInfo
- Publication number
- JP4382113B2 JP4382113B2 JP2007154030A JP2007154030A JP4382113B2 JP 4382113 B2 JP4382113 B2 JP 4382113B2 JP 2007154030 A JP2007154030 A JP 2007154030A JP 2007154030 A JP2007154030 A JP 2007154030A JP 4382113 B2 JP4382113 B2 JP 4382113B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- titanium
- titanium carbonitride
- value
- titanium nitride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Ceramic Products (AREA)
Description
この発明は、例えば、切削工具等に利用されるサーメットや超硬合金、あるいは、セラミックス等の素原料として用いられる所定の炭素及び窒素含有割合からなる炭窒化チタン粉末を、簡易かつ効率的に製造する方法に関するものである。 The present invention, for example, easily and efficiently produces titanium carbonitride powder comprising a predetermined carbon and nitrogen content used as a raw material for cermet, cemented carbide or ceramics used for cutting tools, etc. It is about how to do.
従来、サーメットや超硬合金、あるいは、セラミックス等の原料粉末として用いられる炭窒化チタン粉末の製造法としては、窒化チタン粉末と炭化チタン粉末との混合粉末を固溶化熱処理して得る方法が知られているが、この製造法では、炭素および窒素の拡散を十分行わせるためには長時間を有するため、効率的な反応が行われず、また、水素化チタン粉末と炭素粉末を原料粉末とし、この混合粉末を、窒素気流中あるいは水素−窒素混合気流中で、1400℃以下で熱処理し、さらに、1400〜1700℃での熱処理(二段階での熱処理)を行うことによって、炭窒化チタン粉末を得る方法も知られているが、この製造法においても、熱処理時に窒素ガスを多く吸収した領域とそうでない領域のアンバランスが生じるため、炭素含有量および窒素含有量の変動が大きく、所望均一組成の炭窒化チタン粉末を得ることは非常に困難であり、これを解消するには、長時間かけた緩やかな窒化処理を行わざるを得なかった。
そこで、本発明は、切削工具等に利用されるサーメットや超硬合金、あるいは、セラミックスの素原料等として用いられる炭窒化チタン粉末の製造方法として、所望組成の炭窒化チタン粉末を簡易かつ効率的に製造する方法を提供することを目的とし、さらに、本発明の製造方法により得たこの炭窒化チタン粉末を原料粉末として用いることによって、サーメット、超硬合金、セラミックス等の焼結体の機械的性質を向上させることを目的とするものである。 Therefore, the present invention provides a simple and efficient method for producing a titanium carbonitride powder having a desired composition as a method for producing a cermet or cemented carbide used for a cutting tool or the like, or a raw material for ceramics. In addition, by using the titanium carbonitride powder obtained by the production method of the present invention as a raw material powder, the mechanical properties of sintered bodies such as cermets, cemented carbides, ceramics, etc. The purpose is to improve the properties.
本発明者らは、前記課題を解決すべく、炭窒化チタン粉末を製造する際の原料粉末及びその製造工程について、鋭意研究を行なったところ、
(a)炭窒化チタン粉末製造用の原料粉末として、窒化チタン(但し、組成式:TiNXで表した場合、0.4≦X≦0.8(Xは原子比)を満足する)粉末と炭素粉末とを混合し、この混合粉末を、高温熱処理し、炭素と窒素を充分拡散させることによって、チタン粉末、酸化チタン粉末あるいは水素化チタン粉末等を原料粉末として用いた前記従来炭窒化チタン粉末の製造法に比して、簡易かつ効率的に所望組成の炭窒化チタン粉末を製造し得ること。
In order to solve the above-mentioned problems, the present inventors conducted earnest research on the raw material powder and its production process when producing titanium carbonitride powder.
(A) As a raw material powder for producing titanium carbonitride powder, titanium nitride (provided that 0.4 ≦ X ≦ 0.8 (where X is an atomic ratio) when represented by the composition formula: TiN X ); The conventional titanium carbonitride powder using titanium powder, titanium oxide powder, titanium hydride powder or the like as a raw material powder by mixing carbon powder, heat-treating the mixed powder at high temperature, and sufficiently diffusing carbon and nitrogen The titanium carbonitride powder having a desired composition can be produced easily and efficiently compared to the production method described above.
(b)上記高温熱処理は、具体的には、組成式:TiNX(但し、Xは原子比で、0.4≦X≦0.8)を満足する窒化チタン粉末と、炭素粉末との混合粉末を、窒素雰囲気、アルゴン雰囲気あるいは真空雰囲気のいずれかの雰囲気中において、1500〜2100℃の温度範囲で高温加熱することにより行われ、そして、この高温熱処理によって、窒化チタン粉末粒子中での炭素および窒素の十分な拡散を行わせ、前記原料粉末のTiNXのXの値を調整することにより、また、熱処理雰囲気を選択することにより、所望組成の炭窒化チタン粉末を製造し得ること。 (B) The high-temperature heat treatment is specifically a mixture of a titanium nitride powder satisfying the composition formula: TiN X (where X is an atomic ratio, 0.4 ≦ X ≦ 0.8) and a carbon powder. The powder is heated at a high temperature in a temperature range of 1500 to 2100 ° C. in any one of a nitrogen atmosphere, an argon atmosphere, and a vacuum atmosphere, and carbon in the titanium nitride powder particles is obtained by this high-temperature heat treatment. And sufficient diffusion of nitrogen, adjusting the X value of TiN X of the raw material powder, and selecting a heat treatment atmosphere to produce a titanium carbonitride powder having a desired composition.
(c)上記製造方法によって製造した本発明の炭窒化チタン粉末を原料粉末とし、これを焼結して得た焼結体は、炭窒化チタン粉末の組成の乱れが極めて小さいため、焼結体としても均質な安定した機械特性を示すこと。
以上、(a)〜(c)に示される研究結果を得たのである。
(C) The sintered body obtained by using the titanium carbonitride powder of the present invention produced by the above production method as a raw material powder and sintering the powder is a sintered body because the composition disorder of the titanium carbonitride powder is extremely small. As well as exhibiting homogeneous and stable mechanical properties.
As described above, the research results shown in (a) to (c) were obtained.
この発明は、上記研究結果に基づいてなされたものであって、
「窒化チタンを、
組成式:TiNX
で表した場合に、0.4≦X≦0.8(但し、Xは原子比を示す)を満足する窒化チタン粉末と、炭素粉末とを混合し、該混合粉末を窒素雰囲気、アルゴン雰囲気あるいは真空雰囲気のいずれかの雰囲気中において、1500〜2100℃の温度範囲で高温熱処理することを特徴とする炭窒化チタン粉末の製造方法。」
に特徴を有するものである。
This invention was made based on the above research results,
“Titanium nitride
Composition formula: TiN X
In this case, a titanium nitride powder satisfying 0.4 ≦ X ≦ 0.8 (where X represents an atomic ratio) and a carbon powder are mixed, and the mixed powder is mixed with a nitrogen atmosphere, an argon atmosphere or A method for producing a titanium carbonitride powder, characterized by performing high-temperature heat treatment in a temperature range of 1500 to 2100 ° C in any one of vacuum atmospheres. "
It has the characteristics.
以下に、本発明の製造方法について、より具体的かつ詳細に説明する。 Below, the manufacturing method of this invention is demonstrated more concretely and in detail.
一般的に、窒化チタン粉末は、金属チタン粉末あるいは水素化チタン粉末を窒素雰囲気下で熱合成することにより得ているが、その際の反応熱が大きいために、処理温度の厳密な制御が必要とされるほか、粉末の粒度、粉体の層厚および雰囲気の窒素分圧等を細かく制御しなければならず、これらの反応条件の調整が不十分であると、粉末の溶融化が生じたり、窒化反応が阻害される恐れがあった。そのため、窒素が充分に固溶した窒化チタン(例えば、組成式TiNXにおいて、X=1である窒化チタン)粉末を得るには、2段階以上の窒化処理あるいは長時間をかけた緩やかな窒化処理が必要とされていた。 In general, titanium nitride powder is obtained by thermally synthesizing titanium metal powder or titanium hydride powder in a nitrogen atmosphere, but due to the large heat of reaction, strict control of the processing temperature is required. In addition, the particle size of the powder, the layer thickness of the powder and the nitrogen partial pressure of the atmosphere must be finely controlled. If these reaction conditions are not sufficiently adjusted, the powder may melt. There was a risk that the nitriding reaction would be inhibited. Therefore, in order to obtain a titanium nitride powder in which nitrogen is sufficiently dissolved (for example, titanium nitride in which X = 1 in the composition formula TiN X ), a nitriding process of two or more stages or a gradual nitriding process taking a long time is obtained. Was needed.
しかし、本発明では、炭素粉末と混合する窒化チタン粉末を、
組成式:TiNX
で表した場合、X=1であるような窒化チタン粉末(高級)を必要とせず、むしろ、X値が0.4以上0.8以下である低級窒化チタン粉末を用いることが必要であることを知見した。
その理由は次のとおりである。
However, in the present invention, titanium nitride powder mixed with carbon powder is
Composition formula: TiN X
It is necessary to use a lower titanium nitride powder having an X value of 0.4 or more and 0.8 or less. I found out.
The reason is as follows.
つまり、Xの値が0.4〜0.8である窒化チタン粉末に、炭素粉末を混合し、この混合粉を高温熱処理すると、この温度範囲では、窒化チタンに比して、炭窒化チタンの方がより安定な化合物形態であることから、例えば、Xの値が0.6〜0.8である比較的大きなX値の窒化チタン粉末を用いた場合には、固相拡散で炭素が窒化チタン中へ拡散・固溶し、一方、窒化チタン中の余剰となった窒素は雰囲気中へと離脱し、その結果、目標組成の炭窒化チタン(例えば、炭窒化チタンの組成式をTiCYNZで表した場合、0.3≦Y≦0.7、0.3≦Z≦0.7、Y+Z=1、但し、Y、Zはそれぞれ原子比)粉末を簡易にかつ安定的に製造することができる。 That is, when carbon powder is mixed with titanium nitride powder having a value of X of 0.4 to 0.8, and this mixed powder is subjected to high-temperature heat treatment, in this temperature range, titanium carbonitride is compared with titanium nitride. For example, when a relatively large X value titanium nitride powder having an X value of 0.6 to 0.8 is used, carbon is nitrided by solid phase diffusion. Nitrogen diffused and dissolved in titanium, while excess nitrogen in titanium nitride is released into the atmosphere. As a result, titanium carbonitride having a target composition (for example, the composition formula of titanium carbonitride is expressed as TiC Y N When represented by Z , 0.3 ≦ Y ≦ 0.7, 0.3 ≦ Z ≦ 0.7, Y + Z = 1, where Y and Z are in atomic ratios, respectively. be able to.
また、例えば、Xの値が0.4〜0.5である比較的小さなX値の窒化チタン粉末を用いた場合には、高温熱処理により固相拡散で炭素が窒化チタン中へ拡散・固溶するが、高温熱処理の雰囲気を窒素ガス雰囲気とすれば、雰囲気中から窒化チタン粉末への窒素の拡散も生じ、前記同様、目標組成の炭窒化チタン粉末を安定的に製造することができる。 For example, when a relatively small X value titanium nitride powder having an X value of 0.4 to 0.5 is used, carbon is diffused and dissolved in titanium nitride by solid phase diffusion by high-temperature heat treatment. However, if the atmosphere of the high-temperature heat treatment is a nitrogen gas atmosphere, nitrogen diffuses from the atmosphere to the titanium nitride powder, and the titanium carbonitride powder having the target composition can be stably produced as described above.
ただ、組成式:TiNXで示される原料粉末の窒化チタン粉末おいて、X値が0.8を超えると、既に述べたとおり、いわゆる高級窒化チタン粉末の場合と同様に、X値が大きい窒化チタン粉末を得る工程が非常に煩雑・困難であること、また、製造する炭窒化チタン粉末の目標組成にもよるが、窒素含有割合の低い炭窒化チタン(Z値が小)粉末を得ようとする場合には、高温熱処理時に脱窒を行うことが必要となり、脱窒するには長時間の熱処理を行わざるを得ず効率的でないこと、逆に、X値が0.8以下であった場合には、X値が高い場合に比して、炭素の固相拡散がむしろ促進され、雰囲気の選択等によって効率的かつ自在に目標組成の炭窒化チタン粉末を得ることができ、低級窒化チタンであっても、原料粉末としての使用に全く問題がないことから、X値を0.8以下とした。
一方、原料粉末である窒化チタン粉末おいて、X値が0.4未満であると、製造する炭窒化チタン粉末の目標組成にもよるが、窒素含有割合の高い炭窒化チタン(Z値が大)粉末を得ようとする場合には、炭素粉末からの炭素の固相拡散と同時に、雰囲気ガス中から浸窒・拡散を行わざるを得ず長時間を要し、効率的でなくなることから、X値を0.4以上とした。
したがって、本発明では、原料粉末の窒化チタン粉末を、組成式:TiNXで表した場合に、Xの値(但し、原子比)を、0.4〜0.8としなければならない。
However, in the titanium nitride powder of the raw material powder represented by the composition formula: TiN X , when the X value exceeds 0.8, as already described, as in the case of so-called high-grade titanium nitride powder, nitriding with a large X value is performed. The process of obtaining titanium powder is very complicated and difficult, and, depending on the target composition of the titanium carbonitride powder to be produced, an attempt is made to obtain a titanium carbonitride (low Z value) powder with a low nitrogen content. In this case, it is necessary to perform denitrification at the time of high-temperature heat treatment, and it is inefficient to perform denitrification for a long time. Conversely, the X value was 0.8 or less. In this case, compared with the case where the X value is high, solid phase diffusion of carbon is rather promoted, and a titanium carbonitride powder having a target composition can be obtained efficiently and freely by selecting the atmosphere, etc. Even for use as a raw material powder Therefore, the X value was set to 0.8 or less.
On the other hand, in the titanium nitride powder as the raw material powder, if the X value is less than 0.4, depending on the target composition of the titanium carbonitride powder to be produced, titanium carbonitride having a high nitrogen content (Z value is large ) When trying to obtain a powder, the solid phase diffusion of carbon from the carbon powder, and at the same time, nitriding and diffusing from the atmospheric gas must be performed, and it takes a long time, and it becomes inefficient. The X value was set to 0.4 or more.
Accordingly, in the present invention, when the raw material titanium nitride powder is represented by the composition formula: TiN X , the value of X (however, the atomic ratio) must be 0.4 to 0.8.
本発明では、原料粉末としての窒化チタン粉末の平均粒径、炭素粉末の平均粒径を特に定めてはいないが、高温熱処理時に粉末相互の固相拡散を行わせること、また、炭窒化チタンの目標組成に応じて、脱窒・浸窒反応を行う必要も生じることから、粉末の表面積を大きくして反応の促進を図るために、窒化チタン粉末の粒径は200μm以下、また、炭素粉末の粒径は150μm以下とすることが望ましい。 In the present invention, although the average particle diameter of the titanium nitride powder as the raw material powder and the average particle diameter of the carbon powder are not particularly defined, solid phase diffusion between the powders during high-temperature heat treatment can be performed. Depending on the target composition, it may be necessary to perform a denitrification / nitrogenation reaction. Therefore, in order to increase the surface area of the powder and promote the reaction, the particle size of the titanium nitride powder is 200 μm or less, and the carbon powder The particle size is desirably 150 μm or less.
本発明では、窒化チタン粉末と炭素粉末との混合粉末を、窒素雰囲気、アルゴン雰囲気あるいは真空雰囲気のいずれかの雰囲気中で高温熱処理を行うとしているが、いずれの雰囲気中で高温熱処理を行うかは、炭窒化チタンの目標組成に応じて選択すればよい。 In the present invention, the mixed powder of titanium nitride powder and carbon powder is subjected to high-temperature heat treatment in any of a nitrogen atmosphere, an argon atmosphere, or a vacuum atmosphere. What is necessary is just to select according to the target composition of titanium carbonitride.
即ち、窒化チタン粉末中の窒素含有割合が少なく(X値が小)、一方、目的とする炭窒化チタン粉末の目標窒素含有量が高い(Z値が大)場合には、窒素雰囲気下で高温熱処理をし、浸窒を行えばよく、また、高温熱処理時に特に窒素の濃度変化が起きないようにするためには、アルゴン雰囲気下で高温熱処理を行えばよく、さらに、窒化チタン粉末中の窒素含有割合が多く(X値が大)、一方、目的とする炭窒化チタン粉末の目標窒素含有量が少ない(Z値が小)場合には、真空雰囲気下で高温熱処理をし、窒化チタン粉末からの脱窒を促進すればよい。
なお、窒化チタン粉末のX値、熱処理雰囲気の選択ばかりでなく、窒化チタン粉末と炭素粉末の配合割合、高温熱処理の保持温度、保持時間によっても、製造される炭窒化チタン粉末の炭素濃度(Y値)、窒素濃度(Z値)は当然変化することから、目標組成(Y値、Z値)の炭窒化チタン粉末を製造するためには、前記諸条件を適切に調整することが必要である。
That is, when the content of nitrogen in the titanium nitride powder is small (X value is small), while the target nitrogen content of the target titanium carbonitride powder is high (Z value is large), the temperature is high in a nitrogen atmosphere. Heat treatment may be performed, and nitriding may be performed. In order to prevent a change in nitrogen concentration particularly during high-temperature heat treatment, high-temperature heat treatment may be performed in an argon atmosphere. When the content ratio is large (X value is large), but the target nitrogen content of the target titanium carbonitride powder is small (Z value is small), high-temperature heat treatment is performed in a vacuum atmosphere. Should be promoted.
The carbon concentration of the titanium carbonitride powder to be produced (Y) depends not only on the X value of the titanium nitride powder and the selection of the heat treatment atmosphere, but also on the blending ratio of the titanium nitride powder and the carbon powder, the holding temperature of the high temperature heat treatment, and the holding time. Value) and nitrogen concentration (Z value) naturally change, and in order to produce a titanium carbonitride powder having a target composition (Y value, Z value), it is necessary to appropriately adjust the various conditions. .
また、本発明では、TiNX(原子比で、0.4≦X≦0.8)を満足する窒化チタン粉末と炭素粉末の混合粉末を、1500〜2100℃の加熱温度範囲で高温熱処理するとしたが、加熱温度が1500℃未満では、炭素の固相拡散速度が小さく、窒化チタン粉末へ十分に炭素が拡散・固溶することができないばかりか、窒素の固相拡散速度、雰囲気との間での脱窒・浸窒速度も遅いため、短時間で目標組成の炭窒化チタン粉末を得ることができない。
一方、加熱温度が2100℃を超えると、粒子成長や焼結現象が発生し、粉末を得るために過酷な粉砕を必要とすることから、高温熱処理を行う温度範囲を1500〜2100℃と定めた。
上記温度範囲で高温熱処理を行うことによって、簡易な方法で、しかも短時間で炭素及び窒素の十分な拡散が図られ、目標組成(Y値、Z値)の炭窒化チタン粉末を製造することができた。
そして、この炭窒化チタン粉末を原料粉末として、焼結により焼結切削工具材料を製造したところ、すぐれた機械的特性(例えば、高抗折力、高硬度)を有する均質な切削工具材料を製造することができた。
In the present invention, a mixed powder of titanium nitride powder and carbon powder satisfying TiN X (atomic ratio: 0.4 ≦ X ≦ 0.8) is subjected to high-temperature heat treatment in a heating temperature range of 1500 to 2100 ° C. However, when the heating temperature is less than 1500 ° C., the solid phase diffusion rate of carbon is small, and not only carbon cannot be sufficiently diffused and dissolved in titanium nitride powder, but also between the solid phase diffusion rate of nitrogen and the atmosphere. Therefore, it is impossible to obtain a titanium carbonitride powder having a target composition in a short time.
On the other hand, when the heating temperature exceeds 2100 ° C., particle growth and sintering phenomenon occur, and severe pulverization is required to obtain a powder. Therefore, the temperature range for performing high-temperature heat treatment is set to 1500 to 2100 ° C. .
By performing high temperature heat treatment in the above temperature range, sufficient diffusion of carbon and nitrogen can be achieved in a simple method and in a short time, and a titanium carbonitride powder having a target composition (Y value, Z value) can be produced. did it.
And when this titanium carbonitride powder is used as a raw material powder, a sintered cutting tool material is manufactured by sintering. As a result, a homogeneous cutting tool material having excellent mechanical properties (for example, high bending strength and high hardness) is manufactured. We were able to.
本発明の炭窒化チタン粉末の製造方法によれば、高級窒化チタン粉末を用いることなく、低級窒化チタン粉末を用いて、簡易な工程で効率的に所望組成の炭窒化チタン粉末を製造することができ、しかも、本発明により製造した窒化チタン粉末を用いることによって、例えば、すぐれた機械的特性を備えた焼結切削工具材料を得ることができるので、工業的な価値は非常に大きい。 According to the method for producing a titanium carbonitride powder of the present invention, a titanium carbonitride powder having a desired composition can be efficiently produced in a simple process using a lower titanium nitride powder without using a high-grade titanium nitride powder. In addition, by using the titanium nitride powder produced according to the present invention, for example, a sintered cutting tool material having excellent mechanical properties can be obtained, so that the industrial value is very large.
以下、本発明を、実施例により具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples.
表1に示す平均粒径、X値の窒化チタン(TiNX)粉末、および、同じく表1に示す平均粒径の炭素粉末を使用し、高温熱処理条件に応じて、所定目標組成の炭窒化チタン粉末が得られるように、同じく表1に示す窒化チタン(TiNX)粉末と炭素粉末との配合割合からなる混合粉末1〜10を用意した。
なお、表1において、炭窒化チタン粉末の目標炭素含有量をY値、また、目標窒素含有量をZ値として示した。
Titanium carbonitride having a predetermined target composition according to high-temperature heat treatment conditions using the average particle size and the X-value titanium nitride (TiN X ) powder shown in Table 1 and the carbon powder having the average particle size shown in Table 1 Mixed powders 1 to 10 having a blending ratio of titanium nitride (TiN x ) powder and carbon powder shown in Table 1 were prepared so that the powder was obtained.
In Table 1, the target carbon content of the titanium carbonitride powder is shown as a Y value, and the target nitrogen content is shown as a Z value.
混合粉末1〜10(30kg)を電気炉内に装入し、表2に示す雰囲気下で、同じく表2に示す加熱温度、加熱時間で高温熱処理後、ボールミル粉砕し、炭窒化チタン粉末1〜10(以下、本発明粉末1〜10という)を夫々得た。
上記本発明粉末1〜10について、赤外線吸収法で炭素含有割合を、また、熱伝導度法で窒素含有割合を測定し、その実測値の平均値を、平均炭素含有量(YM値)、平均窒素含有量(ZM値)として表3に示す。
表3に示すYM値、ZM値(いずれも実測平均値)と、表1に示したY値、Z値(いずれも目標値)との比較から明らかなように、本発明の製造方法によれば、
目標組成どおりの炭窒化チタン粉末を製造し得ることがわかる。
The mixed powders 1 to 10 (30 kg) were charged into an electric furnace and subjected to high-temperature heat treatment at the heating temperature and heating time shown in Table 2 in the atmosphere shown in Table 2, followed by ball milling, and titanium carbonitride powders 1 to 10 (hereinafter referred to as powders 1 to 10 of the present invention) were obtained.
About the said invention powder 1-10, the carbon content rate is measured by the infrared absorption method, and the nitrogen content rate is measured by the thermal conductivity method, and the average value of the actual measurement values is the average carbon content (Y M value), shown in Table 3 as an average nitrogen content (Z M value).
Y M values shown in Table 3, Z M value (both measured average value), Y values shown in Table 1, as is apparent from a comparison between the Z values (both target value), the production method of the present invention According to
It turns out that the titanium carbonitride powder according to a target composition can be manufactured.
次に、原料粉末として、1.00〜1.50μmの平均粒径を有する上記本発明粉末1〜10、さらに、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表4に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもった炭窒化チタン基サーメットからなる本発明切削工具1〜10を製造した。
得られた焼結切削工具材料について測定した機械的特性値(抗折力、硬度Hv)を表5に示す。
Next, as the raw material powder, the present invention powders 1 to 10 having an average particle diameter of 1.00 to 1.50 μm, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, Co powder, And Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 4, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The body was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part was subjected to a honing process of R: 0.03 to obtain a chip shape of ISO standard / CNMG120408. Inventive cutting tools 1 to 10 comprising a titanium carbonitride-based cermet were prepared.
Table 5 shows the mechanical property values (bending strength, hardness Hv) measured for the obtained sintered cutting tool material.
さらに、この本発明切削工具1〜10を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下の条件で合金鋼の乾式切削加工試験を行い、試験後の切刃の逃げ面摩耗幅を測定し、また、各工具についての欠損の有無をSEMにより調査した。
その結果を表6に示した。
被削材: SCM440の丸棒
切削速度: 350 m/min
切込み速度: 1.0 mm
送り: 0.20 mm/rev
切削時間: 20 min
Further, the cutting tools 1 to 10 of the present invention are all subjected to a dry cutting test of alloy steel under the following conditions in a state where the tool steel tool is screwed to the tip of the tool steel with a fixing jig. The flank wear width of the cutting edge was measured, and the presence or absence of defects in each tool was investigated by SEM.
The results are shown in Table 6.
Work material: Round bar cutting speed of SCM440: 350 m / min
Cutting speed: 1.0 mm
Feeding: 0.20 mm / rev
Cutting time: 20 min
平均粒径1.0〜2.0μmの窒化チタン(原子比で、Ti:N=1:1の高級窒化チタン)粉末と、平均粒径 1.00〜2.00μmの炭化チタン粉末を使用し、表1に示す目標組成の炭窒化チタン(TiCY’NZ’(但し、原子比で、Y’+Z’=1))粉末が得られるように、窒化チタン粉末と炭化チタン粉末を配合し、表2に示す雰囲気、加熱温度、加熱時間で高温熱処理を行い、ボールミル粉砕を行った。 Titanium nitride having an average particle diameter of 1.0 to 2.0 μm (higher titanium nitride having an atomic ratio of Ti: N = 1: 1) and titanium carbide powder having an average particle diameter of 1.00 to 2.00 μm are used. In order to obtain titanium carbonitride (TiC Y ′ N Z ′ (where the atomic ratio is Y ′ + Z ′ = 1)) powder having the target composition shown in Table 1, a titanium nitride powder and a titanium carbide powder were blended. Then, high temperature heat treatment was performed in the atmosphere, heating temperature, and heating time shown in Table 2, and ball milling was performed.
得られた炭窒化チタン粉末(以下、比較例粉末1〜3という)について、実施例1の場合と同様に、赤外線吸収法、熱伝導度法により炭素含有割合、窒素含有割合を測定し、その実測値の平均値を、平均炭素含有量(Y’M値)、平均窒素含有量(Z’M値)として表3に示す。 About the obtained titanium carbonitride powder (hereinafter referred to as Comparative Example powders 1 to 3), the carbon content ratio and the nitrogen content ratio were measured by the infrared absorption method and the thermal conductivity method in the same manner as in Example 1. Table 3 shows the average values of the actually measured values as the average carbon content (Y ′ M value) and the average nitrogen content (Z ′ M value).
次に、上記比較例粉末1〜3を炭窒化チタン原料粉として用い、表4に示される各種粉末を配合し、実施例と同様にして、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもった炭窒化チタン基サーメットからなる比較例切削工具1〜3を製造した。
得られた焼結切削工具材料について測定した機械的特性値(抗折力、硬度Hv)を表5に示す。
Next, using the above comparative example powders 1 to 3 as titanium carbonitride raw material powder, blending various powders shown in Table 4, and performing the honing process of R: 0.03 on the cutting edge portion in the same manner as in the example. Thus, comparative cutting tools 1 to 3 made of a titanium carbonitride-based cermet having a chip shape of ISO standard / CNMG120408 were manufactured.
Table 5 shows the mechanical property values (bending strength, hardness Hv) measured for the obtained sintered cutting tool material.
また、この比較例切削工具1〜3を用いて、実施例と同様な条件で切削加工試験を行った。
そして、試験後の切刃の逃げ面摩耗幅を測定し、また、各工具についての欠損の有無をSEMにより調査した。
その結果を表6に示した。
Moreover, the cutting test was done on the conditions similar to an Example using these comparative example cutting tools 1-3.
Then, the flank wear width of the cutting blade after the test was measured, and the presence or absence of defects in each tool was investigated by SEM.
The results are shown in Table 6.
表1、表2に示される原料粉、製造条件の比較から、本発明粉末1〜10は、低級窒化チタン粉末を原料粉末として用い、これを炭素粉末と混合し、短時間の高温熱処理で炭窒化チタン粉末を製造することができるので、高級窒化チタン粉末を原料とする比較例粉末1〜3に比して、高級窒化チタン粉末の調製という煩雑な工程を必要としないばかりか、高温熱処理時間の短縮化を図ることもできるので、本発明によれば、炭窒化チタン粉末の製造において、製造工程の簡易化、効率化を図ることができる。
また、表5、6に示される諸特性の対比からも明らかなように、本発明により製造した炭窒化チタン粉末を焼結することにより得た焼結体(例えば、焼結切削工具材料)はすぐれた機械的特性を有し、さらに、これを切削工具として使用した場合にも耐摩耗性、耐欠損性の点ですぐれた工具特性を示し、比較例粉末1〜3から製造した焼結体(例えば、焼結切削工具材料)、切削工具と比較して、その機械的特性、切削工具特性は何ら遜色のあるものではなかった。
From comparison of raw material powders and production conditions shown in Tables 1 and 2, the present invention powders 1 to 10 use lower titanium nitride powder as raw material powder, mix this with carbon powder, and perform carbonization by short-time high-temperature heat treatment. Since titanium nitride powder can be produced, it does not require a complicated process of preparing high-grade titanium nitride powder as compared with Comparative Examples Powders 1 to 3 using high-grade titanium nitride powder as a raw material, and high-temperature heat treatment time Therefore, according to the present invention, it is possible to simplify the manufacturing process and increase the efficiency in the production of titanium carbonitride powder.
Moreover, as is clear from the comparison of various characteristics shown in Tables 5 and 6, the sintered body (for example, sintered cutting tool material) obtained by sintering the titanium carbonitride powder produced according to the present invention is Sintered body having excellent mechanical properties, and having excellent tool properties in terms of wear resistance and fracture resistance even when used as a cutting tool, and manufactured from Comparative Example Powders 1 to 3 Compared with the cutting tool (for example, sintered cutting tool material), the mechanical characteristics and cutting tool characteristics were not inferior.
以上のとおり、本発明の製造方法は、簡易かつ効率的な工程で炭窒化チタン粉末を製造し得るものであり、さらに、本発明により得た炭窒化チタン粉末を用いて製造した焼結体、例えば、焼結切削工具材料は、すぐれた機械的特性、切削工具特性を備えるものであることから、本発明の工業的な価値は非常に大きい。 As described above, the production method of the present invention can produce titanium carbonitride powder in a simple and efficient process, and further, a sintered body produced using the titanium carbonitride powder obtained by the present invention, For example, since the sintered cutting tool material has excellent mechanical characteristics and cutting tool characteristics, the industrial value of the present invention is very large.
Claims (1)
組成式:TiNX
で表した場合に、0.4≦X≦0.8(但し、Xは原子比を示す)を満足する窒化チタン粉末と、炭素粉末とを混合し、該混合粉末を窒素雰囲気、アルゴン雰囲気あるいは真空雰囲気のいずれかの雰囲気中において、1500〜2100℃の温度範囲で高温熱処理することを特徴とする炭窒化チタン粉末の製造方法。 Titanium nitride,
Composition formula: TiN X
In this case, a titanium nitride powder satisfying 0.4 ≦ X ≦ 0.8 (where X represents an atomic ratio) and a carbon powder are mixed, and the mixed powder is mixed with a nitrogen atmosphere, an argon atmosphere or A method for producing a titanium carbonitride powder, characterized by performing high-temperature heat treatment in a temperature range of 1500 to 2100 ° C in any one of vacuum atmospheres.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007154030A JP4382113B2 (en) | 2007-06-11 | 2007-06-11 | Method for producing titanium carbonitride powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007154030A JP4382113B2 (en) | 2007-06-11 | 2007-06-11 | Method for producing titanium carbonitride powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008303127A JP2008303127A (en) | 2008-12-18 |
JP4382113B2 true JP4382113B2 (en) | 2009-12-09 |
Family
ID=40232165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007154030A Active JP4382113B2 (en) | 2007-06-11 | 2007-06-11 | Method for producing titanium carbonitride powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4382113B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5618364B2 (en) * | 2010-11-04 | 2014-11-05 | 一般財団法人ファインセラミックスセンター | Method for producing ultrafine and homogeneous titanium carbonitride solid solution powder |
-
2007
- 2007-06-11 JP JP2007154030A patent/JP4382113B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008303127A (en) | 2008-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109487141B (en) | Preparation method of platy carbide solid solution toughened mixed crystal Ti (C, N) -based metal ceramic | |
EP2177639A1 (en) | Titanium-base cermet, coated cermet, and cutting tool | |
KR100663666B1 (en) | High toughness titanium carbonitride-based cermet and a manufacturing method thereof | |
JP4382113B2 (en) | Method for producing titanium carbonitride powder | |
JPS6159391B2 (en) | ||
JP6901014B2 (en) | Method for manufacturing ceramic powder and method for manufacturing boron nitride sintered body | |
WO2016199686A1 (en) | Cemented carbide and coated cemented carbide | |
US20110150692A1 (en) | Submicron Cemented Carbide with Mixed Carbides | |
JPH0475847B2 (en) | ||
US9238854B2 (en) | Method of producing carbide and carbon nitride powders containing binder, and cermet obtained from the same | |
KR101640644B1 (en) | Titanium sintered alloy with improved thermal impact resistance and cutting tools using the same | |
JPH04294907A (en) | Hard layer coated tungsten carbide group sintered hard alloy-made cutting tool | |
JP2002292507A (en) | Cutting tool made of cermet and its manufacturing method | |
JP5294458B2 (en) | Composite powder and method for producing the same | |
KR100388891B1 (en) | Method of producing a titanium carbonitride-based cermet having no materials of tantalum-contained component | |
JP5892319B2 (en) | Surface coated WC-based cemented carbide cutting tool | |
JPH03215363A (en) | Production of ceramic material based on cubic boron nitride having high toughness | |
JP4244108B2 (en) | CUTTING TOOL CUTTING PART OF Cubic Boron Nitride-Based Sintered Material with Excellent Chipping Resistance | |
JPS647141B2 (en) | ||
JPH0513084B2 (en) | ||
JPS60152650A (en) | Sintered hard alloy having superior wear resistance and superior characteristic at high temperature and its manufacture | |
JPH07237012A (en) | Cermet cutting tool with excellent chipping resistance | |
JPH0762185B2 (en) | Manufacturing method of tungsten carbide based cemented carbide | |
JPH0524855B2 (en) | ||
JPH0524852B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090911 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090916 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090916 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121002 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4382113 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121002 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131002 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |