JPH0738278A - Superconducting magnetic shield container - Google Patents

Superconducting magnetic shield container

Info

Publication number
JPH0738278A
JPH0738278A JP5200288A JP20028893A JPH0738278A JP H0738278 A JPH0738278 A JP H0738278A JP 5200288 A JP5200288 A JP 5200288A JP 20028893 A JP20028893 A JP 20028893A JP H0738278 A JPH0738278 A JP H0738278A
Authority
JP
Japan
Prior art keywords
superconducting
lid
magnetic shield
magnetic field
superconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5200288A
Other languages
Japanese (ja)
Inventor
Akihito Satou
哲仁 佐藤
Kazutomo Hoshino
和友 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP5200288A priority Critical patent/JPH0738278A/en
Publication of JPH0738278A publication Critical patent/JPH0738278A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

PURPOSE:To reduce leakage magnetic field entering from the open edge part of a superconducting magnetic shield container by laying out a superconductive lid consisting of a superconductor at the open edge part of a magnetic shield body consisting of, for example, cylindrical superconductor whose both edges are open and then laying out ferromagnetic bodies at the clearance. CONSTITUTION:Ferromagnetic body 3 is laid out outside or inside a superconductive side wall part 4 constituting a superconductive lid 2 and then the superconductive lid 2 is inserted into a superconducting magnetic shield body 1, thus forming a combined structure of superconductor, ferromagnetic body, and superconductor from the outside. Then, wen a spacing (x) between the superconductive lid 2 and the superconductive magnetic shield body 1 and a height (h) of a side wall part 4 of the superconductive lid 2 are set so that they satisfy 2x<=h, the leaked magnetic field from an open edge part is equal to or less than 1/1000, thus securing an attenuation ratio of 1/10000 even if the depth/aperture of the container is reduced drastically. For example, when a superconductive magnetic shield is applied to the device experiment such as an superconducting element using Josephson elements, an ideal non-magnetic field space can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導現象(磁束を排除
する)を利用した磁気シールド容器に関し、特に超電導
体が高温酸化物超電導体の焼結体、厚膜及び薄膜からな
り、磁気シールド本体の開口端部から侵入する漏洩磁界
を極限的に低下させ得る超電導磁気シールド容器に係
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic shield container utilizing the superconducting phenomenon (excluding magnetic flux), and particularly, the superconductor comprises a sintered body of a high temperature oxide superconductor, a thick film and a thin film, The present invention relates to a superconducting magnetic shield container capable of reducing the leakage magnetic field penetrating from the opening end of the above.

【0002】[0002]

【従来の技術およびその問題点】最近、酸化物超電導体
をその磁束を排除する超電導現象を利用し、磁気シール
ド容器に応用する研究が行われている。この場合、超電
導遮蔽は外部磁場を超電導体内に取り込まず、外部に向
かって排除することにより、内部空間に磁場を侵入させ
ないもので、磁気シールド効果は強磁性体よりも桁違い
に大きい。すなわち、強磁性遮蔽には残留磁化の存在か
らくる限界があり、この限界を超えた領域での磁気シー
ルドには、超電導磁気シールドに待たなければならな
い。しかるに、例えばNb系の金属系超電導体では、冷
媒として液体ヘリウムを使用する必要があるので、磁気
シールド施工にはコスト的に障壁があり、超電導遮蔽は
極く一部を除いて実用化されていないのが実情である。
2. Description of the Related Art Recently, studies have been conducted to apply an oxide superconductor to a magnetic shield container by utilizing the superconducting phenomenon of eliminating its magnetic flux. In this case, the superconducting shield does not take an external magnetic field into the superconductor and eliminates it toward the outside to prevent the magnetic field from penetrating into the internal space, and the magnetic shield effect is orders of magnitude greater than that of a ferromagnetic material. That is, the ferromagnetic shield has a limit due to the presence of remanent magnetization, and the magnetic shield in a region exceeding this limit must wait for the superconducting magnetic shield. However, for example, in Nb-based metal superconductors, liquid helium needs to be used as a coolant, so there is a cost barrier in magnetic shield construction, and superconducting shields have been put to practical use except for a small part. The reality is that there is none.

【0003】昨今、脳から発する磁場を測定し、脳のメ
カニズムの解明や、頭痛の解明、脳の検診等を試みる研
究が活発化してきている。従来、MRIやポジトロンC
T等、脳の内部を探ることは臨床で実施されているが、
その解像力、時間分解能、空間分解能や用いる放射線等
の制約がある。特に脳の機能を解明するためには脳波や
脳磁場の測定が必要である。脳磁場の強さは10のマイ
ナス9乗(1/109)ガウスという極微弱磁場、因に
地磁気は0.3ガウスであり、この信号を検出するため
には、SQUID(超電導量子干渉素子)と呼ばれる磁
束計と、超電導磁気シールドが必須となる。
Recently, studies have been activated to measure the magnetic field emitted from the brain to elucidate the mechanism of the brain, elucidate headache, and examine the brain. Conventionally, MRI and positron C
Although the search for the inside of the brain such as T is practiced clinically,
There are restrictions on the resolution, time resolution, spatial resolution, radiation used, and the like. Especially, in order to clarify the function of the brain, it is necessary to measure the EEG and the magnetic field of the brain. The strength of the brain magnetic field is an extremely weak magnetic field of 10 to the 9th power (1/10 9 ) gauss, and the geomagnetism is 0.3 gauss. To detect this signal, SQUID (superconducting quantum interference device) Called a magnetometer and a superconducting magnetic shield are essential.

【0004】本発明者らは、先に酸化物高温超電導体が
従来の強磁性体よりも桁違いに良好な磁気シールド効果
を示すことを明らかにしている(特願平1−25471
1号)。この磁気シールド容器は深さ/口径(L/D)
比を1以上にすることを必須の要件とするものである。
このような超電導磁気シールドを用いて、人間の脳磁界
を計測する場合には、対象患者が恐怖感を抱かず、かつ
臨床的に採用できるものでなければならない。特に、臨
床医が患者の顔を見ながら、SQUID磁束計を測定す
ることが望ましく、その結果、大きな超電導磁気シール
ド容器が必要となる。特に超電導容器を冷却し、かつ内
部に人が入れる室温の断熱空間を具えた場合、例えば、
超電導容器の直径は2mにも達する。この場合L/Dを
1以上好ましくは2〜3にすると、容器の長さは5〜6
m等である。このような超電導体を作製することは、技
術的には可能であるとしても、コストがかかりすぎ、ま
た非常に大きな設置場所を必要とし実用的でない。
The present inventors have previously clarified that the oxide high-temperature superconductor has an order of magnitude better magnetic shield effect than the conventional ferromagnet (Japanese Patent Application No. 1-25471).
No. 1). This magnetic shield container has depth / caliber (L / D)
It is an essential requirement that the ratio be 1 or more.
When measuring a human brain magnetic field using such a superconducting magnetic shield, it must be clinically applicable to the target patient without fear. In particular, it is desirable for the clinician to measure the SQUID magnetometer while looking at the patient's face, resulting in the need for a large superconducting magnetically shielded container. In particular, when the superconducting container is cooled and the room is provided with an insulating space at room temperature, for example,
The diameter of the superconducting container reaches 2m. In this case, if L / D is 1 or more, preferably 2 to 3, the length of the container is 5 to 6
m, etc. Although it is technically possible to produce such a superconductor, it is too costly and requires a very large installation place, which is not practical.

【0005】また、超電導磁気シールド容器の開口端部
からの漏れ磁場を減少させる方法としては、超電導体の
内側または外側に強磁性体を配置して超電導円筒軸に垂
直な径方向の磁場を減衰させる方法や、強磁性体の蓋を
開口端部に配置する方法が既に提案されている(特願平
3−21869及び特願平3−218696)。しか
し、これらの方法は開口端部からの漏洩磁場を防ぐには
いずれも不完全であり、特に軸方向の磁場は十分に減衰
できない。そのためにL/Dを大きく取り容器内部の深
い部分で測定を行なわなければならない。前述のように
超電導容器の直径が2mにもなる場合には、容器の長さ
が5〜6mにもなり、実用上極めて不利であり、また外
部磁場の減衰率にも限界がある。
As a method for reducing the leakage magnetic field from the opening end of the superconducting magnetic shield container, a ferromagnetic material is arranged inside or outside the superconductor to attenuate the magnetic field in the radial direction perpendicular to the superconducting cylinder axis. There has already been proposed a method of providing the same and a method of arranging a lid of a ferromagnetic material at the opening end (Japanese Patent Application Nos. 3-21869 and 3-218696). However, these methods are all incomplete in preventing the leakage magnetic field from the opening end, and especially the magnetic field in the axial direction cannot be sufficiently attenuated. Therefore, it is necessary to take a large L / D and measure at a deep portion inside the container. As described above, when the diameter of the superconducting container is as large as 2 m, the length of the container becomes as large as 5 to 6 m, which is extremely disadvantageous in practical use, and the attenuation rate of the external magnetic field is limited.

【0006】本発明は、このような技術的背景のもとで
なされたものであり、超電導磁気シールド容器本体のL
/Dを1もしくは1以下としても、その開口端部から侵
入する漏洩磁場を極限的に低下させ得る超電導磁気シー
ルド容器を提供することを目的とするものである。
The present invention has been made under such a technical background, and L of a superconducting magnetic shield container body is formed.
It is an object of the present invention to provide a superconducting magnetic shield container capable of extremely reducing the leakage magnetic field penetrating from the opening end even if / D is set to 1 or 1 or less.

【0007】[0007]

【問題点を解決するための手段】本発明の超電導磁気シ
ールド容器は、両端開口あるいは一端閉口/一端開口の
円筒状若しくは角筒状の超電導体からなる磁気シールド
本体の少なくとも一方の開口端部に、超電導体からなる
超電導蓋を配置し、磁気シールド本体と超電導蓋との隙
間に強磁性体を配置したことを特徴とする。この超電導
磁気シールド容器に配置される超電導蓋は円形もしくは
角形をなす板もしくは曲率を持った板の周縁部に前記超
電導磁気シールド本体側壁と平行又は傾斜した側壁部を
有し、好ましくは超電導蓋の側壁部の高さをh、磁気シ
ールド本体と超電導蓋との隙間の間隔をxとすると、少
なくとも2x≦hとする。
A superconducting magnetic shield container according to the present invention is provided with at least one opening end portion of a magnetic shield body made of a cylindrical or rectangular tube-shaped superconductor with both ends open or one end closed / one end open. A superconducting lid made of a superconductor is arranged, and a ferromagnetic material is arranged in a gap between the magnetic shield body and the superconducting lid. The superconducting lid arranged in this superconducting magnetic shield container has a side wall portion parallel or inclined to the side wall of the superconducting magnetic shield main body at the peripheral portion of a circular or rectangular plate or a plate having a curvature, and preferably the superconducting lid At least 2x ≦ h, where h is the height of the side wall and x is the gap between the magnetic shield body and the superconducting lid.

【0008】本発明における超電導容器本体及び蓋とし
ては、焼結体、基体上に形成された厚膜、薄膜等を用い
ることができる。また超電導本体と超電導蓋との隙間に
配置される強磁性体としては、パーマロイ、Ni−Fe
合金等が使用できる。
As the superconducting container body and the lid in the present invention, a sintered body, a thick film formed on a substrate, a thin film or the like can be used. Further, as the ferromagnetic material arranged in the gap between the superconducting body and the superconducting lid, permalloy, Ni-Fe
Alloys and the like can be used.

【0009】一般に、一体物の超電導磁気シールド容器
は両端が開口していても、その開口部に磁場が侵入しよ
うとすると、円筒の円周方向にシールド電流が流れ、磁
場の侵入を防ぐ。この場合、開口端部から侵入する漏洩
磁場は前述のL/Dが大きくなるとともに指数関数的に
減衰する。しかし実用的にはL/Dを1もしくは1以下
にして、磁気シールド容器とそれを冷却するクライオス
タットのコストを下げ、磁気シールド装置をコンパクト
に作る必要がある。このような観点から、本発明では、
超電導磁気シールド本体の少なくとも一方の開口端部に
超電導体の蓋を配置し、本体と蓋との隙間に強磁性体を
挿入することにより飛躍的に漏洩磁場を防ぐことを可能
にしたものである。すなわち、本発明は、超電導磁気シ
ールド容器の開口端部に各種形状の蓋を配置し、種々の
検討を重ねた結果、知見されたものである。
In general, even if both ends of a monolithic superconducting magnetic shield container are open, when a magnetic field tries to enter the openings, a shield current flows in the circumferential direction of the cylinder to prevent the magnetic field from entering. In this case, the leakage magnetic field penetrating from the opening end is exponentially attenuated as the above L / D increases. However, practically, it is necessary to reduce the cost of the magnetic shield container and the cryostat for cooling it by setting L / D to 1 or 1 or less and to make the magnetic shield device compact. From such a viewpoint, in the present invention,
The superconducting magnetic shield body is provided with a superconductor lid at at least one opening end, and a ferromagnetic material is inserted into a gap between the body and the lid, thereby making it possible to dramatically prevent a leakage magnetic field. . That is, the present invention has been found as a result of various studies conducted by disposing lids of various shapes at the open end of the superconducting magnetic shield container.

【0010】上記のように構成された本発明のメカニズ
ムを、本発明のよりよい理解のために説明する。従っ
て、以下の説明は本発明の範囲を限定するものではな
い。今、外部磁場の成分として円筒あるいは角筒の軸方
向と径方向の2成分を考えた場合、開口端部からの漏洩
磁場の軸方向成分は、図1に示された超電導蓋2とその
側壁部4の高さhを所定の大きさに設定することによ
り、著しく減衰が可能である。図1に示されたように超
電導蓋2を構成する超電導側壁部4の外側または内側に
強磁性体を配置し、超電導磁気シールド本体1に超電導
蓋2を挿入することにより、外側から超電導体、強磁性
体、超電導体の組合せ構造となり、超電導蓋2と超電導
磁気シールド本体1との隙間xと超電導蓋2の側壁部4
の高さhを2x≦hとした場合、開口端部からの漏洩磁
場は1/1000以下となり、容器のL/Dを如何に小
さくしても1/1000の減衰率を確保できる。また好
ましくはh/x>3〜5とすることにより、軸方向、径
方向の磁場とも著しく減衰が可能であり、超電導蓋の実
用的価値が発揮される。このようにして、開口端部から
の軸方向及び径方向の喪れ洩磁場を例えば1000万分
の1以下に減衰させることができる。例えば、両端開口
円筒容器の両端部に本発明の超電導蓋2と強磁性体3と
を配置することにより、一体物の超電導閉空間と同等
に、すなわち原理的には、L/Dが1程度でも、外部磁
場を無限に小さくすることが可能である。
The mechanism of the present invention configured as described above will be described for better understanding of the present invention. Therefore, the following description does not limit the scope of the invention. Now, when considering two components in the axial direction and the radial direction of the cylinder or the square cylinder as the components of the external magnetic field, the axial component of the leakage magnetic field from the opening end is the superconducting lid 2 shown in FIG. 1 and its sidewall. By setting the height h of the portion 4 to a predetermined size, it is possible to remarkably reduce the damping. As shown in FIG. 1, by disposing a ferromagnetic material on the outside or inside of the superconducting side wall portion 4 constituting the superconducting lid 2, and inserting the superconducting lid 2 into the superconducting magnetic shield body 1, the superconductor from the outside can be The structure is a combination of a ferromagnetic material and a superconductor, and the gap x between the superconducting lid 2 and the superconducting magnetic shield body 1 and the side wall portion 4 of the superconducting lid 2 are formed.
When the height h is 2x ≦ h, the leakage magnetic field from the opening end is 1/1000 or less, and the attenuation rate of 1/1000 can be secured no matter how small the L / D of the container is. Further, preferably by setting h / x> 3 to 5, both the axial magnetic field and the radial magnetic field can be remarkably attenuated, and the practical value of the superconducting lid is exhibited. In this way, the axial and radial magnetic field leakage from the open end can be attenuated to, for example, 1 / 10,000,000 or less. For example, by arranging the superconducting lid 2 and the ferromagnetic body 3 of the present invention at both ends of a double-sided open cylindrical container, the superconducting closed space is equivalent to that of an integrated body, that is, L / D is about 1 in principle. However, it is possible to make the external magnetic field infinitely small.

【0011】図1には、超電導磁気シールド本体1、超
電導蓋2及び強磁性体3の関係を示し、図2(a〜c)
には、超電導磁気シールド本体1、超電導蓋2及び強磁
性体3の配置の関係の一例を示した。図1の超電導蓋2
の側壁部4の高さh、本体1と超電導蓋2の隙間xの比
h/xを適当に取ることにより、高い減衰率が得られ
る。xは通常、超電導円筒(角筒)の内径(角筒の場合
は、例えば対角線長さ)に比べて十分に小さく、例えば
1/5〜1/10程度である。例えば、直径100cm
の円筒容器であれば、xは5〜10cm程度である。ま
た隙間に挿入する強磁性体3は超電導蓋2の側壁部4の
長さhと同等の長さがあれば良く、強磁性体の厚さも1
〜10mmを適宜選択できる。強磁性体3の初比透磁率
μは大きいほうが良く、通常は10000〜10000
0である。なお、図1におけるように超電導蓋2を超電
導磁気シールド本体1の開口端部内に嵌めこむ場合、超
電導蓋2の厚さをhとすれば、超電導蓋2の側壁部4を
省略できることは勿論である。
FIG. 1 shows the relationship among the superconducting magnetic shield body 1, the superconducting lid 2 and the ferromagnetic body 3, and FIGS.
Shows an example of the positional relationship among the superconducting magnetic shield body 1, the superconducting lid 2 and the ferromagnetic body 3. Superconducting lid 2 of FIG.
A high damping rate can be obtained by appropriately taking the height h of the side wall portion 4 and the ratio h / x of the gap x between the main body 1 and the superconducting lid 2. x is usually sufficiently smaller than the inner diameter of the superconducting cylinder (square tube) (in the case of a square tube, the diagonal length, for example), and is, for example, about 1/5 to 1/10. For example, 100 cm diameter
In the case of the cylindrical container of, x is about 5 to 10 cm. Further, the ferromagnetic material 3 to be inserted in the gap may have a length equal to the length h of the side wall portion 4 of the superconducting lid 2, and the thickness of the ferromagnetic material is 1 as well.
-10 mm can be appropriately selected. The larger the initial relative permeability μ of the ferromagnetic material 3 is, the better, usually 10,000 to 10,000.
It is 0. When the superconducting lid 2 is fitted into the opening end of the superconducting magnetic shield body 1 as shown in FIG. 1, the side wall portion 4 of the superconducting lid 2 can be omitted if the thickness of the superconducting lid 2 is h. is there.

【0012】有限要素法を用いたコンピュータシミュレ
ーションにより、図1に示した一端開口/一端閉口の超
電導円筒開口端部の漏洩磁界のシールド効果Sとh/x
の関係を計算した結果を図3に示す。Sは外部磁場強度
/内部磁場強度の比で定義されるシールド効果で、円筒
容器の軸方向と径方向から外部磁場を加えた場合を、そ
れぞれS(軸方向)、S(径方向)とした。図1のよう
に超電導磁気シールド本体1、超電導蓋2及び強磁性体
3を配置した場合、シールド効果はこれらの図でP及び
Qの各点での磁場強度から決定した。なお、挿入した強
磁性体3のμは無限に大きいと計算した。
By a computer simulation using the finite element method, the shield effect S and h / x of the leakage magnetic field at the end of the superconducting cylindrical opening with one end opening / one end closing shown in FIG.
The result of calculation of the relationship is shown in FIG. S is a shield effect defined by the ratio of external magnetic field strength / internal magnetic field strength, and S (axial direction) and S (radial direction) when an external magnetic field is applied from the axial direction and the radial direction of the cylindrical container, respectively. . When the superconducting magnetic shield body 1, the superconducting lid 2 and the ferromagnetic body 3 are arranged as shown in FIG. 1, the shield effect is determined from the magnetic field strengths at points P and Q in these figures. Note that it was calculated that μ of the inserted ferromagnetic material 3 was infinitely large.

【0013】図3より、超電導蓋及び強磁性体を配置し
た場合には、h/xが4を越えると、漏洩磁場の減衰率
は100万分の1以下となり、さらにh/xが大きくな
ると開口端部からの漏洩磁場は極限的に低下し、超電導
磁気シールドで閉空間を作った場合と同様のシールド効
果を示す。なお、強磁性体は超電導磁気シールド本体と
超電導蓋との隙間の真中に位置するように配置するのが
好ましいが、配置工程を考慮して超電導磁気シールド本
体に、あるいは超電導蓋2を別々のクライオスタットで
冷却するような場合には、強磁性体をどちらかのクライ
オスタットと接合した状態で取り付けても良い。
From FIG. 3, in the case where the superconducting lid and the ferromagnetic material are arranged, when h / x exceeds 4, the attenuation factor of the leakage magnetic field becomes 1 / million or less, and when h / x further increases, the opening becomes larger. The leakage magnetic field from the edge is extremely reduced, and shows the same shielding effect as when a closed space is created by a superconducting magnetic shield. The ferromagnetic material is preferably arranged so as to be positioned in the center of the gap between the superconducting magnetic shield body and the superconducting lid, but the superconducting magnetic shield body or the superconducting lid 2 may be provided in separate cryostats in consideration of the arrangement process. In the case of cooling with, the ferromagnetic material may be attached in a state of being bonded to one of the cryostats.

【0014】図2に示したように、本発明によれば、超
電導磁気シールド本体1と超電導蓋2の組合せにはいく
つかの方法があるが、どのような組合せでもhとxの比
が満足されれば開口端部の漏洩磁場を、ほぼ完全に遮蔽
でき、本発明は図2のみに限定されない。
As shown in FIG. 2, according to the present invention, there are several methods for combining the superconducting magnetic shield body 1 and the superconducting lid 2, but any combination satisfies the ratio of h and x. If so, the leakage magnetic field at the opening end can be shielded almost completely, and the present invention is not limited to FIG.

【0015】本発明の超電導磁気シールド容器を、超電
導磁気シールド室に適用することにより、極微弱磁場の
大きな空間を創出できる。例えば、一辺の長さが2m、
高さ2mの両端開口型角筒シールド体を作製し、これに
本発明の方法を用いて開口端部に扉を設けることによ
り、従来には作製不可能であった極めてコンパクトで、
高性能の超電導磁気シールド室を作製することが可能で
ある。これを生体磁気計測に応用すれば、患者と医者が
同時に超電導磁気シールド室に入り、100万分の1以
下の減衰率をもつノイズの極めて少ない磁場環境で計測
をすることができる。
By applying the superconducting magnetic shield container of the present invention to the superconducting magnetic shield chamber, a space having a very weak magnetic field can be created. For example, the length of one side is 2m,
A two-sided open-ended rectangular tube shield body having a height of 2 m is provided with a door at the open end portion by using the method of the present invention.
It is possible to produce a high-performance superconducting magnetically shielded room. If this is applied to biomagnetic measurement, the patient and the doctor can simultaneously enter the superconducting magnetic shield room and perform measurement in a magnetic field environment with an extremely low noise and an attenuation factor of 1,000,000 or less.

【0016】本発明は生体磁気計測用に特に好適である
が、これに限定されるものではなく、磁気遮蔽を必要と
する物理実験、デバイス実験等あらゆる分野へ応用でき
る。
The present invention is particularly suitable for biomagnetic measurement, but is not limited to this and can be applied to various fields such as physical experiments and device experiments requiring magnetic shielding.

【0017】[0017]

【発明の効果】以上のような本発明によれば、次に示す
ような効果を得ることができる。 (1)超電導磁気シールド体の開口端部からの漏洩磁場
を極限まで低減できるため、L/Dを1以下にしても1
00万分の1以下の極微弱磁場空間を創出できる。例え
ば、ジョセフソン素子を用いた超電導素子のようなデバ
イス実験に超電導磁気シールドを応用する場合、短い円
筒(L/D〜1)の両端に本発明の超電導遮蔽蓋を設置
することにより、理想的な無磁場空間を創出できる。 (2)超電導体を用いて磁気シールド室のような大きな
空間を確保しようとする場合には、本発明を用いて遮蔽
用の扉を設置することにより、従来は極めて長手方法に
長い超電導体を必要としていたものが、コンパクトにな
り、製造コストを大幅に減らすことができる。
According to the present invention as described above, the following effects can be obtained. (1) Since the leakage magnetic field from the open end of the superconducting magnetic shield can be reduced to the limit, even if L / D is 1 or less, 1
An extremely weak magnetic field space of 1,000,000 or less can be created. For example, when applying a superconducting magnetic shield to a device experiment such as a superconducting element using a Josephson element, it is ideal to install the superconducting shield lid of the present invention at both ends of a short cylinder (L / D to 1). It is possible to create a space without a magnetic field. (2) When a large space such as a magnetically shielded room is to be secured by using a superconductor, a shielding door is installed according to the present invention, so that a long superconductor is conventionally used in a very long method. What you needed is more compact, and you can significantly reduce manufacturing costs.

【0018】[0018]

【実施例1】Bi:Pb:Sr:Ca:Cu=1.7:
0.3:2:2:3の組成の酸化物超電導体粉末を用い
て、内径15cm、長さ35cm、厚さ5mmの両端開
口容器、及び外径14cmで、側壁4の高さh=5c
m、厚さ5mmの超電導蓋3を冷間静水圧プレスにより
成型し、焼成して超電導磁気シールド容器を作製した。
この超電導体の臨界温度Tcは105Kであった。この
両端開口超電導磁気シールド本体1と超電導蓋2を図4
に示したように組合せ、強磁性体3として長さ5cm、
厚さt=1mmのパーマロイ(室温での初比透磁率μ=
50000)のリングを用いて、超電導体の隙間の真中
に挿入した。磁気シールド本体1と超電導蓋2との間隔
は5mmであり、h/x=10であった。この超電導磁
気シールド本体1、超電導蓋2、強磁性体3とを液体窒
素温度に冷却し、軸方向と径方向の2チャンネルSQU
IDを開口端部から挿入して、図4のQ点で磁気シール
ド効果を測定した。ここで、外部磁場は直径1mのヘル
ムホルツコイルを用いて、円筒容器の軸方向と径方向に
約0.3ガウスの磁場を加えた。磁気シールド効果Sは
外部磁場/内部磁場の比で定義した。測定位置は、超電
導蓋の直上であり、SQUID挿入開口部からの距離は
L/Dの比が約2であった。得られた磁気シールド効果
S(軸方向)は約106であり、S(径方向)は1×1
3であり、一端開口/一端閉口容器の磁気シールド効
果とほとんど同一であった。このように、本発明の超電
導磁気シールド容器を用いれば、開口端部の漏洩磁場を
極限まで低下させることができる。
Example 1 Bi: Pb: Sr: Ca: Cu = 1.7:
Using an oxide superconductor powder having a composition of 0.3: 2: 2: 3, an inner diameter 15 cm, a length 35 cm, a thickness 5 mm both-ends opening container, and an outer diameter 14 cm, the height h of the side wall 4 = 5c.
A superconducting lid 3 having a thickness of 5 mm and a thickness of 5 mm was molded by cold isostatic pressing and fired to produce a superconducting magnetic shield container.
The critical temperature Tc of this superconductor was 105K. The superconducting magnetic shield body 1 and the superconducting lid 2 which are open at both ends are shown in FIG.
As shown in FIG. 5, the ferromagnetic body 3 has a length of 5 cm,
Permalloy with thickness t = 1 mm (initial relative permeability at room temperature μ =
50000) ring was used to insert it in the middle of the gap of the superconductor. The distance between the magnetic shield body 1 and the superconducting lid 2 was 5 mm, and h / x = 10. The superconducting magnetic shield body 1, the superconducting lid 2 and the ferromagnetic body 3 are cooled to the temperature of liquid nitrogen, and two channels of the axial direction and the radial direction SQU are used.
The ID was inserted from the opening end, and the magnetic shield effect was measured at point Q in FIG. Here, as the external magnetic field, a Helmholtz coil with a diameter of 1 m was used, and a magnetic field of about 0.3 Gauss was applied in the axial direction and the radial direction of the cylindrical container. The magnetic shield effect S was defined by the ratio of external magnetic field / internal magnetic field. The measurement position was right above the superconducting lid, and the distance from the SQUID insertion opening had an L / D ratio of about 2. The obtained magnetic shield effect S (axial direction) is about 10 6 , and S (radial direction) is 1 × 1.
0 3 and was almost identical to the magnetic shielding effect of the one open end / end closed container. As described above, by using the superconducting magnetic shield container of the present invention, the leakage magnetic field at the opening end can be reduced to the limit.

【0019】[0019]

【実施例2】超電導の組成比がBi:Pb:Sr:C
a:Cu=1.5:0.5:1.9:1.9:2.8の
粉末を用いて、内径10cm、長さ10cm、厚さ1.
5mmのNi円筒パイプ外面上にAgを50μm、その
上に超電導層を500μm、プラズマ溶射し、厚膜によ
る超電導磁気シールド両端開口円筒容器を作製した。同
様にして直径9cm、外壁の高さh=3cmの超電導蓋
を作製した。厚膜のTcは106Kであった。この容器
を図5に示したように組み合わせた。超電導磁気シール
ド本体1と超電導蓋2の隙間xは約5mmである。この
結果、h/x=6で試験した。強磁性体3として、実施
例1と同様にして、長さ5cm、厚さt=1mmのパー
マロイのリングを用い、超電導蓋2と本体1との隙間に
配置した。磁気シールド効果を測定するために、磁気シ
ールド本体1の両端開口部から等しい距離にある中心位
置(図5のQ点)にフラックスゲートメータを設置した
後、両端部に超電導蓋及びその隙間に強磁性体3を配置
した。またフラックスゲートメータの信号線は蓋2と磁
気シールド本体1の隙間を通して外部へ引き出した。実
施例1と同様にして、フラックスゲートメータの感度を
考慮して3ガウスの外部磁場(実施例1の10倍)を印
加し、シールド効果を測定した。内部の磁場強度は、軸
方向、径方向とも0.01ミリガウス以下であり(シー
ルド効果としては105以上)、測定器の検出感度以下
であった。なお、本発明の超電導蓋2を設置しない場
合、超電導磁気シールド本体1のみのシールド効果S
は、軸方向で約40、径方向で約6であった。この結
果、本発明の超電導蓋2を持つ磁気シールド容器は極限
まで開口端部の漏洩磁場を遮蔽できることがわかった。
Example 2 The composition ratio of superconductivity is Bi: Pb: Sr: C.
a: Cu = 1.5: 0.5: 1.9: 1.9: 2.8 using powder, inner diameter 10 cm, length 10 cm, thickness 1.
On the outer surface of a Ni-cylindrical pipe of 5 mm, Ag was 50 μm, and a superconducting layer was 500 μm on the surface thereof by plasma spraying to prepare a thick film superconducting magnetic shield both-end opening cylindrical container. Similarly, a superconducting lid having a diameter of 9 cm and an outer wall height h = 3 cm was produced. The Tc of the thick film was 106K. The containers were assembled as shown in FIG. The gap x between the superconducting magnetic shield body 1 and the superconducting lid 2 is about 5 mm. As a result, the test was conducted at h / x = 6. As the ferromagnetic material 3, a permalloy ring having a length of 5 cm and a thickness of t = 1 mm was used as in the first embodiment, and was placed in the gap between the superconducting lid 2 and the main body 1. In order to measure the magnetic shield effect, after installing the fluxgate meter at the center position (point Q in FIG. 5) at the same distance from the openings at both ends of the magnetic shield body 1, the superconducting lids and the gaps between them are strong at both ends. The magnetic body 3 was arranged. The signal line of the fluxgate meter was led out through the gap between the lid 2 and the magnetic shield body 1. In the same manner as in Example 1, an external magnetic field of 3 Gauss (10 times that in Example 1) was applied in consideration of the sensitivity of the fluxgate meter, and the shield effect was measured. The magnetic field strength inside was 0.01 milligauss or less in both the axial direction and the radial direction (10 5 or more as the shield effect), and below the detection sensitivity of the measuring instrument. When the superconducting lid 2 of the present invention is not installed, the shielding effect S of only the superconducting magnetic shield body 1 is obtained.
Was about 40 in the axial direction and about 6 in the radial direction. As a result, it was found that the magnetic shield container having the superconducting lid 2 of the present invention can shield the leakage magnetic field at the opening end to the utmost limit.

【0020】[0020]

【実施例3】図6には本発明の遮蔽蓋2を用いて、超電
導磁気シールド室を作製する場合の概略図を示す。超電
導磁気シールド本体1と遮蔽蓋2はそれぞれ別個に液体
窒素冷却用クライオスタット8に収納され、超電導体間
に挿入する強磁性体3は磁気シールド本体1または超電
導蓋2のいずれかのクライオスタット8に付属させるこ
とができる。本体1の大きさは例えば、一辺が2m、長
さ2.5mの長方形であり、超電導蓋2は一辺の長さ
1.7m、側壁4の高さ60cmであり、h/x=4で
ある。このような超電導磁気シールド室に多チャンネル
の脳磁界計測用のSQUID磁束計9、被測定者10用
のベッド11等を本体1内部に収容し、遮蔽蓋2とクラ
イオスタット8から構成された扉を本体の両開口端部に
設置することにより、極めて単純構造の超電導磁気シー
ルド室を作製でき、磁場の減衰率も100万分の1以下
となる。
[Embodiment 3] FIG. 6 shows a schematic view in the case of producing a superconducting magnetic shield chamber by using the shielding lid 2 of the present invention. The superconducting magnetic shield body 1 and the shielding lid 2 are separately housed in a cryostat 8 for cooling liquid nitrogen, and the ferromagnetic material 3 inserted between the superconductors is attached to either the magnetic shield body 1 or the cryostat 8 of the superconducting lid 2. Can be made. The size of the main body 1 is, for example, a rectangle having a side length of 2 m and a length of 2.5 m, the superconducting lid 2 has a side length of 1.7 m, the side wall 4 has a height of 60 cm, and h / x = 4. . In such a superconducting magnetically shielded room, a SQUID magnetometer 9 for multi-channel brain magnetic field measurement, a bed 11 for the person to be measured 10 and the like are housed inside the main body 1, and a door composed of a shielding lid 2 and a cryostat 8 is provided. By installing at both open ends of the main body, a superconducting magnetic shielded chamber having an extremely simple structure can be produced, and the attenuation rate of the magnetic field is reduced to one millionth or less.

【0021】[0021]

【比較例1】実施例1の超電導蓋の代わりに、実施例1
と同一サイズの強磁性体の蓋(μは50000、厚さ1
mm)を用いたこと以外、実施例1と同一条件で磁気シ
ールド効果を測定した。S(軸方向)は約100であ
り、S(径方向)も約100であった。この結果、強磁
性体の蓋は超電導蓋に比較して、Sが著しく低下した。
Comparative Example 1 Instead of the superconducting lid of Example 1, Example 1 was used.
Ferromagnetic lid of the same size as (μ is 50,000, thickness 1
mm) was used, and the magnetic shield effect was measured under the same conditions as in Example 1. S (axial direction) was about 100, and S (radial direction) was also about 100. As a result, S of the ferromagnetic lid was significantly lower than that of the superconducting lid.

【0022】[0022]

【比較例2】比較例1と同様に、直径17cm、側壁の
高さ5cmの強磁性体の蓋を用い、実施例1の超電導磁
気シールド本体の外側に被せ(強磁性体リングは取り除
いた)、実施例1と同様の実験を行なった。S(軸方
向)は約100であり、S(径方向)も約100であっ
た。この結果、比較例1と同様に強磁性体の蓋は超電導
体の蓋に比較して著しくSが低下した。
COMPARATIVE EXAMPLE 2 As in Comparative Example 1, using a ferromagnetic lid having a diameter of 17 cm and a side wall height of 5 cm, the outer surface of the superconducting magnetic shield body of Example 1 was covered (the ferromagnetic ring was removed). The same experiment as in Example 1 was performed. S (axial direction) was about 100, and S (radial direction) was also about 100. As a result, as in Comparative Example 1, the S of the ferromagnetic lid was significantly lower than that of the superconductor lid.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超電導磁気シールド容器の一実施例を
示す概略断面図である。
FIG. 1 is a schematic sectional view showing an embodiment of a superconducting magnetic shield container of the present invention.

【図2】本発明に係る超電導磁気シールド容器における
磁気シールド本体、超電導蓋及び強磁性体の配置例を示
す概略断面図である。
FIG. 2 is a schematic cross-sectional view showing an arrangement example of a magnetic shield body, a superconducting lid and a ferromagnetic material in a superconducting magnetic shield container according to the present invention.

【図3】本発明の実施例におけるh/xと磁気シールド
効果Sとの関係図である。
FIG. 3 is a diagram showing the relationship between h / x and the magnetic shield effect S in the example of the present invention.

【図4】本発明の実施例1の説明図である。FIG. 4 is an explanatory diagram of Embodiment 1 of the present invention.

【図5】本発明の実施例2の説明図である。FIG. 5 is an explanatory diagram of a second embodiment of the present invention.

【図6】本発明の実施例3の説明図である。FIG. 6 is an explanatory diagram of Embodiment 3 of the present invention.

【符号の説明】[Explanation of symbols]

1 超電導磁気シールド本体 2 超電導蓋 3 強磁性体 4 蓋の側壁部 5 SQUIDデュアー 6 液体窒素容器 7 液体窒素 8 クライオスタット 9 SQUID磁束計 10 被測定者 11 ベッド 1 Superconducting Magnetic Shield Main Body 2 Superconducting Lid 3 Ferromagnetic Material 4 Sidewall of Lid 5 SQUID Dewar 6 Liquid Nitrogen Container 7 Liquid Nitrogen 8 Cryostat 9 SQUID Fluxmeter 10 Measured Person 11 Bed

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 両端開口あるいは一端閉口/一端開口の
円筒状若しくは角筒状の超電導体からなる磁気シールド
本体の少なくとも一方の開口端部に、超電導体からなる
超電導蓋を配置し、磁気シールド本体と超電導蓋との隙
間に強磁性体を配置したことを特徴とする超電導磁気シ
ールド容器。
1. A superconducting lid made of a superconductor is disposed at at least one opening end of a magnetic shield body made of a cylindrical or rectangular tube-shaped superconductor having both ends open or one end closed / one end open. A superconducting magnetic shield container characterized in that a ferromagnetic material is arranged in a gap between the superconducting lid and the superconducting lid.
【請求項2】 前記超電導蓋は円形もしくは角形をなす
板もしくは曲率を持った板の周縁部に前記超電導磁気シ
ールド本体側壁と平行又は傾斜した側壁部を有する請求
項1記載の超電導磁気シールド容器。
2. The superconducting magnetic shield container according to claim 1, wherein the superconducting lid has a side wall portion parallel or inclined to a side wall of the superconducting magnetic shield body side wall at a peripheral portion of a circular or rectangular plate or a plate having a curvature.
【請求項3】 前記超電導蓋の側壁部の高さをh、磁気
シールド本体と超電導蓋との隙間の間隔をxとすると、
少なくとも2x≦hとされた請求項1又は2記載の超電
導磁気シールド容器。
3. When the height of the side wall portion of the superconducting lid is h and the gap between the magnetic shield body and the superconducting lid is x,
The superconducting magnetic shield container according to claim 1, wherein at least 2x ≦ h.
JP5200288A 1993-07-20 1993-07-20 Superconducting magnetic shield container Pending JPH0738278A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5200288A JPH0738278A (en) 1993-07-20 1993-07-20 Superconducting magnetic shield container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5200288A JPH0738278A (en) 1993-07-20 1993-07-20 Superconducting magnetic shield container

Publications (1)

Publication Number Publication Date
JPH0738278A true JPH0738278A (en) 1995-02-07

Family

ID=16421826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5200288A Pending JPH0738278A (en) 1993-07-20 1993-07-20 Superconducting magnetic shield container

Country Status (1)

Country Link
JP (1) JPH0738278A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117015224A (en) * 2023-09-28 2023-11-07 国网江苏省电力有限公司营销服务中心 Electromagnetic shielding device and system for keeping superconducting state of Josephson junction

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117015224A (en) * 2023-09-28 2023-11-07 国网江苏省电力有限公司营销服务中心 Electromagnetic shielding device and system for keeping superconducting state of Josephson junction
CN117015224B (en) * 2023-09-28 2024-02-20 国网江苏省电力有限公司营销服务中心 Electromagnetic shielding device and system for keeping superconducting state of Josephson junction

Similar Documents

Publication Publication Date Title
US5187327A (en) Superconducting magnetic shield
US5936498A (en) Superconducting magnet apparatus and magnetic resonance imaging system using the same
US4881035A (en) Magnetic structural arrangement of an installation for nuclear magnetic resonance tomography with superconducting background field coils and normal-conducting gradient coils
JPS63311707A (en) Magnetic coil device of neuclair magnetic resonance tomography equipment
US5339811A (en) Magnetoencephalograph
CA1253201A (en) Magnetic structure for nmr applications and the like
US11249148B2 (en) Magnetic flux pickup and electronic device for sensing magnetic fields
US20030218872A1 (en) Superconducting magnetic shield
JPH0738278A (en) Superconducting magnetic shield container
US20020135450A1 (en) Open magnet with recessed field shaping coils
EP3496167B1 (en) Charged particle beam current measurement apparatus
JPH06334384A (en) Composite magnetic shielding material
JPH03242134A (en) Magnetic shielding body for measuring living body magnetism
CA2038529A1 (en) Shielded magnetometer
Gu et al. Open magnetic shielding by superconducting technology
JPH03248069A (en) Squid probe
JPH0555782A (en) Divided element of oxide superconducting magnetic shield
Suzuki et al. Simplified magnetically shielded cylinder using flexible magnetic sheets for high-Tc superconducting quantum interference device magnetocardiogram systems
Warner et al. Magnetic shielding for a spaceborne adiabatic demagnetization refrigerator (ADR)
JPH0697697A (en) Composite magnetic shielding body
JPH04276594A (en) Superconductive magnetic shield device
JPH047808A (en) Low-temperature container for superconductive magnet of nuclear magnetic resonance tomographic equipment
Davies MRI magnets
Bermon Cosmic-ray monopole search at IBM-BNL using superconducting induction detectors
JPH0690916A (en) Cerebral magnetic field measuring instrument

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees