JPS62169311A - Superconductive magnet device for nmar imaging - Google Patents

Superconductive magnet device for nmar imaging

Info

Publication number
JPS62169311A
JPS62169311A JP60270117A JP27011785A JPS62169311A JP S62169311 A JPS62169311 A JP S62169311A JP 60270117 A JP60270117 A JP 60270117A JP 27011785 A JP27011785 A JP 27011785A JP S62169311 A JPS62169311 A JP S62169311A
Authority
JP
Japan
Prior art keywords
shield
superconducting
superconductive
cooled
cryostat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60270117A
Other languages
Japanese (ja)
Inventor
Shotaro Oka
正太郎 岡
Hiromi Kawaguchi
川口 博巳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP60270117A priority Critical patent/JPS62169311A/en
Publication of JPS62169311A publication Critical patent/JPS62169311A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable a leaking magnetic field to be extremely suppressed with superior reproducibility and productivity, by enabling superconductive coils and their shield to be cooled to a superconductive state. CONSTITUTION:Superconductive coils 1...1 and a shield 2 are housed to be cooled inside a cryostat. Circular superconductive coils 1...1 are housed inside a coolant vessel 4 arranged inside a cryostat vacuum vessel 3, and immersed in a coolant such as liquid helium. The shield 2 of superconductive material formed in a cage shape is wound around the peripheral surface of the coolant vessel 4. Therefore, the shield 2 is cooled through the wall surface of the coolant vessel 4 to the temperature near the inside coolant temperature, so that it is cooled to the superconductive temperature together with the superconductive coils 1...1, with a superconductive phase being maintained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、NMRイメージング(核磁気共鳴現象を利用
した撮像)用の静磁界を発生するための超伝導磁石装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a superconducting magnet device for generating a static magnetic field for NMR imaging (imaging using nuclear magnetic resonance phenomena).

〈従来の技術〉 NMRイメージングにおいては、人体等の対象物を置く
空間(以下、測定空間と称する)に、強い一様な静磁界
を作用させる必要がある。一般には、測定空間を囲むよ
うリング状の抵抗性コイルまたは超伝導コイルを配設し
て、上述の静磁界を得ている。
<Prior Art> In NMR imaging, it is necessary to apply a strong and uniform static magnetic field to a space in which an object such as a human body is placed (hereinafter referred to as a measurement space). Generally, a ring-shaped resistive coil or superconducting coil is arranged to surround the measurement space to obtain the above-mentioned static magnetic field.

リング状のコイルに電流を流すと、リング内部すなわち
測定空間内に磁界が発生すると同時に、リング外部にも
磁界が発生して種々の悪影習を及ぼす。この外部への磁
界の漏れを少くする方法として、従来、特開昭60−9
8344号や特開昭60−123756号に記載されて
いる技術がある。これらは、基本的には、IQ定空間内
に静磁界を発生せしめる電磁石(抵抗性コイルあるいは
超伝導コイル)と、その同心円上径方向外部に第2の電
磁石(抵抗性コイルあるいは超伝導コイル)を設けるこ
とにより、測定空間には強い静磁界が、外部には弱い漏
れ静磁界が発生するような構成となっている。
When a current is passed through a ring-shaped coil, a magnetic field is generated inside the ring, that is, within the measurement space, and at the same time, a magnetic field is also generated outside the ring, causing various adverse effects. As a method to reduce this leakage of magnetic fields to the outside, a conventional method has been proposed in Japanese Patent Application Laid-Open No. 60-9
There are techniques described in No. 8344 and Japanese Unexamined Patent Publication No. 123756/1983. These basically consist of an electromagnet (resistive coil or superconducting coil) that generates a static magnetic field in an IQ constant space, and a second electromagnet (resistive coil or superconducting coil) concentrically and radially outside the electromagnet (resistive coil or superconducting coil). By providing this, the structure is such that a strong static magnetic field is generated in the measurement space, and a weak leakage static magnetic field is generated outside.

〈発明が解決しようとする問題点〉 上述した従来の技術においては、その論旨としては充分
に説得性があるものの、実機製作の際に、その機械的精
度(寸法精度等)を著しく向上させなければ、その目的
効果を達成できないという問題がある。
<Problems to be solved by the invention> Although the above-mentioned conventional technology has a sufficiently persuasive argument, it is necessary to significantly improve the mechanical accuracy (dimensional accuracy, etc.) when manufacturing the actual machine. However, there is a problem that the desired effect cannot be achieved.

本発明の目的は、製作公差がその目的効果である漏れ磁
界を少くするという点に影響を及ぼさず、もって再現性
よく、従って住産性よく漏れ磁界を極度に抑制すること
のできる、NMRイメージング用超伝導磁石装置を提供
することにある。
The object of the present invention is to provide an NMR imaging system in which manufacturing tolerances do not affect the intended effect of reducing leakage magnetic fields, and thereby the leakage magnetic fields can be extremely suppressed with good reproducibility and productivity. An object of the present invention is to provide a superconducting magnet device for use.

く問題点を解決する為の手段〉 上記の目的を達成するための構成を、実施例図面である
第1図および第2図を参照しつつ説明すると、本発明は
、NMRイメージング用の静磁界を発生するための磁石
装置であって、測定空間Aを超伝導コイル1−−1で囲
むとともに、その超伝導コイル1−・lの外方には、こ
の超伝導コイル■・・−■を囲むよう超伝導材料を筋型
に形成してなるシールド2を設け、超伝導コイルト−・
1とともにそのシールド2を超伝導状態にまで冷却し得
るよう構成したことを特徴としている。
Means for Solving the Problems> A configuration for achieving the above object will be described with reference to FIGS. 1 and 2, which are embodiment drawings. This is a magnet device for generating , which surrounds the measurement space A with superconducting coils 1--1, and has superconducting coils ■...-■ outside of the superconducting coils 1--l. A shield 2 made of a superconducting material formed into a stripe shape is provided to surround the superconducting coil tow.
1 and its shield 2 can be cooled to a superconducting state.

く作用〉 超伝導コイル1−1とシールド2は、第3図に示すよう
な等価回路を構成することになるが、超伝導体の基本的
特性である完全反磁性(マイスナー効果)により、シー
ルド2で囲まれた空間と外部空間との間で磁束の出入が
不可能となる。従って、超伝導コイル1−1に電流を流
すことによって発生する、コイル外部への磁界が、シー
ルド2の外部に漏れることが極度に抑制されることにな
る。しかも、その原理上、磁界の漏れを防ぐという目的
効果に関して、機械精度的な製作上の誤差が影響を及ぼ
さない。
The superconducting coil 1-1 and the shield 2 form an equivalent circuit as shown in Fig. It becomes impossible for magnetic flux to enter and exit between the space surrounded by 2 and the external space. Therefore, leakage of the magnetic field to the outside of the coil, which is generated by passing a current through the superconducting coil 1-1, to the outside of the shield 2 is extremely suppressed. Furthermore, due to its principle, manufacturing errors in terms of mechanical precision do not affect the intended effect of preventing magnetic field leakage.

〈実施例〉 本発明の実施例を、以下、図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図は本発明実施例の部分切欠分解斜視図で、第2図
はそのシールド2が巻かれた冷媒槽4の中央縦断面図で
ある。
FIG. 1 is a partially cutaway exploded perspective view of an embodiment of the present invention, and FIG. 2 is a central vertical sectional view of a refrigerant tank 4 around which a shield 2 is wound.

この実施例は、1個のタライオスタット内部に超伝導コ
イル1−1とシールド2とを収容して冷却する例を示し
ている。すなわち、クライオスタットの真空槽3内に配
設された冷媒槽4の内部に、リング状の超伝導コイル1
−1が収容され、液体ヘリウム等の冷媒内に浸漬されて
いる。そして、その冷媒槽4の外周表面には、超伝導材
料を筋型に形成してなるシールド2が巻かれている。従
って、このシールド2は、冷媒槽4の壁面を介してその
内部の冷媒温度近傍にまで冷却されることになり、超伝
導コイル1−1とともに超伝導温度(超伝導臨界温度以
下)にまで冷却され、超伝導相を保持することができる
This embodiment shows an example in which a superconducting coil 1-1 and a shield 2 are housed inside one taliostat and cooled. That is, a ring-shaped superconducting coil 1 is placed inside a refrigerant tank 4 disposed in a vacuum tank 3 of a cryostat.
-1 is contained and immersed in a coolant such as liquid helium. A shield 2 made of a superconducting material formed into a stripe shape is wound around the outer peripheral surface of the refrigerant tank 4. Therefore, this shield 2 is cooled to near the temperature of the refrigerant inside it through the wall surface of the refrigerant tank 4, and together with the superconducting coil 1-1, it is cooled to the superconducting temperature (below the superconducting critical temperature). and can maintain the superconducting phase.

真空槽3は、それぞれ円筒形で互いに同軸上の外壁3a
と内壁3bの両端面部を側壁3c、3c’で塞いでなっ
ており、内壁3bの内側が円筒状の測定空間Aを形成し
、人体等の測定対象を挿入することができる。
The vacuum chambers 3 each have a cylindrical outer wall 3a coaxial with each other.
Both end surfaces of the inner wall 3b are closed by side walls 3c and 3c', and the inside of the inner wall 3b forms a cylindrical measurement space A into which a measurement object such as a human body can be inserted.

冷媒槽4は、真空槽3と同様に略2重円筒形をしており
、その内壁4aを除く部分にシールド2が巻かれている
。シールド2は、例えばPbやNb−Tt等の超伝導材
料を平板状に形成した後、多数の小孔を穿っていわゆる
パンチメタル状にした構造、あるいは、超伝導材料の線
材を筋型に編んだ構造とすることができ′る。なお、後
者の構造を採る場合、各線材の重なり部分を超伝導的に
短絡あるいは絶縁した構造のいずれでもよい。
The refrigerant tank 4, like the vacuum tank 3, has a substantially double cylindrical shape, and the shield 2 is wrapped around the portion excluding the inner wall 4a. The shield 2 has a structure in which a superconducting material such as Pb or Nb-Tt is formed into a flat plate, and then a large number of small holes are punched to form a so-called punch metal shape, or a superconducting material wire is woven into a striped shape. The structure can be made as follows. In addition, when adopting the latter structure, either a structure in which the overlapping portions of the wires are superconductingly short-circuited or insulated may be used.

第3図は本発明実施例の等価回路図である。超伝導コイ
ル1とシールド2を超伝導状態にまで冷却した状態で、
永久電流スイッチ10を操作することにより、超伝導コ
・イル1には永久電流が流れ、コイル内部および外部に
静磁界が発生ずる。コイル内部への磁界により、4F+
1定空間Aには均一な静磁界が与えられる。コイル外部
への磁界は、シールド2が超伝導状態であるため、マイ
スナー効果により、シールド2の外方に出ることができ
ず、外部への漏れ静磁界は殆ど無い状態となる。
FIG. 3 is an equivalent circuit diagram of an embodiment of the present invention. With superconducting coil 1 and shield 2 cooled to a superconducting state,
By operating the persistent current switch 10, a persistent current flows through the superconducting coil 1, and a static magnetic field is generated inside and outside the coil. Due to the magnetic field inside the coil, 4F+
A uniform static magnetic field is applied to one constant space A. Since the shield 2 is in a superconducting state, the magnetic field to the outside of the coil cannot go outside the shield 2 due to the Meissner effect, and there is almost no static magnetic field leaking to the outside.

第4図は本発明の他の実施例の要部断面図である。この
実施例は、超伝導コイルI−・−Iを冷却するためのク
ライオスタットの外部に、そのクライオスタットを囲む
よう別のクライオスタットを設けてその内部にシールド
2を収容した例を示している。
FIG. 4 is a sectional view of a main part of another embodiment of the present invention. This embodiment shows an example in which another cryostat is provided outside the cryostat for cooling the superconducting coils I--I so as to surround the cryostat, and a shield 2 is housed inside the cryostat.

すなわち、超伝導コイル1−1を第1の冷媒槽14内に
収容し、その第1の冷媒槽14を第1の真空槽13内に
収容して、測定空間Aを形成する。
That is, the superconducting coil 1-1 is housed in the first refrigerant tank 14, and the first refrigerant tank 14 is housed in the first vacuum tank 13 to form the measurement space A.

そして、第1の真空槽13の外周および側壁部を囲むよ
う、第2の真空槽23を設け、その内部に第2の冷媒槽
24を収容する。その第2の冷媒槽24の内部に超伝導
材料製の筋型のシールド2を収容している。この構造に
よってシールド2を超伝導状態に冷却しても、前述の第
1の実施例と同様、マイスナー効果によってシールド2
の外部に静磁界が漏れることを防止することができる。
A second vacuum tank 23 is provided so as to surround the outer periphery and side wall of the first vacuum tank 13, and a second refrigerant tank 24 is accommodated therein. A streak-shaped shield 2 made of superconducting material is housed inside the second refrigerant tank 24 . Even if the shield 2 is cooled to a superconducting state with this structure, the Meissner effect causes the shield 2 to
It is possible to prevent the static magnetic field from leaking to the outside.

〈発明の効果〉 以上説明したように、本発明によれば、NMRイメージ
ング用の測定空間Aに均一静磁界を作るための超伝導コ
イルの外方を、超伝導材料を筋型に形成したシールドで
囲み、そのシールドを超伝導コイルとともに超伝導状態
にまで冷却し得るよう構成したから、超伝導の基本的特
性である完全反磁性(マイスナー効果)により、超伝導
コイルの外方への静磁界がそのシールドを通過すること
ができず、装置外部への漏れ静磁界が極度に抑制される
。しかも、その原理上、従来の装置のように製作時にお
ける機械的精度に漏れ静磁界の強さが影響を及ぼされる
ことがないから、再現性がよく、製作が容易である。更
に、超伝導磁石装置の外界の磁界の変動や、鉄等の透磁
率の異なる物体の接近等による実効磁路の変化等にとも
なう外乱を、内部に至らしめない構造であるから、測定
空間の静磁界安定性をも向上させることができる。
<Effects of the Invention> As explained above, according to the present invention, the outside of the superconducting coil for creating a uniform static magnetic field in the measurement space A for NMR imaging is covered with a shield made of superconducting material in the shape of a stripe. , and the shield is configured so that it can be cooled to a superconducting state together with the superconducting coil.Because of the perfect diamagnetism (Meissner effect), which is a basic property of superconductivity, the static magnetic field towards the outside of the superconducting coil is cannot pass through the shield, and leakage of the static magnetic field to the outside of the device is extremely suppressed. Moreover, in principle, unlike conventional devices, the strength of the leakage static magnetic field does not affect the mechanical precision during manufacturing, so the reproducibility is good and manufacturing is easy. Furthermore, the structure prevents disturbances caused by fluctuations in the external magnetic field of the superconducting magnet device or changes in the effective magnetic path due to the approach of objects with different magnetic permeability, such as iron, from reaching the inside, so the measurement space is Static magnetic field stability can also be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の部分切欠分解斜視図、第2図は
そのシールド2が巻かれた冷媒槽4の中央縦断面図、第
3図はその本発明実施例の等価回路図、第4図は本発明
の他の実施例の要部断面図である。 1−m−超伝導コイル   2−シールド3.13.2
3・・・真空槽 4.14.24−冷媒槽 10−・・・永久電流スイッチ A−−一測定空間
FIG. 1 is a partially cutaway exploded perspective view of an embodiment of the present invention, FIG. 2 is a central vertical sectional view of a refrigerant tank 4 around which the shield 2 is wound, and FIG. 3 is an equivalent circuit diagram of the embodiment of the present invention. FIG. 4 is a sectional view of a main part of another embodiment of the present invention. 1-m-superconducting coil 2-shield 3.13.2
3...Vacuum tank 4.14.24-Refrigerant tank 10--Persistent current switch A--Measurement space

Claims (3)

【特許請求の範囲】[Claims] (1)NMRイメージング用の静磁界を発生するための
磁石装置であって、測定空間を超伝導コイルで囲むとと
もに、その超伝導コイルの外方には、当該コイルを囲む
よう超伝導材料を籠型に形成してなるシールドを設け、
上記超伝導コイルとともに上記シールドを超伝導状態に
まで冷却し得るよう構成したことを特徴とする、NMR
イメージング用超伝導磁石装置。
(1) A magnet device for generating a static magnetic field for NMR imaging, in which a measurement space is surrounded by a superconducting coil, and a superconducting material is placed outside the superconducting coil so as to surround the coil. Provide a shield formed into a mold,
NMR characterized in that the shield is configured to be cooled to a superconducting state together with the superconducting coil.
Superconducting magnet device for imaging.
(2)上記超伝導コイルとシールドを、同じクライオス
タット内に配設したことを特徴とする、特許請求の範囲
第1項記載のNMRイメージング用超伝導磁石装置。
(2) The superconducting magnet device for NMR imaging according to claim 1, wherein the superconducting coil and the shield are arranged in the same cryostat.
(3)上記超伝導コイルを収容したクライオスタットの
外部に、そのクライオスタットを囲むよう同軸上に別の
クライオスタットを設けて、その内部に上記シールドを
収容したことを特徴とする、特許請求の範囲第1項記載
のNMRイメージング用超伝導磁石装置。
(3) Claim 1, characterized in that another cryostat is coaxially provided outside the cryostat housing the superconducting coil so as to surround the cryostat, and the shield is housed inside the cryostat. A superconducting magnet device for NMR imaging as described in 1.
JP60270117A 1985-11-29 1985-11-29 Superconductive magnet device for nmar imaging Pending JPS62169311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60270117A JPS62169311A (en) 1985-11-29 1985-11-29 Superconductive magnet device for nmar imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60270117A JPS62169311A (en) 1985-11-29 1985-11-29 Superconductive magnet device for nmar imaging

Publications (1)

Publication Number Publication Date
JPS62169311A true JPS62169311A (en) 1987-07-25

Family

ID=17481779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60270117A Pending JPS62169311A (en) 1985-11-29 1985-11-29 Superconductive magnet device for nmar imaging

Country Status (1)

Country Link
JP (1) JPS62169311A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01302709A (en) * 1988-02-03 1989-12-06 Fuji Electric Co Ltd Superconductive magnet
US4968961A (en) * 1987-08-26 1990-11-06 Hitachi, Ltd. Superconducting magnet assembly with suppressed leakage magnetic field
CN105139992A (en) * 2015-09-15 2015-12-09 上海联影医疗科技有限公司 Magnet device
US9835701B2 (en) 2014-11-04 2017-12-05 Shanghai United Imaging Healthcare Co., Ltd. Displacer in magnetic resonance imaging system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4968961A (en) * 1987-08-26 1990-11-06 Hitachi, Ltd. Superconducting magnet assembly with suppressed leakage magnetic field
JPH01302709A (en) * 1988-02-03 1989-12-06 Fuji Electric Co Ltd Superconductive magnet
US9835701B2 (en) 2014-11-04 2017-12-05 Shanghai United Imaging Healthcare Co., Ltd. Displacer in magnetic resonance imaging system
US10670675B2 (en) 2014-11-04 2020-06-02 Shanghai United Imaging Healthcare Co., Ltd. Displacer in magnetic resonance imaging system
US10996298B2 (en) 2014-11-04 2021-05-04 Shanghai United Imaging Healthcare Co., Ltd. Displacer in magnetic resonance imaging system
US11573279B2 (en) 2014-11-04 2023-02-07 Shanghai United Imaging Healthcare Co., Ltd. Displacer in magnetic resonance imaging system
CN105139992A (en) * 2015-09-15 2015-12-09 上海联影医疗科技有限公司 Magnet device
CN106683819A (en) * 2015-09-15 2017-05-17 上海联影医疗科技有限公司 Magnet device

Similar Documents

Publication Publication Date Title
US6580346B1 (en) Magnetic resonance imaging apparatus
JP3654463B2 (en) Magnetic resonance imaging system
EP0817211A1 (en) Superconducting magnet device and magnetic resonance imaging device using the same
EP0826977B1 (en) Compact MRI superconducting magnet
JPH0576592B2 (en)
EP0460762B1 (en) Magnet system for magnetic resonance imaging
US5874882A (en) Open and shielded superconductive magnet
JPH09182730A (en) Open magnetic resonance imaging magnet
US4912445A (en) Electromagnet with a magnetic shield
JP3583528B2 (en) Electromagnet for use in magnetic resonance imaging equipment
US5939962A (en) Split type magnetic field generating apparatus for MRI
EP0609604A1 (en) Magnetic field generation device of use in superconductive type MRI
US4931759A (en) Magnetic resonance imaging magnet having minimally symmetric ferromagnetic shield
US5521571A (en) Open MRI magnet with uniform imaging volume
JPS62169311A (en) Superconductive magnet device for nmar imaging
US6812702B2 (en) Magnetic resonance imaging apparatus
US6667676B2 (en) Superconducting magnet and magnetic resonance imaging apparatus using the same
US5038129A (en) Electromagnetic having magnetic shield
EP1051636A1 (en) Magnetic resonance imaging system
JP2583234B2 (en) Magnetic shield device
JPS63281410A (en) Electromagnet with magnetic shield
JPH03139328A (en) Superconductive magnet for mri apparatus
JPH10135027A (en) Superconducting magnet device
JPH0510334Y2 (en)
JPH03284243A (en) Magnet apparatus for mri