JPH06334384A - Composite magnetic shielding material - Google Patents

Composite magnetic shielding material

Info

Publication number
JPH06334384A
JPH06334384A JP5146806A JP14680693A JPH06334384A JP H06334384 A JPH06334384 A JP H06334384A JP 5146806 A JP5146806 A JP 5146806A JP 14680693 A JP14680693 A JP 14680693A JP H06334384 A JPH06334384 A JP H06334384A
Authority
JP
Japan
Prior art keywords
superconductors
magnetic field
magnetic shield
gap
ferromagnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5146806A
Other languages
Japanese (ja)
Inventor
Akihito Satou
哲仁 佐藤
Kazutomo Hoshino
和友 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP5146806A priority Critical patent/JPH06334384A/en
Publication of JPH06334384A publication Critical patent/JPH06334384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Soft Magnetic Materials (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To decrease a leakage magnetic field from a gap and to contrive to obtain the attenuation factor of a composite magnetic shielding material in the same extent as the case of the attenuation factor of an integrally constituted material even if split superconductors are used for the magnetic shielding material by a method wherein the superconductors split into a plurality of pieces are combined with each other, parts of the superconductors are overlapped each other and a ferromagnetic material is inserted in the gap in the overlap. CONSTITUTION:A magnetic shielding material consisting of a plurality of pieces of cylindrical or square cylindrical body type superconductors 1, which are opened in both ends thereof or are opened in one end are opened in the other, is constituted into a structure wherein parts of the superconductors are overlapped each other in their axial direction and a ferromagnetic material 2 is inserted in a gap in the overlap. It is desirable that the strength of a leakage magnetic field from the overlap is controlled in such a way that it is smaller than that of a leakage magnetic field from the end part of the openings in the superconductors 1. As the superconductors 1, a sintered body or a thick film, a thin film or the like formed on a substrate can be used. As the ferromagnetic material 2, a Permalloy, an Ni-Fe alloy or the like can be used, but it is desirable that the initial relative magnetic permeability muof the material 1 is 1000 to 10000. As the superconductors 1 can be split, a large space can be magnetically shielded by the comparatively small superconductors 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導現象(磁束を排除
する)を利用した磁気シールド体に関し、特に超電導体
が高温酸化物超電導体の焼結体、厚膜及び薄膜からな
り、これら超電導体同士をその軸方向に一部分重ね合わ
せても重ね合わせ部分からの漏洩磁界強度が磁気シール
ド開口端部からの漏洩磁界強度よりも小さい複合磁気シ
ールド体に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic shield body utilizing the superconducting phenomenon (eliminating magnetic flux), and particularly, the superconductor comprises a sintered body of a high temperature oxide superconductor, a thick film and a thin film. The present invention relates to a composite magnetic shield body in which the strength of the leakage magnetic field from the overlapping portion is smaller than the strength of the leakage magnetic field from the opening end of the magnetic shield even if the magnetic field is partially overlapped with each other in the axial direction.

【0002】[0002]

【従来の技術およびその問題点】最近、酸化物超電導体
をその磁束を排除する超電導現象を利用し、磁気シール
ド容器に応用する研究が行われている。この場合、超電
導遮蔽は外部磁場を超電導体内に取り込まず、外部に向
かって排除することにより、内部空間に磁場を侵入させ
ないもので、磁気シールド効果は強磁性体よりも桁違い
に大きい。すなわち、強磁性遮蔽には残留磁化の存在か
らくる限界があり、この限界を超えた領域での磁気シー
ルドには、超電導磁気シールドに待たなければならな
い。しかるに、例えばNb系の金属系超電導体では、冷
媒として液体ヘリウムを使用する必要があるので、磁気
シールド施工にはコスト的に障壁があり、超電導遮蔽は
極く一部を除いて実用化されていないのが実情である。
2. Description of the Related Art Recently, studies have been conducted to apply an oxide superconductor to a magnetic shield container by utilizing the superconducting phenomenon of eliminating its magnetic flux. In this case, the superconducting shield does not take an external magnetic field into the superconductor and eliminates it toward the outside to prevent the magnetic field from penetrating into the internal space, and the magnetic shield effect is orders of magnitude greater than that of a ferromagnetic material. That is, the ferromagnetic shield has a limit due to the presence of remanent magnetization, and the magnetic shield in a region exceeding this limit must wait for the superconducting magnetic shield. However, for example, in Nb-based metal superconductors, liquid helium needs to be used as a coolant, so there is a cost barrier in magnetic shield construction, and superconducting shields have been put to practical use except for a small part. The reality is that there is none.

【0003】昨今、脳から発する磁場を測定し、脳のメ
カニズムの解明や、頭痛の解明、脳の検診等を試みる研
究が活発化してきている。従来、MRIやポジトロンC
T等、脳の内部を探ることは臨床で実施されているが、
その解像力、時間分解能、空間分解能や用いる放射線等
の制約がある。特に脳の機能を解明するためには脳波や
脳磁場の測定が必要である。脳磁場の強さは10のマイ
ナス9乗(1/109)ガウスという極微弱磁場、因に
地磁気は0.3ガウスであり、この信号を検出するため
には、SQUID(超電導量子干渉素子)と呼ばれる磁
束計と、超電導磁気シールドが必須となる。
Recently, studies have been activated to measure the magnetic field emitted from the brain to elucidate the mechanism of the brain, elucidate headache, and examine the brain. Conventionally, MRI and positron C
Although the search for the inside of the brain such as T is practiced clinically,
There are restrictions on the resolution, time resolution, spatial resolution, radiation used, and the like. Especially, in order to clarify the function of the brain, it is necessary to measure the EEG and the magnetic field of the brain. The strength of the brain magnetic field is an extremely weak magnetic field of 10 to the 9th power (1/10 9 ) gauss, and the geomagnetism is 0.3 gauss. To detect this signal, SQUID (superconducting quantum interference device) Called a magnetometer and a superconducting magnetic shield are essential.

【0004】本発明者らは、先に酸化物高温超電導体と
強磁性磁気シールド体とを組み合わせた生体磁気計測用
磁気シールド体の有効性を明らかにしている(特願平3
−242134号)。人間の脳磁界を計測する場合に
は、対象患者が恐怖感を抱かず、かつ臨床的に採用でき
るものでなければならない。特に、臨床医が患者の顔を
見ながら、SQUID磁束計を測定することが望まし
く、その結果、大きな超電導磁気シールド体が必要とな
る。例えば、直径2.5m、長さ5m等である。このよ
うな超電導体を一体もので作製することは、技術的には
可能であるとしても、コストがかかりすぎ、実用的でな
い。
The present inventors have previously clarified the effectiveness of a magnetic shield for biomagnetism measurement, which is a combination of an oxide high-temperature superconductor and a ferromagnetic magnetic shield (Japanese Patent Application No. Hei 3).
-242134). When measuring the human brain magnetic field, it should be clinically applicable to the target patient without fear. In particular, it is desirable for the clinician to measure the SQUID magnetometer while looking at the patient's face, which results in the need for a large superconducting magnetic shield. For example, the diameter is 2.5 m and the length is 5 m. Although it is technically possible to manufacture such a superconductor integrally, it is too costly and not practical.

【0005】また、分割された超電導体を組み合わせて
磁気シールドしようとすると、分割部分から磁束が漏れ
込み十分な磁気シールド効果が得られない。また、生体
磁気計測等のように極微弱磁場空間を得ようとすると、
例えば直径Dと深さLの比は、好ましくはL/D=2以
上を必要とする。また、超電導体は液体窒素温度まで冷
却して使用するために超電導体をクライオスタットに入
れる必要がある。例えば、直径2.5mの超電導円筒容
器を作製したとしても、容器の冷却とそれを断熱して室
温の内部空間を維持するために、有効内径は1.5m程
度に減少してしまう。さらに、この容器のL/Dを2以
上とすると、長さ5m以上の超電導容器を作製しなけれ
ばならない。このような大きな超電導体を焼成する場合
には、酸化物超電導体の望ましい焼結温度は極めて限定
されているため、温度制御が正確にできる大きな電気炉
が必要となる。このように超電導体を一体もので作製し
ようとすると、膨大なコストがかかり、実用上作製は不
可能である。
Further, if the divided superconductors are combined and magnetically shielded, the magnetic flux leaks from the divided portions and a sufficient magnetic shield effect cannot be obtained. In addition, when trying to obtain an extremely weak magnetic field space such as in biomagnetism measurement,
For example, the ratio of the diameter D to the depth L preferably requires L / D = 2 or more. Further, the superconductor needs to be put in a cryostat in order to be used after being cooled to the liquid nitrogen temperature. For example, even if a superconducting cylindrical container having a diameter of 2.5 m is manufactured, the effective inner diameter is reduced to about 1.5 m in order to cool the container and insulate the container to maintain an internal space at room temperature. Furthermore, if the L / D of this container is 2 or more, a superconducting container having a length of 5 m or more must be manufactured. When firing such a large superconductor, the desired sintering temperature of the oxide superconductor is extremely limited, and thus a large electric furnace capable of accurately controlling the temperature is required. If it is attempted to manufacture the superconductor integrally as described above, the cost is enormous and practically impossible.

【0006】本発明は、このような技術的背景のもとで
なされたものであり、複数個に分割された超電導体を組
合せ、その一部分を重ね合わせ、さらに重ね合わせた間
隙からの漏洩磁界を飛躍的に減少させ得る複合磁気シー
ルド体を提供することを目的とするものである。
The present invention has been made under such a technical background, in which superconductors divided into a plurality of pieces are combined, a part of them is overlapped, and a leakage magnetic field from a gap which is further overlapped is combined. An object of the present invention is to provide a composite magnetic shield body that can be dramatically reduced.

【0007】[0007]

【問題点を解決するための手段】本発明の複合磁気シー
ルド体は、複数個の両端開口あるいは一端閉口/一端開
口の円筒型若しくは角筒体型の超電導体からなる磁気シ
ールド体を、その軸方向に一部分重ね合わせ、その間隙
に強磁性体材料を間挿して構成される。なお、重ね合わ
せ部分からの漏洩磁界強度は、間口端部からの漏洩磁界
強度よりも小さくなるようにされることが好ましい。
SUMMARY OF THE INVENTION A composite magnetic shield body according to the present invention comprises a magnetic shield body composed of a plurality of both-end opening or one-end closing / one-end opening cylindrical or prismatic superconductors in the axial direction thereof. Are partially overlapped with each other, and a ferromagnetic material is inserted in the gap. In addition, it is preferable that the leakage magnetic field strength from the overlapping portion is smaller than the leakage magnetic field strength from the front end portion.

【0008】本発明における超電導体としては、焼結
体、基体上に形成された厚膜、薄膜等を用いることがで
き、また強磁性体としては、パーマロイ、Ni−Fe合
金、軟質磁性材料(Fe−Cr−Si−Al合金)等が
使用できるが、強磁性体の初比透磁率μは1000〜1
0000以上が望ましい。
As the superconductor in the present invention, a sintered body, a thick film or a thin film formed on a substrate can be used, and as a ferromagnetic material, permalloy, Ni--Fe alloy, soft magnetic material ( Fe-Cr-Si-Al alloy) or the like can be used, but the initial relative permeability μ of the ferromagnetic material is 1000 to 1
0000 or more is desirable.

【0009】一般に、一体物の超電導磁気シールド体は
両端が開口していても、その開口部に磁場が侵入しよう
とすると、円筒の円周方向にシールド電流が流れ、磁場
の侵入を防ぐ。この場合、円周方向に超電導電流が流れ
る電流の経路が容易にできるが、円周方向に容器が分割
されていると、超電導電流の流れが阻止されるため、シ
ールド効果は著しく低下する。このような観点から、本
発明では、円周方向には分割されていない複数個の容器
を、その軸方向に一部分重ね合わせて、さらにその間隙
に強磁性体を配置してある。このような本発明は、超電
導体磁気シールドと強磁性体磁気シールドとの各種の組
合せについて、種々の検討を重ねた結果、知見されたも
のである。
In general, even if both ends of the superconducting magnetic shield of one body are opened, when a magnetic field tries to enter the opening, a shield current flows in the circumferential direction of the cylinder to prevent the magnetic field from entering. In this case, a path for a current through which the superconducting current flows can be easily formed in the circumferential direction, but if the container is divided in the circumferential direction, the flow of the superconducting current is blocked, so that the shielding effect is significantly reduced. From such a viewpoint, in the present invention, a plurality of containers which are not divided in the circumferential direction are partially overlapped in the axial direction, and the ferromagnetic material is arranged in the gap. The present invention as described above has been discovered as a result of various studies on various combinations of the superconductor magnetic shield and the ferromagnetic magnetic shield.

【0010】上記のように構成された本発明の複合磁気
シールド体によるシールドのメカニズムを、本発明のよ
りよい理解のために説明する。従って、以下の説明は本
発明の範囲を限定するものではない。今、外部磁場強度
の成分として円筒あるいは角筒の軸方向と径方向の2成
分を考えた場合、重ね合わせ部分からの漏洩磁界強度
は、軸方向成分は超電導体磁気シールドのみによって相
当量減衰でき、径方向成分については間隙に挿入された
強磁性体により、著しく減衰が可能であると推定され
る。このようにして、重ね合わせ部分からの漏洩磁界強
度を外部磁界強度の100万分の1以下に減衰させるこ
とができる。
The shielding mechanism by the composite magnetic shield body of the present invention constructed as above will be described for better understanding of the present invention. Therefore, the following description does not limit the scope of the invention. Now, when considering the two components of the external magnetic field strength in the axial direction and the radial direction of the cylinder or the rectangular cylinder, the leakage magnetic field strength from the overlapping part can be considerably attenuated only by the superconductor magnetic shield. As for the radial component, it is presumed that the ferromagnetic material inserted in the gap can significantly reduce the radial component. In this way, the leakage magnetic field strength from the superposed portion can be attenuated to 1,000,000th or less of the external magnetic field strength.

【0011】図1には、超電導体同士の重ね合わせとそ
の間隙の関係を示し、図2〜図6には、複合磁気シール
ド体の一例として、2個あるいは3個の超電導体を用い
て磁気シールド体を形成する場合の重ね合わせの例を示
してある。また、図7は、図1に示した超電導体の重ね
合わせの長さをh、その間隙をxとした時、有限要素法
を用いたコンピュータシミュレーションにより、重ね合
わせ部の漏洩磁界のシールド効果S’とh/xの関係を
計算した結果を示すものである。S’は重ね合わせ部の
外部磁界強度/内部磁界強度の比で定義されるシールド
効果で、円筒容器の軸方向と径方向から外部磁界を加え
た場合を、それぞれS’(軸方向)、S’(径方向)と
した。シールド効果は、磁気シールド効果の計算のため
の磁界強度の設定位置を示す図8及び図9に示したP
(1、2、3)及びQ(1、2、3)の各点での磁界強
度から決定した。例えば、S’(軸方向)=外部磁界強
度/内部磁界強度等である。xは通常、超電導円筒(角
筒)の内径(角筒の場合は、例えば対角線長さ)に比べ
て十分小さく、例えば1/10〜1/20以下である。
例えば、直径10cmの円筒容器であれば、xは5mm
程度である。
FIG. 1 shows the superposition of superconductors and the relationship between the gaps. FIGS. 2 to 6 show an example of a composite magnetic shield using two or three superconductors. An example of superposition in the case of forming a shield body is shown. Further, FIG. 7 shows a shield effect S of the leakage magnetic field of the superposition part by computer simulation using the finite element method, where h is the superposition length of the superconductor shown in FIG. 1 and x is the gap. It shows the result of calculating the relationship between'and h / x. S'is a shield effect defined by the ratio of the external magnetic field strength to the internal magnetic field strength of the superposed portion, and S '(axial direction) and S'when the external magnetic field is applied from the axial direction and the radial direction of the cylindrical container, respectively. '(Radial direction). The shield effect is the P shown in FIG. 8 and FIG. 9 showing the setting position of the magnetic field strength for the calculation of the magnetic shield effect.
It was determined from the magnetic field strength at each point of (1, 2, 3) and Q (1, 2, 3). For example, S ′ (axial direction) = external magnetic field strength / internal magnetic field strength. x is usually sufficiently smaller than the inner diameter of the superconducting cylinder (square tube) (for example, the diagonal length in the case of a square tube), and is, for example, 1/10 to 1/20 or less.
For example, for a cylindrical container with a diameter of 10 cm, x is 5 mm
It is a degree.

【0012】図8では、両端開口容器の内径をDi、一
端開口/一端閉口容器の内径をDoとした。図7より、
強磁性体を重ね合わせ部分に間挿した場合(図8)に
は、円筒容器の径方向から均一磁界をかけた場合のS’
(径方向)が、強磁性体がない場合(図9)に比較して
著しく改善されているのがわかる。また、図7よりh/
xについて、例えば、L/Dが1程度の一端開口/一端
閉口容器と両端開口容器を組み合わせてL/D=2の複
合磁気シールド体を形成する場合を考える。分割部分
(L/D=1の位置)での開口端部からの漏洩磁界強度
の減衰は軸方向で約1/1000であり、分割部分から
の漏洩磁界強度がこれ以下に減衰すれば良いので、図7
よりh/x≧3(S’≧103となる)を選択する。ま
た同様にして3個の容器を複合させた場合、開口端部か
らL/D=2の位置の漏洩磁界強度の減衰は軸方向で約
1/106であり、h/x≧4を選択する。このように
分割部分からの漏洩磁界強度が開口端部からの漏洩磁界
強度よりも小さくなるように、h/xを適宜選択でき
る。強磁性体の厚さtはt≦xであり、xが小さいほど
漏洩磁界を防げるので、実際上の施工ではxは1〜10
mm程度であり、hは数十mmから100mm程度とな
る。強磁性体の初比透磁率μは大きな値をもつ材料が好
ましく、例えばパーマロイ(μ〜80000)、Fe−
Ni合金(μ〜10000)等を選択できる。超電導体
は液体窒素温度に冷却するため、強磁性体も液体窒素温
度で使用することになる。それ故、μは室温の値より
も、若干低下するが、全く問題はない。なお、強磁性体
の間挿位置は、好ましくは超電導体同士の間隙の真中に
入れた場合が最も効果が大きい。
In FIG. 8, the inner diameter of the both-end open container is Di, and the inner diameter of the one-end open / one-end closed container is Do. From Figure 7,
When a ferromagnetic material is inserted in the overlapping portion (Fig. 8), S'when a uniform magnetic field is applied from the radial direction of the cylindrical container.
It can be seen that (radial direction) is remarkably improved as compared with the case where there is no ferromagnetic material (FIG. 9). Moreover, from FIG. 7, h /
Regarding x, for example, consider a case where a one-end open / one-end closed container having L / D of about 1 and a both-end open container are combined to form a composite magnetic shield body of L / D = 2. The leakage magnetic field strength from the opening end at the divided portion (L / D = 1 position) is attenuated by about 1/1000 in the axial direction, and the leakage magnetic field strength from the divided portion may be reduced to less than this. , Fig. 7
Then, h / x ≧ 3 (S ′ ≧ 10 3 ) is selected. Similarly, when three containers are combined in the same manner, the attenuation of the leakage magnetic field strength at the position L / D = 2 from the opening end is about 1/10 6 in the axial direction, and h / x ≧ 4 is selected. To do. In this way, h / x can be appropriately selected so that the leakage magnetic field strength from the divided portion is smaller than the leakage magnetic field strength from the opening end portion. The thickness t of the ferromagnetic material is t ≦ x, and the smaller x is, the more the leakage magnetic field can be prevented.
mm is about mm, and h is about several tens of mm to 100 mm. A material having a large initial relative permeability μ of the ferromagnetic material is preferable, and for example, permalloy (μ to 80000), Fe-
A Ni alloy (μ to 10,000) or the like can be selected. Since the superconductor is cooled to the liquid nitrogen temperature, the ferromagnetic material is also used at the liquid nitrogen temperature. Therefore, μ is slightly lower than the value at room temperature, but there is no problem at all. The interposition of the ferromagnetic material is preferably most effective when it is placed in the center of the gap between the superconductors.

【0013】図2〜図6に示したように、超電導体の重
ね合わせには、いくつかの方法があるが、どのような組
合せでもhとxの比が満足されれば同じシールド効果を
得ることができ、本発明は図2〜図6に限定されない。
モデル計算によれば、例えば直径20cmの一端開口超
電導磁気シールド容器1及び両端開口容器1を図2のよ
うに組合せ、強磁性体2として厚さ1mmのパーマロイ
を使用し、h/x=10とすると分割部分からの漏洩磁
界強度は外部磁界強度の100万分の1以下に減衰し、
2個の超電導体を組合せた容器底での減衰率は約100
万分の1となり、一体物の超電導磁気シールド容器と全
く同じ減衰率を得ることができる。
As shown in FIGS. 2 to 6, there are several methods for superposing superconductors, but the same shielding effect can be obtained in any combination as long as the ratio of h and x is satisfied. However, the present invention is not limited to FIGS.
According to the model calculation, for example, a superconducting magnetic shield container 1 having a diameter of 20 cm and a container 1 having both ends having a diameter of 20 cm are combined as shown in FIG. 2, a permalloy having a thickness of 1 mm is used as the ferromagnetic material 2, and h / x = 10. Then, the leakage magnetic field strength from the divided parts is attenuated to less than one millionth of the external magnetic field strength,
The attenuation rate at the bottom of the container that combines two superconductors is about 100.
It is 1 / 10,000, and it is possible to obtain exactly the same attenuation factor as that of the one-piece superconducting magnetic shield container.

【0014】本発明の複合磁気シールド体によれば、超
電導磁気シールドを用いた磁気シールド室のような極微
弱磁場の大きな空間を創出できる。例えば、一辺の長さ
が2m、高さ2mの角筒シールド体を3個作製し、これ
を本発明を用いて組合せることにより、磁気シールド室
を作製することが可能である。これを生体磁気計測に応
用すれば、患者と医者が同時に超電導磁気シールド室に
入り、100万分の1の減衰率をもつノイズの極めて少
ない磁場環境で計測することができる。
According to the composite magnetic shield of the present invention, a space having a very weak magnetic field, such as a magnetic shield room using a superconducting magnetic shield, can be created. For example, it is possible to fabricate a magnetically shielded chamber by producing three rectangular tube shield bodies each having a side length of 2 m and a height of 2 m and combining them with the present invention. If this is applied to biomagnetism measurement, the patient and the doctor can simultaneously enter the superconducting magnetic shield room and perform measurement in a magnetic field environment with an attenuation rate of 1 / 1,000,000 and extremely low noise.

【0015】本発明は生体磁気計測用に特に好適である
が、これに限定されるものではなく、磁気遮蔽を必要と
する物理実験、デバイス実験等あらゆる分野へ応用でき
る。
The present invention is particularly suitable for biomagnetic measurement, but is not limited to this and can be applied to various fields such as physical experiments and device experiments requiring magnetic shielding.

【0016】[0016]

【発明の効果】以上のような本発明によれば、次に示す
ような効果を得ることができる。 (1)分割した超電導体を用いても一体物の場合と同程
度の減衰率を得ることができる。 (2)超電導体を分割できるので、比較的小さな超電導
体で大きな空間を磁気遮蔽できる。特に超電導体を用い
て磁気シールド室の様な大きな空間を確保しようとする
場合には、製造コストを大幅に減らすことができる。 (3)挿入する強磁性体の使用量はわずかであり、高価
な強滋性体を大量に用いる必要がなくコストがかからな
い。
According to the present invention as described above, the following effects can be obtained. (1) Even if the divided superconductors are used, it is possible to obtain the same degree of attenuation as in the case of the integrated body. (2) Since the superconductor can be divided, it is possible to magnetically shield a large space with a relatively small superconductor. Especially, when a large space such as a magnetically shielded room is to be secured by using a superconductor, the manufacturing cost can be greatly reduced. (3) The amount of the ferromagnetic substance to be inserted is small, and it is not necessary to use a large amount of expensive ferocious substance and thus the cost is low.

【0017】[0017]

【実施例1】Bi:Pb:Sr:Ca:Cu=1.8
4:0.34:1.91:2.06:3.06の組成の
酸化物超電導体粉末を用いて、内径10cm、長さ25
cm、厚さ5mmの一端開口/一端閉口型の容器、及び
内径12cm、深さ25cm、厚さ5mmの両端開口型
の容器及び内径10cm、深さ40cm、厚さ8mmの
一端開口/一端閉口型の容器を冷間静水圧プレスにより
成型し、焼成して超電導磁気シールド容器を作製した。
この超電導体の臨界温度Tcは105Kであった。前記
2つの容器を図2に示したように、組合わせ、重ね合わ
せ部分hを3cm及び、5cm取り、各重ね合わせの条
件でシールド効果を測定した。超電導体同士の間隙xは
5mmであり、h/x=6および10である。また強磁
性体として、長さh’=5cm、厚さt=1mmおよび
2mmのパーマロイ(室温での初比透磁率μ=5000
0)のリングを用いて、超電導体の間隙の真中に間挿し
た。このようにして組み立てた複合磁気シールド体の超
電導磁気シールド容器及び後者の一体物の容器を液体窒
素温度に冷却し、軸方向と径方向の2チャンネルSQU
IDを用いて、磁気シールド効果を測定した。ここで、
外部磁界は直径1mのヘルムホルツコイルを用いて、円
筒容器の軸方向と径方向に約0.3ガウスの磁場を加え
た。磁気シールド効果Sは外部磁界強度/内部磁界強度
の比で定義した。測定位置は開口端より深さL/直径D
の比が約2の容器中心部とした。一体物の磁気シールド
容器ではSa(軸方向)は約106であり、Sr(径方
向)は1.3×103であった。
Example 1 Bi: Pb: Sr: Ca: Cu = 1.8
Using an oxide superconductor powder having a composition of 4: 0.34: 1.91: 2.06: 3.06, an inner diameter of 10 cm and a length of 25
cm, thickness 5 mm, one-end opening / one-end closing type container, and inner diameter 12 cm, depth 25 cm, thickness 5 mm both-end opening type container and inner diameter 10 cm, depth 40 cm, thickness 8 mm one-side opening / one-end closing type container The container was molded by cold isostatic pressing and fired to produce a superconducting magnetic shield container.
The critical temperature Tc of this superconductor was 105K. As shown in FIG. 2, the two containers were combined, the overlapping portion h was 3 cm and 5 cm, and the shielding effect was measured under each overlapping condition. The gap x between the superconductors is 5 mm and h / x = 6 and 10. As a ferromagnetic material, permalloy having a length h ′ = 5 cm, a thickness t = 1 mm and a thickness of 2 mm (initial relative permeability μ = 5000 at room temperature)
The ring of 0) was used, and it inserted in the center of the gap of a superconductor. The superconducting magnetic shield container of the composite magnetic shield body thus assembled and the latter integrated container are cooled to the liquid nitrogen temperature, and the two channels of the axial direction and the radial direction SQU are used.
The magnetic shield effect was measured using the ID. here,
As the external magnetic field, a Helmholtz coil with a diameter of 1 m was used, and a magnetic field of about 0.3 gauss was applied in the axial direction and the radial direction of the cylindrical container. The magnetic shield effect S is defined by the ratio of external magnetic field strength / internal magnetic field strength. The measurement position is depth L / diameter D from the open end
The ratio was about 2 in the center of the container. In the magnetic shield container of one body, Sa (axial direction) was about 10 6 and Sr (radial direction) was 1.3 × 10 3 .

【0018】表1に分割体を組み立てた複合磁気シール
ド体のシールド効果の測定値を示す。これからわかるよ
うに、本発明の複合磁気シールド体を用いれば、極めて
良好な磁気シールド効果が得られる。
Table 1 shows measured values of the shield effect of the composite magnetic shield body in which the divided bodies are assembled. As can be seen from this, when the composite magnetic shield body of the present invention is used, a very good magnetic shield effect can be obtained.

【0019】[0019]

【実施例2】超電導の組成比がBi:Pb:Sr:C
a:Cu=1.5:0.5:1.9:1.9:2.8の
粉末を用いて、内径10cm、長さ40cm、厚さ1.
5mmの一端開口/一端閉口Ni円筒パイプ1個、内径
10cm、長さ13cm、厚さ1.5mmのNi円筒パ
イプ2個(1個は底付きの一端開口/一端閉口容器)
と、内径9cm、長さ16cm、厚さ1.5mmの両端
開口のNi円筒パイプ1個の計4個の各々の外面上にA
gを50μm、その上に超電導層を500μm、プラズ
マ溶射し、厚膜による超電導磁気シールド容器を作製し
た。厚膜のTcは106Kであった。これら後者の3個
の容器を図5に示したように組合せ、各重ね合わせの長
さhは各3cmとした。超電導容器同士の間隙xはNi
基板と厚膜の厚さを除くと、約3mmである。この結
果。h/x=10で試験した。強磁性体として、実施例
1と同様にして、厚さt=1mm及び2mm、長さ3c
mのパーマロイのリングを用いて、間隙の真中に挿入し
た。磁気シールド効果の測定方法は実施例1と同様にし
て行ない、測定位置は開口端よりL/D=3の容器中心
部とした。一端開口/一端閉口型容器の一体物の、この
位置でのS(軸方向)は約8×109であり、S(径方
向)は5×104である。表2にシールド効果の測定値
を示す。この表1より、実施例1と同様に一体物と同程
度の磁気シールド効果があることがわかる。
Example 2 The composition ratio of superconductivity is Bi: Pb: Sr: C.
a: Cu = 1.5: 0.5: 1.9: 1.9: 2.8 using powder, inner diameter 10 cm, length 40 cm, thickness 1.
One 5 mm one-sided opening / one-sided closed Ni cylindrical pipe, two 10 mm inner diameter, 13 cm long, 1.5 mm thick Ni cylindrical pipe (one is a bottomed one-sided opening / one-sided closed container)
And an inner diameter of 9 cm, a length of 16 cm, and a thickness of 1.5 mm.
g was 50 μm, and a superconducting layer was plasma-sprayed thereon with a thickness of 500 μm to prepare a thick film superconducting magnetic shield container. The Tc of the thick film was 106K. These latter three containers were combined as shown in FIG. 5, and the length h of each overlap was 3 cm. The gap x between the superconducting containers is Ni
Excluding the thickness of the substrate and thick film, it is about 3 mm. As a result. Tested at h / x = 10. As a ferromagnetic material, in the same manner as in Example 1, thickness t = 1 mm and 2 mm, length 3c
A permalloy ring of m was used to insert in the middle of the gap. The magnetic shield effect was measured in the same manner as in Example 1, and the measurement position was at the center of the container with L / D = 3 from the opening end. The one open end / end closing type integral of the container, S (axial direction) at this position is about 8 × 10 9, S (radial direction) is 5 × 10 4. Table 2 shows the measured values of the shield effect. It can be seen from Table 1 that the magnetic shield effect is about the same as that of the integrated body as in the first embodiment.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【比較例1】実施例1と同一の超電導磁気シールド容器
2個を用い、図10に示したように超電導体同士を重ね
合わせない場合、図11に示したように実施例1と同様
にして超電導体同士を5cm重ね合わせ、間隙に強磁性
体を間挿しない場合について実施例1と同様の実験を行
なった。これらの結果を表3に示す。表3より、いずれ
の場合も、実施例1に比較して磁気シールド効果は著し
く低下しているのがわかる。
COMPARATIVE EXAMPLE 1 Two superconducting magnetic shield containers identical to those of Example 1 were used, and when superconductors were not superposed on each other as shown in FIG. 10, the same procedure as in Example 1 was performed as shown in FIG. The same experiment as in Example 1 was carried out when the superconductors were superposed on each other by 5 cm and no ferromagnetic material was inserted in the gap. The results are shown in Table 3. From Table 3, it can be seen that in any case, the magnetic shield effect is remarkably reduced as compared with Example 1.

【0022】[0022]

【表3】 [Table 3]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の複合磁気シールド体における重ね合わ
せ部分と間隙との関係を示す概略説明図である。
FIG. 1 is a schematic explanatory view showing a relationship between an overlapping portion and a gap in a composite magnetic shield body of the present invention.

【図2】本発明に係る円筒又は角筒複合磁気シールド体
の一例を示す概略説明図である。
FIG. 2 is a schematic explanatory view showing an example of a cylindrical or square tube composite magnetic shield body according to the present invention.

【図3】本発明に係る円筒又は角筒複合磁気シールド体
の他の例を示す概略説明図である。
FIG. 3 is a schematic explanatory view showing another example of a cylindrical or square tube composite magnetic shield body according to the present invention.

【図4】本発明に係る円筒又は角筒複合磁気シールド体
のさらに他の例を示す概略説明図である。
FIG. 4 is a schematic explanatory view showing still another example of the cylindrical or rectangular tube composite magnetic shield body according to the present invention.

【図5】本発明に係る円筒又は角筒複合磁気シールド体
のさらに別の例を示す概略説明図である。
FIG. 5 is a schematic explanatory view showing still another example of a cylindrical or square tube composite magnetic shield body according to the present invention.

【図6】本発明に係る円筒又は角筒複合磁気シールド体
のより別の例を示す概略説明図である。
FIG. 6 is a schematic explanatory view showing still another example of the cylindrical or rectangular tube composite magnetic shield body according to the present invention.

【図7】漏洩磁界のシールド効果S’とh/xとの関係
図である。
FIG. 7 is a relationship diagram between a shield effect S ′ of a leakage magnetic field and h / x.

【図8】磁気シールド効果の計算のための磁界強度の設
定位置を示す説明図である。
FIG. 8 is an explanatory diagram showing setting positions of magnetic field strength for calculation of a magnetic shield effect.

【図9】磁気シールド効果の計算のための磁界強度の設
定位置を示す説明図である。
FIG. 9 is an explanatory diagram showing setting positions of magnetic field strength for calculation of a magnetic shield effect.

【図10】比較例1の磁気シールド体の重ね合わせ部の
説明図である。
10 is an explanatory diagram of a superposed portion of the magnetic shield body of Comparative Example 1. FIG.

【図11】比較例2の磁気シールド体の重ね合わせ部の
説明図である。
11 is an explanatory diagram of a superposed portion of a magnetic shield body of Comparative Example 2. FIG.

【符号の説明】[Explanation of symbols]

1 超電導体 2 強磁性体 1 Superconductor 2 Ferromagnet

【表1】 [Table 1]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数個の両端開口あるいは一端閉口/一
端開口の円筒型若しくは角筒体型の超電導体からなる磁
気シールド体を、その軸方向に一部分重ね合わせた間隙
に、強磁性体材料を間挿してなる複合磁気シールド体。
1. A ferromagnetic material is placed in a gap formed by superposing a plurality of magnetic shields made of a superconductor of a cylindrical type or a rectangular tubular type having both ends open or one end closed / one end open in the axial direction. A composite magnetic shield body that is inserted.
【請求項2】 重ね合わせ部分からの漏洩磁界強度が、
間口端部からの漏洩磁界強度よりも小さくされた請求項
1記載の複合磁気シールド体。
2. The leakage magnetic field strength from the overlapping portion is
The composite magnetic shield body according to claim 1, wherein the magnetic field strength is smaller than the leakage magnetic field strength from the front end portion.
JP5146806A 1993-05-27 1993-05-27 Composite magnetic shielding material Pending JPH06334384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5146806A JPH06334384A (en) 1993-05-27 1993-05-27 Composite magnetic shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5146806A JPH06334384A (en) 1993-05-27 1993-05-27 Composite magnetic shielding material

Publications (1)

Publication Number Publication Date
JPH06334384A true JPH06334384A (en) 1994-12-02

Family

ID=15415956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5146806A Pending JPH06334384A (en) 1993-05-27 1993-05-27 Composite magnetic shielding material

Country Status (1)

Country Link
JP (1) JPH06334384A (en)

Similar Documents

Publication Publication Date Title
US4881035A (en) Magnetic structural arrangement of an installation for nuclear magnetic resonance tomography with superconducting background field coils and normal-conducting gradient coils
US5187327A (en) Superconducting magnetic shield
JPS63311707A (en) Magnetic coil device of neuclair magnetic resonance tomography equipment
US11064637B2 (en) Systems and methods for magnetic shielding for a superconducting computing system
JPH01243503A (en) Static magnetic field magnet for magnetic resonance imaging device
US11199599B2 (en) Magnet assembly comprising closed superconducting HTS shims
US20030218872A1 (en) Superconducting magnetic shield
JPH06334384A (en) Composite magnetic shielding material
US20020135450A1 (en) Open magnet with recessed field shaping coils
CN114188136A (en) Separated low-temperature magnetic shielding device
JPH0738278A (en) Superconducting magnetic shield container
Yu et al. Closed-cycle cryocooled SQUID system with superconductive shield for biomagnetism
EP3496167A1 (en) Charged particle beam current measurement apparatus
JPH0555782A (en) Divided element of oxide superconducting magnetic shield
JPH0697697A (en) Composite magnetic shielding body
JPH08236983A (en) Superconductive magnetic shield method
JPH01245598A (en) High temperature superconductor zero magnetic field standard device
JPH03242134A (en) Magnetic shielding body for measuring living body magnetism
JPS63278385A (en) Magnetic shielding device
JPH0832273A (en) Magnetic shield
JPH0622168B2 (en) Radiant shield
Warner et al. Magnetic shielding for a spaceborne adiabatic demagnetization refrigerator (ADR)
JPH03248069A (en) Squid probe
JPH0365680B2 (en)
JPH05114796A (en) Magnetic shielding case