JPH0697697A - Composite magnetic shielding body - Google Patents

Composite magnetic shielding body

Info

Publication number
JPH0697697A
JPH0697697A JP4271173A JP27117392A JPH0697697A JP H0697697 A JPH0697697 A JP H0697697A JP 4271173 A JP4271173 A JP 4271173A JP 27117392 A JP27117392 A JP 27117392A JP H0697697 A JPH0697697 A JP H0697697A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
shield
shield body
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4271173A
Other languages
Japanese (ja)
Inventor
Mineo Ito
峰雄 伊藤
Taku Oyama
卓 大山
Akihito Satou
哲仁 佐藤
Kazutomo Hoshino
和友 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP4271173A priority Critical patent/JPH0697697A/en
Publication of JPH0697697A publication Critical patent/JPH0697697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Measuring And Other Instruments (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To improve magnetic shield from strong external magnetic fields by enclosing axially-joined oxide superconductors in a ferromagnetic shield body. CONSTITUTION:A magnetic shielding body 2 consisting of a divided superconductor is formed to a plurality of tubes or square housings whose both ends are opened or one end is closed or opened. The magnetic shielding body 2 is butted in its axial direction and a ferromagnetic shield body 1 is arranged outside the oxide superconductors. Thereby, an outside magnetic field of 100 gausses or more can be reduced up to at least one-tenth by the outside ferromagnetic shield body 1. Then, the superconductive magnetic shield body 2 can attenutes the magnetic field lowered to a level of 10 gausses up to one-hundred to one millionth. Thereby, a maximum outside shield magnetic field can be remarkably improved by using a composite magnetic shield body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導現象(磁束を排除
する)を利用した磁気シールド体に関し、特に超電導体
が高温酸化物超電導体の焼結体、厚膜及び薄膜の分割体
からなり、その外側に強磁性体を配置した複合磁気シー
ルド体に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic shield body utilizing a superconducting phenomenon (excluding magnetic flux), and in particular, the superconductor comprises a sintered body of a high temperature oxide superconductor, a divided body of a thick film and a thin film, The present invention relates to a composite magnetic shield body in which a ferromagnetic body is arranged on the outside.

【0002】[0002]

【従来の技術およびその問題点】最近、酸化物超電導体
をその磁束を排除する超電導現象を利用し、磁気シール
ド容器に応用する研究が行われている。この場合、超電
導遮蔽は外部磁場を超電導体内に取り込まず、外部に向
かって排除することにより、内部空間に磁場を侵入させ
ないもので、磁気シールド効果は強磁性体よりも桁違い
に大きい。すなわち、強磁性遮蔽には残留磁化の存在か
らくる限界があり、この限界を超えた領域での磁気シー
ルドには、超電導磁気シールドに待たなければならな
い。しかるに、例えばNb系の金属系超電導体では、冷
媒として液体ヘリウムを使用する必要があるので、磁気
シールド施工にはコスト的に障壁があり、超電導遮蔽は
極く一部を除いて実用化されていないのが実情である。
2. Description of the Related Art Recently, studies have been conducted to apply an oxide superconductor to a magnetic shield container by utilizing the superconducting phenomenon of eliminating its magnetic flux. In this case, the superconducting shield does not take an external magnetic field into the superconductor and eliminates it toward the outside to prevent the magnetic field from penetrating into the internal space, and the magnetic shield effect is orders of magnitude greater than that of a ferromagnetic material. That is, the ferromagnetic shield has a limit due to the presence of remanent magnetization, and the magnetic shield in a region exceeding this limit must wait for the superconducting magnetic shield. However, for example, in Nb-based metal superconductors, liquid helium needs to be used as a coolant, so there is a cost barrier in magnetic shield construction, and superconducting shields have been put to practical use except for a small part. The reality is that there is none.

【0003】昨今、脳から発する磁場を測定し、脳のメ
カニズムの解明や、頭痛の解明、脳の検診等を試みる研
究が活発化してきている。従来、MRIやポジトロンC
T等、脳の内部を探ることは臨床で実施されているが、
その解像力や用いる放射線等の制約があり、脳磁波の強
さは10のマイナス9乗ガウスという極微弱磁場、因に
地磁気は0.3ガウスであり、このシグナルを検出する
ことは、強磁性遮蔽における限界を超えた領域にある。
この場合、SQUID(超電導量子干渉素子)と呼ばれ
る磁束センサと、超電導磁気シールドが必須となる。
Recently, studies have been activated to measure the magnetic field emitted from the brain to elucidate the mechanism of the brain, elucidate headache, and examine the brain. Conventionally, MRI and positron C
Although the search for the inside of the brain such as T is practiced clinically,
There are restrictions on the resolution and the radiation used, and the intensity of the brain magnetic waves is an extremely weak magnetic field of 10 −9 Gauss, and the geomagnetism is 0.3 Gauss. It is in the area beyond the limit in.
In this case, a magnetic flux sensor called SQUID (superconducting quantum interference device) and a superconducting magnetic shield are essential.

【0004】本発明者らは、先に酸化物高温超電導体と
強磁性磁気シールド体とを組み合わせた生体磁気計測用
磁気シールド体の有効性を明らかにしている(特願平3
−242134号)。人間の脳磁界を計測する場合に
は、対象患者が恐怖感を抱かず、かつ臨床的に採用でき
るものでなければならず、その結果、超電導磁気シール
ド体も大きなものになる。例えば、直径1m、長さ3m
等である。このような超電導体を一体もので作製するこ
とは、技術的には可能であるとしても、コストがかかり
すぎ、実用的でない。
The present inventors have previously clarified the effectiveness of a magnetic shield for biomagnetism measurement, which is a combination of an oxide high-temperature superconductor and a ferromagnetic magnetic shield (Japanese Patent Application No. Hei 3).
-242134). When measuring the human brain magnetic field, it must be clinically applicable to the target patient without fear, and as a result, the superconducting magnetic shield becomes large. For example, diameter 1m, length 3m
Etc. Although it is technically possible to manufacture such a superconductor integrally, it is too costly and not practical.

【0005】また、分割された超電導体を組み合わせて
磁気シールドしようとすると、分割部分から磁束が漏れ
込み十分な磁気シールド効果が得られない。また、生体
磁気計測に応用する場合、通常は地磁気程度の弱い磁場
(1ガウス以下)を遮蔽できれば良いとされているが、
例えば商用電源等からの突発的に強い磁場が発生して超
電導体の磁気遮蔽が破れることが考えられる。
Further, if the divided superconductors are combined and magnetically shielded, the magnetic flux leaks from the divided portions and a sufficient magnetic shield effect cannot be obtained. In addition, when applied to biomagnetic measurement, it is usually said that it is sufficient to shield a weak magnetic field (1 Gauss or less) of the order of geomagnetism.
For example, it is conceivable that a magnetic field is suddenly generated from a commercial power source or the like and the magnetic shield of the superconductor is broken.

【0006】超電導磁気シールドは外部磁界が1〜10
ガウスの比較的弱磁場に対しては10〜100万分の1
の十分な遮蔽効果をもっている。しかしながら、例えば
100ガウスを越えるような磁界に対しては磁束が超電
導体内に侵入してしまい、遮蔽効果が無くなる。一方、
強磁性シールド体は100ガウス以上の外部磁界を10
ガウス程度に下げることは容易であるが、これを例え
ば、10〜100万分の1に下げることは極めて困難で
ある。本発明は、この両者の特性に着目し、この両者を
複合することにより、より強い磁場を有効に遮蔽し得る
ことを見出した。
A superconducting magnetic shield has an external magnetic field of 1-10.
1 to 1 in 1,000,000 for Gauss's relatively weak magnetic field
It has a sufficient shielding effect. However, for a magnetic field exceeding, for example, 100 Gauss, the magnetic flux penetrates into the superconductor, and the shielding effect is lost. on the other hand,
The ferromagnetic shield has an external magnetic field of 100 Gauss or more 10
It is easy to reduce it to about Gauss, but it is extremely difficult to reduce it to, for example, 10 to 1,000,000. The present invention pays attention to the characteristics of both of them, and found that a stronger magnetic field can be effectively shielded by combining the both.

【0007】本発明は、分割された超電導体を組合せ、
その外側に強磁性体を配置することにより、磁気シール
ド特性を下げない複合磁気シールド体を提供するもので
あって、超電導磁気シールド体と強磁性磁気シールド体
とを組み合わせて、より強い外部磁場を遮蔽することの
できる複合磁気シールド体を提供することを目的とする
ものである。
The present invention combines divided superconductors,
By arranging a ferromagnetic material on the outside, a composite magnetic shield body that does not deteriorate the magnetic shield characteristics is provided. By combining a superconducting magnetic shield body and a ferromagnetic magnetic shield body, a stronger external magnetic field can be obtained. An object of the present invention is to provide a composite magnetic shield body capable of shielding.

【0008】[0008]

【問題点を解決するための手段】本発明は、複数個の両
端開口あるいは一端閉口/一端開口の円筒型若しくは角
筒体型の超電導体からなる磁気シールド体を、その軸方
向に突合せ、これら酸化物超電導体の外側に強磁性シー
ルド体を配置してなり、好ましくは強磁性シールド体の
長さが超電導磁気シールド体の総長より長いものとした
複合磁気シールド体であり、これにより、前記問題点を
解決したものである。
According to the present invention, a plurality of magnetic shields made of a cylindrical or rectangular tube type superconductor having both end openings or one end closed / one end opening are butted in the axial direction, and these are oxidized. A composite magnetic shield body in which a ferromagnetic shield body is arranged outside a superconductor, and the length of the ferromagnetic shield body is preferably longer than the total length of the superconducting magnetic shield body. Is the solution.

【0009】本発明における超電導体としては、焼結
体、基体上に形成された厚膜、薄膜等を用いることがで
き、また、強磁性体としては、パーマロイ、Ni−Fe
合金、軟鉄等が使用でき、特に軟質磁性材料(Fe−C
r−Si−Al合金)は消磁の必要がなく、液体窒素温
度でも特性が劣化せず、好ましい。
As the superconductor in the present invention, a sintered body, a thick film or a thin film formed on a substrate can be used, and as a ferromagnetic material, permalloy or Ni-Fe.
Alloys, soft iron, etc. can be used, especially soft magnetic materials (Fe-C
(r-Si-Al alloy) is preferable because it does not need to be demagnetized and its characteristics do not deteriorate even at liquid nitrogen temperature.

【0010】一般に、一体物の超電導磁気シールド体は
両端が開口していてもその開口部に磁場が侵入しようと
すると、円筒の円周方向にシールド電流が流れ、磁場の
侵入を防ぐ。この場合、円周方向に超電導電流が流れる
電流の経路が容易にできるが、円周方向に容器が分割さ
れていると、超電導電流の流れが阻止されるため、シー
ルド効果は著しく低下する。このような観点から、本発
明では、円周方向には分割されていない複数個の容器
を、その軸方向に突き合わせて用いている。図1にはこ
のような容器を2個端面を突き合わせて組み合わせた場
合を示している。この場合、容器1と容器2の間隙はで
きるだけ狭い方がよく、通常の場合には間隙は直径の1
〜2%以下が良い。
In general, even if both ends of a monolithic superconducting magnetic shield are open, when a magnetic field tries to enter the openings, a shield current flows in the circumferential direction of the cylinder to prevent the magnetic field from entering. In this case, a path for a current through which the superconducting current flows can be easily formed in the circumferential direction, but if the container is divided in the circumferential direction, the flow of the superconducting current is blocked, so that the shielding effect is significantly reduced. From this point of view, in the present invention, a plurality of containers which are not divided in the circumferential direction are used by abutting in the axial direction thereof. FIG. 1 shows a case where two such containers are assembled by abutting their end faces. In this case, it is preferable that the gap between the container 1 and the container 2 is as narrow as possible.
~ 2% or less is good.

【0011】強磁性シールド体の長さLfと、超電導体
の総長Lsとの比は、超電導体が両端開口型の場合、L
f/Ls≧1.4が好ましく、一端開口/一端閉口型の
場合、Lf/Ls≧1.2が好ましい。LfとLsの比
がこれ以下になると、遮蔽できる最大磁場が急激に減少
してしまう。また、上記の比が3以上になるとやはり遮
蔽できる磁界が減少し、またシールド体が大きくなりす
ぎるので実用できでない。一方、円筒型容器の場合、強
磁性体の直径(Df)と超電導体の直径(Ds)はDf
がDsに比べて数%から数10%大きくすることが可能
である。
The ratio of the length Lf of the ferromagnetic shield to the total length Ls of the superconductor is L when the superconductor is a double-ended type.
f / Ls ≧ 1.4 is preferable, and in the case of one-end opening / one-end closing type, Lf / Ls ≧ 1.2 is preferable. If the ratio of Lf to Ls is less than this, the maximum magnetic field that can be shielded will suddenly decrease. Further, if the above ratio is 3 or more, the magnetic field that can be shielded also decreases, and the shield body becomes too large, which is not practical. On the other hand, in the case of a cylindrical container, the diameter (Df) of the ferromagnetic material and the diameter (Ds) of the superconductor are Df.
Can be increased from several percent to several tens of percent compared to Ds.

【0012】今、両端開口の強磁性シールド体の長さL
f、直径Dfとした場合、軸比p=Lf/Dfの回転楕
円体とみなし、磁気回路による計算から、円筒軸に平行
な縦磁場の遮蔽度S(縦)は、 S(縦)=4NS (1) と書ける。ここで、強磁性体が1層の場合、 S=μt/Df (2) 但し、μは透磁率、tは厚さである。また、Nは N=1/p(In2p−1) (p>4、もしくは4
に近似)(3) である。これらの近似式を用いて考察すると、強磁性体
の長さLfと超電導体の長さLsは上述した比率の時、
効率良く遮蔽できることがわかる。
Now, the length L of the ferromagnetic shield having openings at both ends is L.
When f and the diameter are Df, it is regarded as a spheroid with an axial ratio p = Lf / Df, and from the calculation by the magnetic circuit, the shielding degree S (vertical) of the vertical magnetic field parallel to the cylindrical axis is S (vertical) = 4NS You can write (1). Here, when the ferromagnetic material is a single layer, S = μt / Df (2) where μ is the magnetic permeability and t is the thickness. Also, N is N = 1 / p (In2p-1) (p> 4, or 4
(3). Considering using these approximate expressions, when the length Lf of the ferromagnetic material and the length Ls of the superconductor are the above-mentioned ratios,
It turns out that it can shield efficiently.

【0013】上記のように構成された本発明の複合磁気
シールド体によるシールドのメカニズムを、本発明のよ
りよい理解のために説明する。従って、以下の説明は本
発明の範囲を限定するものではない。本発明の複合磁気
シールド体では、まず、外側の強磁性シールド体で10
0ガウス以上の外部磁場を10分の1以下に下げること
ができる。次に、超電導磁気シールド体が10ガウスの
レベルに低下した磁界を10〜100万分の1に減衰さ
せることができる。超電導体が分割されている場合、円
筒軸に平行方向の磁場に対しては、分割されいない場合
に比較して、シールド効果は1桁程度低下するため、好
ましくは直径/深さの比を1以下とすることができる。
また、円筒軸に垂直方向の磁場に対しては外側の強磁性
シールド体のシールド効果が優れているため、例えば1
00ガウスの外部磁界を100分の1に減衰できる。さ
らに内側の超電導磁気シールド体で、これを100分の
1以下に減衰できる。
The shield mechanism by the composite magnetic shield body of the present invention constructed as above will be described for better understanding of the present invention. Therefore, the following description does not limit the scope of the invention. In the composite magnetic shield body of the present invention, first, the outer ferromagnetic shield body is made of 10
An external magnetic field of 0 Gauss or more can be reduced to 1/10 or less. Next, the magnetic field lowered by the superconducting magnetic shield body to the level of 10 Gauss can be attenuated to 10 to 1,000,000. When the superconductor is divided, the shield effect is reduced by about one digit for a magnetic field in the direction parallel to the cylindrical axis, so the diameter / depth ratio is preferably 1 or less. It can be:
Further, since the outer ferromagnetic shield body is excellent in the shield effect against the magnetic field in the direction perpendicular to the cylindrical axis,
An external magnetic field of 00 Gauss can be attenuated to 1/100. Furthermore, the inner superconducting magnetic shield can attenuate this to 1/100 or less.

【0014】本発明の複合磁気シールド体によれば、1
00ガウス以上の強い磁場を1〜100万分の1に減衰
できる。また内側の超電導体が軸方向に分割されていて
も、これらを軸方向に突合せているため、シールド効果
が低下しないとともに、径/深さの比を1程度とするこ
とができ、比較的小さな超電導体で大きな空間を磁気遮
蔽できる。
According to the composite magnetic shield of the present invention, 1
A strong magnetic field of 00 Gauss or more can be attenuated to 1 to 1,000,000th. Further, even if the inner superconductor is divided in the axial direction, since these are butted in the axial direction, the shielding effect is not deteriorated, and the diameter / depth ratio can be set to about 1, which is relatively small. A large space can be magnetically shielded by a superconductor.

【0015】本発明は生体磁気計測用に特に好適である
が、これに限定されるものではなく、磁気遮蔽を必要と
する物理実験、デバイス実験等あらゆる分野へ応用でき
る。
The present invention is particularly suitable for biomagnetic measurement, but is not limited to this and can be applied to various fields such as physical experiments and device experiments requiring magnetic shielding.

【0016】[0016]

【発明の効果】以上のような本発明によれば、次に示す
ような効果を得ることができる。 (1)分割した超電導体を用いても減衰率が低下しな
い。 (2)超電導体を分割できるので、比較的小さな超電導
体で大きな空間を磁気遮蔽できる。 (3)超電導体のみでは比較的困難な100ガウス以上
の外部磁場を遮蔽できる。(4)強磁性体のみでは困難
な1〜100万分の1の減衰率を得ることができる。
(5)厚膜等の薄い超電導体の場合には、通常、最大外
部遮蔽磁場が1〜10ガウスと低いが、本発明の複合磁
気シールド体を用いれば、飛躍的に最大外部遮蔽磁場を
向上できる。
According to the present invention as described above, the following effects can be obtained. (1) The attenuation rate does not decrease even if the divided superconductors are used. (2) Since the superconductor can be divided, it is possible to magnetically shield a large space with a relatively small superconductor. (3) It can shield an external magnetic field of 100 Gauss or more, which is relatively difficult only with a superconductor. (4) It is possible to obtain an attenuation rate of 1 to 1,000,000 which is difficult with a ferromagnetic material alone.
(5) In the case of a thin superconductor such as a thick film, the maximum external shielding magnetic field is usually as low as 1 to 10 gauss, but the use of the composite magnetic shield of the present invention dramatically improves the maximum external shielding magnetic field. it can.

【0017】[0017]

【実施例1】Bi:Pb:Sr:Ca:Cu=1.8
4:0.34:1.91:2.06:3.06の組成の
酸化物超電導体粉末を用いて、内径10mm、長さ10
mm、厚さ1mmの両端開口円筒を冷間静水圧プレスに
より成型し、焼成して、バルク試料を作製した。図2に
示したように、この円筒を2個軸方向に突合せて、その
上に内径12mm、厚さ1.5mmでその長さLfを適
当に変化させた軟鉄シリンダー(山陽特殊鋼製QMS3
L)をかぶせ、GaAsホール素子を2個突き合わせた
超電導体の中心に配置して、超電導体と軟鉄シリンダー
を一緒に液体窒素温度に保持し、外部から円筒軸に平行
な縦磁場を加えて、内部磁場を測定した。外部磁場を強
くしていった場合の内部磁場の強度を図3に示す。この
場合のLfの長さは45mmであった。この図3からわ
かるように、複合磁気シールド体は外部磁場を320ガ
ウスまで完全に遮蔽している。図3において、内部磁場
が発生する外部磁場の強度を最大遮蔽磁場Bsとする。
強磁性体の長さLfを変化させた場合のBsの変化を図
4に示す。この図からわかるように、Lfが35mmで
400ガウスの最大遮蔽磁場を示す。この場合のLf/
Lsは35/20で1.75であった。図3及び図4か
らわかるように、本発明の複合磁気シールド体を用いれ
ば、100ガウス以上の外部磁場をホール素子が検出で
きない感度(0.01ガウス)以下に減衰させることが
できる。この結果、本発明の複合磁気シールド体の磁場
の減衰率は1万分の1以下である。次に、長さ40mm
の軟鉄シリンダーを用いて、上記と同様の方法で外部か
ら円筒軸に垂直な横磁場を加え、内部磁場を測定した。
その結果、最大遮蔽磁場は350ガウスであり、磁場の
減衰率は1万分の1以下であった。
Example 1 Bi: Pb: Sr: Ca: Cu = 1.8
Using an oxide superconductor powder having a composition of 4: 0.34: 1.91: 2.06: 3.06, an inner diameter of 10 mm and a length of 10
mm, a cylinder having a thickness of 1 mm and having both ends opened was molded by a cold isostatic press and fired to prepare a bulk sample. As shown in FIG. 2, two cylinders are abutted in the axial direction, and an inner diameter of 12 mm, a thickness of 1.5 mm, and a length Lf of the soft iron cylinder appropriately changed (Sanyo Special Steel QMS3.
L), the GaAs Hall element is placed in the center of the superconductor with two butts, the superconductor and the soft iron cylinder are held together at liquid nitrogen temperature, and a longitudinal magnetic field parallel to the cylinder axis is applied from the outside. The internal magnetic field was measured. The strength of the internal magnetic field when the external magnetic field is increased is shown in FIG. The length of Lf in this case was 45 mm. As can be seen from FIG. 3, the composite magnetic shield completely shields the external magnetic field up to 320 gauss. In FIG. 3, the strength of the external magnetic field generated by the internal magnetic field is defined as the maximum shield magnetic field Bs.
FIG. 4 shows changes in Bs when the length Lf of the ferromagnetic material is changed. As can be seen from this figure, Lf is 35 mm and shows a maximum shield magnetic field of 400 Gauss. Lf / in this case
The Ls was 1.75 at 35/20. As can be seen from FIGS. 3 and 4, when the composite magnetic shield body of the present invention is used, an external magnetic field of 100 Gauss or more can be attenuated to a sensitivity (0.01 Gauss) or less that the Hall element cannot detect. As a result, the composite magnetic shield of the present invention has a magnetic field attenuation rate of 1 / 10,000 or less. Next, length 40mm
The internal magnetic field was measured by applying a transverse magnetic field perpendicular to the cylinder axis from the outside using the soft iron cylinder of No. 1 in the same manner as above.
As a result, the maximum shield magnetic field was 350 gauss, and the magnetic field attenuation rate was 1 / 10,000 or less.

【0018】[0018]

【実施例2】実施例1と同様にして、一端閉口/一端開
口の直径10mm、深さ10mmの超電導磁気シールド
容器と、実施例1と同じ両端開口の円筒容器を突合せ
た。その上に実施例1と同じ長さ40mmの軟鉄シリン
ダーをかぶせて複合磁気シールド体とした。この磁気シ
ールド体の磁場の減衰率は、縦磁場、横磁場ともに1万
分の1以下であった。
Example 2 In the same manner as in Example 1, a superconducting magnetic shield container having a diameter of 10 mm at one end closed / an opening at one end and a depth of 10 mm and a cylindrical container having both ends opened as in Example 1 were butted. Then, a soft iron cylinder having a length of 40 mm, which is the same as that of the first embodiment, was placed thereon to form a composite magnetic shield. The magnetic field attenuation rate of this magnetic shield body was 1 / 10,000 or less in both the longitudinal magnetic field and the transverse magnetic field.

【0019】[0019]

【比較例】実施例1と同一の両端開口円筒を突合せたも
のを液体窒素温度に冷却して磁気シールド効果を測定し
た。この円筒磁気シールド体に対する最大遮蔽磁場は、
縦磁場で5ガウス、横磁場で0.6ガウスであった。こ
の磁気シールド体の磁場の減衰率は縦磁場で1/50
0、横磁場で1/60であった。
[Comparative Example] A magnetic shield effect was measured by cooling the liquid cylinders with the same double-ended open cylinders as in Example 1 to liquid nitrogen temperature. The maximum shield magnetic field for this cylindrical magnetic shield is
The longitudinal magnetic field was 5 gauss and the transverse magnetic field was 0.6 gauss. The magnetic field attenuation factor of this magnetic shield is 1/50 in the longitudinal magnetic field.
It was 0 and the transverse magnetic field was 1/60.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合磁気シールド体の概略説明図であ
り、(a)は全体の斜視図、(b)は両端開口型の場
合、(c)は一端閉口/一端開口型の場合をそれぞれ示
す。
FIG. 1 is a schematic explanatory view of a composite magnetic shield body of the present invention, in which (a) is an overall perspective view, (b) is a both-end opening type, and (c) is a one-end closed / one-end opening type. Shown respectively.

【図2】実施例における磁場測定実験の概略説明図であ
る。
FIG. 2 is a schematic explanatory diagram of a magnetic field measurement experiment in Examples.

【図3】本発明の複合磁気シールド体の内部磁場と外部
磁場との関係図である。
FIG. 3 is a relationship diagram between an internal magnetic field and an external magnetic field of the composite magnetic shield body of the present invention.

【図4】軟鉄シリンダーの長さLfと最大遮蔽磁場Bs
との関係図である。
[Fig. 4] Length Lf of soft iron cylinder and maximum shielding magnetic field Bs
FIG.

【符号の説明】[Explanation of symbols]

1 強磁性シールド体 2 超電導磁気シールド体 3 GaAsホール素子 1 Ferromagnetic shield 2 Superconducting magnetic shield 3 GaAs Hall element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数個の両端開口あるいは一端閉口/一
端開口の円筒型若しくは角筒体型の超電導体からなる磁
気シールド体を、その軸方向に突合せ、これら酸化物超
電導体の外側に強磁性シールド体を配置してなる複合磁
気シールド体。
1. A magnetic shield body composed of a plurality of cylindrical or prismatic superconductors having both ends open or one end closed / one end open in the axial direction, and a ferromagnetic shield is provided outside the oxide superconductor. A composite magnetic shield that consists of a body.
【請求項2】 強磁性シールド体の長さが超電導磁気シ
ールド体の総長より長いものである請求項1記載の複合
磁気シールド体。
2. The composite magnetic shield body according to claim 1, wherein the length of the ferromagnetic shield body is longer than the total length of the superconducting magnetic shield body.
JP4271173A 1992-09-14 1992-09-14 Composite magnetic shielding body Pending JPH0697697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4271173A JPH0697697A (en) 1992-09-14 1992-09-14 Composite magnetic shielding body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4271173A JPH0697697A (en) 1992-09-14 1992-09-14 Composite magnetic shielding body

Publications (1)

Publication Number Publication Date
JPH0697697A true JPH0697697A (en) 1994-04-08

Family

ID=17496364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4271173A Pending JPH0697697A (en) 1992-09-14 1992-09-14 Composite magnetic shielding body

Country Status (1)

Country Link
JP (1) JPH0697697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175117A (en) * 2007-12-25 2009-08-06 Sii Nanotechnology Inc X-ray analyzer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009175117A (en) * 2007-12-25 2009-08-06 Sii Nanotechnology Inc X-ray analyzer

Similar Documents

Publication Publication Date Title
JPH0793211B2 (en) Magnet coil device for nuclear magnetic resonance tomography equipment
US20110009274A1 (en) Magnetic vacuum systems and devices for use with superconducting-based computing systems
JPH0697697A (en) Composite magnetic shielding body
JP2700584B2 (en) Magnetic shield for biomagnetism measurement
JPH0555782A (en) Divided element of oxide superconducting magnetic shield
JPH06334384A (en) Composite magnetic shielding material
JPH08236983A (en) Superconductive magnetic shield method
EP3496167B1 (en) Charged particle beam current measurement apparatus
JPH0738278A (en) Superconducting magnetic shield container
JPS58148499A (en) Cryogenic magnetic shield container
JPS63278385A (en) Magnetic shielding device
JP2795531B2 (en) Magnetic shield structure
JPH01245598A (en) High temperature superconductor zero magnetic field standard device
JPS6289308A (en) Superconducting magnet
Seki et al. Shielding effect of an open-type hybrid magnetic shield with high-T c superconducting loops
JPS62169311A (en) Superconductive magnet device for nmar imaging
Israelsson et al. Shielding and flux trapping properties of high temperature superconductors in the shape of hollow cylinders
JPH03248069A (en) Squid probe
JPS6289307A (en) Cryostat for superconducting magnet
JPS63239875A (en) Superconducting shield
JPH05114796A (en) Magnetic shielding case
JPH03218695A (en) Magnetic shielding device using superconductor
JPH0832273A (en) Magnetic shield
JPH02206101A (en) Reduction in magnetization by superconductor
KALASHNIKOV et al. Magnetic shielding with superconductors based on niobium-tin compounds[Abstract Only]