JPH0555782A - Divided element of oxide superconducting magnetic shield - Google Patents

Divided element of oxide superconducting magnetic shield

Info

Publication number
JPH0555782A
JPH0555782A JP3242349A JP24234991A JPH0555782A JP H0555782 A JPH0555782 A JP H0555782A JP 3242349 A JP3242349 A JP 3242349A JP 24234991 A JP24234991 A JP 24234991A JP H0555782 A JPH0555782 A JP H0555782A
Authority
JP
Japan
Prior art keywords
magnetic shield
oxide
magnetic field
container
superconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3242349A
Other languages
Japanese (ja)
Inventor
Kazutomo Hoshino
和友 星野
Atsushi Koike
淳 小池
Koichi Numata
幸一 沼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP3242349A priority Critical patent/JPH0555782A/en
Publication of JPH0555782A publication Critical patent/JPH0555782A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide an oxide magnetic shield divided element in which an L/D is large and a magnetically shielding effect is 1000 times or more by combining a cylindrical or rectangular parallelepiped vessel having about 1 of LAD of an oxide high temperature superconducting shield. CONSTITUTION:A plurality of both end-opened or one end-closed/one end-opened cylindrical or rectangular parallelepiped oxide superconductor vessels 1 are axially opposed, and a similar oxide superconductor vessel 2 having a diameter slightly larger than that of the superconductor is engaged with the outer peripheries of the opposed parts of the superconductors.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超電導現象(磁束を排除
する)を利用した磁気シールド分割体に関し、特にL/
Dを大きくでき、かつ磁気シールド効果を1000倍以
上にできる磁気シールド分割体に係る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic shield division body utilizing a superconducting phenomenon (excluding magnetic flux), and particularly L /
The present invention relates to a magnetic shield division body in which D can be increased and the magnetic shield effect can be increased 1000 times or more.

【0002】[0002]

【従来の技術およびその問題点】最近、酸化物超電導体
をその磁束を排除する超電導現象を利用し、磁気シール
ド容器に応用する研究が行われている。この場合、超電
導遮蔽は外部磁場を超電導体内に取り込まず、外部に向
かって排除することにより、内部空間に磁場を浸入させ
ないもので、磁気シールド効果は強磁性体よりも桁違い
に大きい。すなわち、強磁性遮蔽には残留磁化の存在か
らくる限界があり、この限界を超えた領域での磁気シー
ルドには、超電導磁気シールドに待たなければならな
い。しかるに、例えばNb系の金属系超電導体では、冷
媒として液体ヘリウムを使用する必要があるので、磁気
シールド施工にはコスト的に障壁があり、超電導遮蔽は
極く一部を除いて実用化されていないのが実情である。
2. Description of the Related Art Recently, studies have been conducted to apply an oxide superconductor to a magnetic shield container by utilizing the superconducting phenomenon of eliminating its magnetic flux. In this case, the superconducting shield does not take an external magnetic field into the superconductor and eliminates it toward the outside so that the magnetic field does not penetrate into the internal space, and the magnetic shield effect is orders of magnitude greater than that of a ferromagnetic material. That is, the ferromagnetic shield has a limit due to the presence of residual magnetization, and the magnetic shield in a region exceeding this limit must wait for the superconducting magnetic shield. However, for example, in Nb-based metal superconductors, liquid helium needs to be used as a coolant, so there is a cost barrier in the magnetic shield construction, and superconducting shields have been put into practical use except for a small part. The reality is that there is none.

【0003】昨今、脳から発する磁場を測定し、脳のメ
カニズムの解明や、頭痛の解明、脳の検診等を試みる研
究が活発化してきている。従来、MRIやポジトロンC
T等、脳の内部を探ることは臨床で実施されているが、
その解像力や用いる放射線等の制約があり、脳磁波の強
さは10のマイナス9乗ガウスという極微弱磁場、因に
地磁気は0.3ガウスであり、このシグナルを検出する
ことは、強磁性遮蔽における限界を超えた領域にある。
この場合、SQUID(超電導量子干渉素子)と呼ばれ
る磁束センサと、超電導磁気シールドが必須となる。
Recently, studies have been activated to measure the magnetic field emitted from the brain to elucidate the mechanism of the brain, elucidate headache, and examine the brain. Conventionally, MRI and positron C
Although the search for the inside of the brain such as T is practiced clinically,
There are restrictions on the resolution and the radiation used, and the strength of the brain wave is an extremely weak magnetic field of 10 −9 Gauss, and the earth's magnetism is 0.3 Gauss. It is in the area beyond the limit in.
In this case, a magnetic flux sensor called SQUID (superconducting quantum interference device) and a superconducting magnetic shield are essential.

【0004】本発明者らは、先に酸化物高温超電導体を
用いた磁気シールドが従来の強磁性体よりも桁違いに良
好なシールド効果を示すことを明らかにしている(特願
平1−254711号)。この磁気シールド容器は深さ
/口径(L/D)比を1以上にすることを必須の要件と
するものである。今、脳磁界を計測する場合、対象患者
が恐怖感を抱かず、かつ臨床的に採用できる最も内側の
口径は少なくとも50〜100cm必要である。この内
容器の外側に超電導容器を配置し冷却容器及びそれを断
熱する容器を入れると超電導体の口径は1mにも達す
る。L/Dを1以上、好ましくは2〜3にすると、容器
の深さは2〜3mとなる。このような大型の容器を一体
もので作製するのは、技術的には可能であるとしても、
極めて困難性を伴い、コストを考慮した実用的見地から
は製造不可能に近い。
The present inventors have previously clarified that a magnetic shield using an oxide high-temperature superconductor has an order of magnitude better shielding effect than a conventional ferromagnetic material (Japanese Patent Application No. 254711). This magnetic shield container has an essential requirement that the depth / caliber (L / D) ratio be 1 or more. Now, when measuring a brain magnetic field, the innermost caliber that the target patient does not have fear of and can be clinically adopted needs to be at least 50 to 100 cm. When a superconducting container is placed outside this inner container, and a cooling container and a container for insulating the cooling container are placed, the diameter of the superconductor reaches 1 m. When L / D is 1 or more, preferably 2-3, the depth of the container is 2-3 m. Even if it is technically possible to make such a large container integrally,
It is extremely difficult and almost impossible to manufacture from a practical point of view considering cost.

【0005】本発明は、酸化物高温超電導シールド体の
L/Dを1程度の円筒もしくは矩体型の容器を組み合わ
せることにより、L/Dを大きく、かつ磁気シールド効
果を1000倍以上とし得る酸化物磁気シールド分割体
を提供することを目的とするものである。
According to the present invention, an oxide high temperature superconducting shield is combined with a cylindrical or rectangular container having an L / D of about 1 so that the L / D can be increased and the magnetic shield effect can be 1000 times or more. It is intended to provide a magnetic shield split body.

【0006】[0006]

【問題点を解決するための手段】本発明は、複数個の両
端開口あるいは一端閉口/一端開口の円筒型若しくは矩
体型の酸化物超電導体を、その軸方向に突合せ、これら
酸化物超電導体の突合せ部の外周に前記超電導体より若
干径の大きい同様の酸化物超電導体を嵌合させることに
より、前記問題点を解決したものである。なお、本発明
において、超電導体はニッケル、インコネル、ハステロ
イ等の金属製容器の表面にジルコニア、銀等の中間層を
介して酸化物超電導体厚膜を形成したものとすることが
できる。
According to the present invention, a plurality of both-end opening or one-end closed / one-end opening cylindrical or rectangular-shaped oxide superconductors are butted in the axial direction, and the oxide superconductors The problem is solved by fitting a similar oxide superconductor having a diameter slightly larger than that of the superconductor on the outer periphery of the abutting portion. In the present invention, the superconductor may be formed by forming a thick oxide superconductor film on the surface of a metal container made of nickel, inconel, hastelloy or the like with an intermediate layer made of zirconia, silver or the like.

【0007】このような分割体において、L/Dが1程
度の大きさの容器を組合せ、重ねあわせることにより、
一体ものでは困難な大きな磁気シールド空間が得られ、
外部磁界/内部磁界の比で定義される磁気シールド効果
を1000倍以上とすることが可能となる。ここで、磁
気シールド効果Sは液体窒素温度(77)Kで超電導体
内部の磁界の強さの比で表され、S=外部磁界/内部磁
界、と書ける。
[0007] In such a divided body, by combining and stacking containers having L / D of about 1
A large magnetic shield space that is difficult to obtain with one body is obtained,
The magnetic shield effect defined by the ratio of the external magnetic field / internal magnetic field can be made 1000 times or more. Here, the magnetic shield effect S is represented by the ratio of the magnetic field strength inside the superconductor at the liquid nitrogen temperature (77) K, and can be written as S = external magnetic field / internal magnetic field.

【0008】図1において、両端開口あるいは一端閉口
/一端開口の円筒型若しくは矩体型の酸化物超電導体容
器1を(a)のように、2個軸方向に突合せ、この突合
せ部の外周に超電導体1よりも若干径の大きな同様の酸
化物超電導体容器2を(b)に示すように重ねあわせる
ように嵌合することにより、得られる。ここで、例えば
L/D=1の容器を3個用いることにより磁気シールド
効果1000倍以上の領域を容器の長手方向に大きく広
げることが可能となった。さらに、図1(c)のよう
に、L/D=1の容器3個、その上に重ねる容器として
L/D=0.6の容器を2個用いることによって、人間
の体が入る大きさの磁気シールド空間を得ることがで
き、しかも磁気シールド効果も1000倍から10万倍
となり、脳磁界計測に十分なS/N比を達成できる。な
お、突合せ部の上から重ねあわせる容器2のL/Dは少
なくとも0.5、好ましくは1以上である。この場合、
容器1と容器2の間隙はできるだけ狭い方がよく、通常
の場合には間隙は直径の1〜2%以下が良い。
In FIG. 1, two cylindrical or rectangular-shaped oxide superconductor containers 1 with both ends open or one end closed / one end open are butted in the axial direction as shown in FIG. It is obtained by fitting the same oxide superconductor container 2 having a diameter slightly larger than that of the body 1 so as to be overlapped with each other as shown in (b). Here, for example, by using three containers with L / D = 1, it became possible to greatly expand the region having a magnetic shield effect of 1000 times or more in the longitudinal direction of the container. Further, as shown in FIG. 1 (c), by using three containers with L / D = 1 and two containers with L / D = 0.6 as containers to be stacked on top of them, the size that a human body can enter The magnetic shield space can be obtained, and the magnetic shield effect is 1000 times to 100,000 times, and the S / N ratio sufficient for the brain magnetic field measurement can be achieved. The L / D of the container 2 superposed on the abutting portion is at least 0.5, and preferably 1 or more. in this case,
The gap between the container 1 and the container 2 is preferably as narrow as possible, and in general, the gap is preferably 1 to 2% or less of the diameter.

【0009】[0009]

【作用】上記のように構成されたこの発明の酸化物高温
超電導磁気シールド分割体による磁気シールドのメカニ
ズムを、本発明のより良い理解のために説明する。従っ
て、以下の説明は本発明の範囲を限定するものではな
い。
The mechanism of the magnetic shield by the oxide high temperature superconducting magnetic shield split body of the present invention constructed as described above will be explained for better understanding of the present invention. Therefore, the following description does not limit the scope of the invention.

【0010】一体物の超電導磁気シールド体は両端が開
口していてもその開口部に磁場が侵入しようとすると、
円筒の円周方向にシールド電流が流れ、磁場の侵入を防
ぐ。この場合、円周方向に超電導電流が流れる電流の経
路が容易にできるが、円周方向に容器が分割されている
と、超電導電流の流れが阻止されるため、シールド効果
は著しく低下する。このような観点から、本発明では、
円周方向には分割されていない容器を用いている。この
ような容器を図1(A)に示したように、2個端面を突
き合わせて並べると、円筒の長手方向の磁場は容器と容
器の隙間からはほとんど侵入しない。
Even if the both ends of the superconducting magnetic shield of one body are open, if a magnetic field tries to enter the opening,
A shield current flows in the circumferential direction of the cylinder to prevent the magnetic field from entering. In this case, the path of the current through which the superconducting current flows can be easily formed in the circumferential direction, but when the container is divided in the circumferential direction, the flow of the superconducting current is blocked, so the shielding effect is significantly reduced. From such a viewpoint, in the present invention,
A container that is not divided in the circumferential direction is used. As shown in FIG. 1A, when two such containers are arranged with their end faces abutted, the magnetic field in the longitudinal direction of the cylinder hardly penetrates through the gap between the containers.

【0011】また、円筒の軸に垂直方向の磁場はこの隙
間から侵入するため、図1(B),(C)に示したよう
に、この隙間の上に容器を重ねることにより軸に垂直方
向の磁場も防ぐことができる。本発明によれば、このよ
うにして容器の組合せと、重ねあわせにより、より大き
なシールド空間を作り出すことができる。本発明の方法
は、バルク焼結体、厚膜、薄膜等、どのような方法で作
製された容器に対しても適用できる。
Further, since the magnetic field in the direction perpendicular to the axis of the cylinder penetrates through this gap, as shown in FIGS. 1B and 1C, by stacking a container on this gap, the magnetic field in the direction perpendicular to the axis is increased. The magnetic field of can also be prevented. According to the present invention, a larger shielded space can be created by thus combining and superposing containers. The method of the present invention can be applied to a container manufactured by any method such as a bulk sintered body, a thick film, or a thin film.

【0012】[0012]

【効果】以上のような本発明によれば、次に示すような
効果を得ることができる。 (イ)一体ものでは困難な大きな磁気シールド空間を得
ることができる。 (ロ)磁気シールド効果1000倍以上のシールド空間
を円筒もしくは筒型体の長手方向に大きく広げることが
可能である。
According to the present invention as described above, the following effects can be obtained. (B) It is possible to obtain a large magnetic shield space which is difficult for an integrated body. (B) Magnetic shield effect It is possible to greatly expand the shield space of 1000 times or more in the longitudinal direction of the cylinder or tubular body.

【0013】[0013]

【実施例1】Bi:Pb:Sr:Ca:Cu=0.8:
0.2:0.8:1:1.4の組成の酸化物超電導体粉
末を用いて、内径12mm、長さ38mm、厚さ1mm
の両端開口円筒を冷間静水圧プレスにより成型し、焼成
して、バルクサンプルを作製した。同様に、内径15m
m、長さ15mm、厚さ1mmの両端開口円筒容器も作
製した。これらの容器を図2(A),(B),(C)に
示したように配置し、フラックスゲート型磁界センサ3
(測定感度、1ミリガウス)を用いて容器内部の磁界を
測定した。容器間の隙間は1mm以下であった。この場
合、円筒の軸方向に10ガウスの外部磁界を加えた。外
部磁界は直流磁界及び1〜100Hzの交番磁界であっ
た。
Example 1 Bi: Pb: Sr: Ca: Cu = 0.8:
Using oxide superconductor powder having a composition of 0.2: 0.8: 1: 1.4, inner diameter 12 mm, length 38 mm, thickness 1 mm
The both-end-opened cylinder was molded by cold isostatic pressing and fired to prepare a bulk sample. Similarly, inner diameter 15m
A double-sided open cylindrical container having m, a length of 15 mm, and a thickness of 1 mm was also produced. These containers are arranged as shown in FIGS. 2 (A), (B), and (C), and the fluxgate type magnetic field sensor 3
The magnetic field inside the container was measured using (measurement sensitivity, 1 milligauss). The gap between the containers was 1 mm or less. In this case, an external magnetic field of 10 Gauss was applied in the axial direction of the cylinder. The external magnetic field was a DC magnetic field and an alternating magnetic field of 1 to 100 Hz.

【0014】この測定結果を図3に示す。外部磁界/内
部磁界の比で定義した磁気シールド効果Sは、(A)の
場合、約103、(B)及び(C)の場合、約2×104
であった。この結果から明らかなように、例え容器間に
隙間が開いていてもシールド効果は低下しないことがわ
かる。
The results of this measurement are shown in FIG. The magnetic shield effect S defined by the ratio of the external magnetic field to the internal magnetic field is about 10 3 in the case of (A) and about 2 × 10 4 in the cases of (B) and (C).
Met. As is clear from this result, it is understood that the shield effect does not decrease even if there is a gap between the containers.

【0015】次に、図4に示すように、円筒軸に垂直方
向に直流磁場を加えて内部磁界を測定した。その結果、
シールド効果Sは(A),(B),(C)の場合、それ
ぞれ約100、2、2×103以上であった。これよ
り、(C)の場合のみが1000倍を超える磁気シール
ド効果を示した。これから明らかなように、重ねあわせ
によって円筒軸に平行、垂直方向ともに外部磁界を10
00分の1以下に減衰させることができた。
Next, as shown in FIG. 4, a DC magnetic field was applied in the direction perpendicular to the cylinder axis to measure the internal magnetic field. as a result,
In the cases of (A), (B), and (C), the shield effect S was about 100, 2, 2 × 10 3 or more, respectively. From this, only in the case of (C), the magnetic shield effect exceeding 1000 times was shown. As is clear from this, the superposition of the external magnetic field 10
It could be attenuated to less than 1/00.

【0016】[0016]

【実施例2】実施例1とほとんど同じ大きさの銀容器の
表面にディプコーティング法により、実施例1と同一組
成のBi系超電導厚膜を形成した。Bi系超電導粉末を
エタノールを用いて分散させ、その中に銀円筒を浸し
て、引上げ乾燥し、熱処理した。形成された厚膜の厚さ
は約0.1mmであった。この円筒容器を実施例1と同
様の試験に供した。印加した外部磁界は1ガウス以下で
あった。その結果、円筒軸に平行の外部磁界を加えた場
合、(A)では500、(B)及び(C)では約103
であった。また円筒軸に垂直方向の外部磁界を加えた場
合、(A),(B),(C)でそれぞれ約70,1.
5,103であった。これより、(C)の場合のみが1
000倍を超える磁気シールド効果を示した。
Example 2 A Bi-based superconducting thick film having the same composition as in Example 1 was formed on the surface of a silver container having almost the same size as in Example 1 by the dip coating method. The Bi-based superconducting powder was dispersed using ethanol, and a silver cylinder was immersed therein, pulled up, dried, and heat-treated. The thick film thus formed had a thickness of about 0.1 mm. This cylindrical container was subjected to the same test as in Example 1. The applied external magnetic field was less than 1 gauss. As a result, when an external magnetic field parallel to the cylinder axis is applied, it is 500 in (A) and about 10 3 in (B) and (C).
Met. Further, when an external magnetic field in the vertical direction is applied to the cylindrical axis, (A), (B), and (C) are about 70, 1.
It was 5, 10 3 . From this, only in the case of (C) is 1
The magnetic shield effect was more than 000 times.

【図面の簡単な説明】[Brief description of drawings]

【図1】超電導磁気シールド容器の組合せ例を示す説明
図である。
FIG. 1 is an explanatory view showing a combination example of a superconducting magnetic shield container.

【図2】超電導磁気シールド容器の組合せと測定系を示
す説明図であり、(A)は容器1個の場合、(B)は容
器2個を並べた場合、(C)は(B)の突合せ部の外周
に容器を重ねた場合をそれぞれ示す。
FIG. 2 is an explanatory diagram showing a combination of a superconducting magnetic shield container and a measurement system, where (A) shows one container, (B) shows two containers arranged side by side, and (C) shows (B). The case where the containers are stacked on the outer periphery of the abutting portion is shown.

【図3】磁気シールド効果Sの周波数依存性を示す関係
図である。
FIG. 3 is a relationship diagram showing frequency dependence of a magnetic shield effect S.

【図4】円筒軸の垂直方向に磁界を加えた場合の測定の
一例を示す説明図である。
FIG. 4 is an explanatory diagram showing an example of measurement when a magnetic field is applied in the direction perpendicular to the cylinder axis.

【符号の説明】[Explanation of symbols]

1 磁気シールド容器 2 磁気シールド容器 3 フラックスゲート型磁界センサー 1 Magnetic shield container 2 Magnetic shield container 3 Fluxgate type magnetic field sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数個の両端開口あるいは一端閉口/一
端開口の円筒型若しくは矩体型の酸化物超電導体を、そ
の軸方向に突合せ、これら酸化物超電導体の突合せ部の
外周に前記超電導体より若干径の大きい同様の酸化物超
電導体を嵌合させてなる酸化物超電導磁気シールド分割
体。
1. A plurality of cylinder-shaped or rectangular-shaped oxide superconductors having both open ends or one closed end / one open end are butted in an axial direction thereof, and the superconductor is provided on the outer periphery of the butted part of these oxide superconductors. An oxide superconducting magnetic shield split body formed by fitting similar oxide superconductors having a slightly larger diameter.
【請求項2】 酸化物超電導体が金属容器の表面に酸化
物超電導体厚膜を形成したものである請求項1記載の酸
化物超電導磁気シールド分割体。
2. The oxide superconducting magnetic shield division body according to claim 1, wherein the oxide superconductor has a thick oxide superconductor film formed on the surface of a metal container.
JP3242349A 1991-08-29 1991-08-29 Divided element of oxide superconducting magnetic shield Pending JPH0555782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3242349A JPH0555782A (en) 1991-08-29 1991-08-29 Divided element of oxide superconducting magnetic shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3242349A JPH0555782A (en) 1991-08-29 1991-08-29 Divided element of oxide superconducting magnetic shield

Publications (1)

Publication Number Publication Date
JPH0555782A true JPH0555782A (en) 1993-03-05

Family

ID=17087876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3242349A Pending JPH0555782A (en) 1991-08-29 1991-08-29 Divided element of oxide superconducting magnetic shield

Country Status (1)

Country Link
JP (1) JPH0555782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006184A1 (en) * 1985-04-08 1986-10-23 Fanuc Ltd Numerical controller having overtravel checking function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006184A1 (en) * 1985-04-08 1986-10-23 Fanuc Ltd Numerical controller having overtravel checking function

Similar Documents

Publication Publication Date Title
Kostić et al. Paramagnetic meissner effect in Nb
US5418512A (en) Superconducting magnetic shield
Solovyov et al. Magnetic cloak for low frequency AC magnetic field
JPH03220491A (en) Superconducting magnetic shield cover
JPH0555782A (en) Divided element of oxide superconducting magnetic shield
CN114188136B (en) Separated low-temperature magnetic shielding device
EP3496167B1 (en) Charged particle beam current measurement apparatus
JPH08236983A (en) Superconductive magnetic shield method
Talantsev et al. The onset of dissipation in high-temperature superconductors: flux trap, hysteresis and in-field performance of multifilamentary Bi2Sr2Ca2Cu3O10+ x wires
Hoshino et al. Magnetic shield of high-T/sub c/Bi-Pb-Sr-Ca-Cu-O superconductors at 77 K for SQUID measurements
JPH06334384A (en) Composite magnetic shielding material
JPH03242134A (en) Magnetic shielding body for measuring living body magnetism
JPH0738278A (en) Superconducting magnetic shield container
JPH04795A (en) Magnetic shielding plate
JPS63278385A (en) Magnetic shielding device
JPH05114796A (en) Magnetic shielding case
JP3021970B2 (en) Functional superconducting magnetic shield and magnetometer using the same
JPH066070A (en) Magnetic shielding member
JPH04276594A (en) Superconductive magnetic shield device
Seki et al. Shielding effect of an open-type hybrid magnetic shield with high-T c superconducting loops
JP2781837B2 (en) Magnetic field stabilization method and magnetic field stabilizer
Warner et al. Magnetic shielding for a spaceborne adiabatic demagnetization refrigerator (ADR)
Sasaki et al. Generation of homogeneous high magnetic fields within superconducting ‘Swiss roll’
JPH02301103A (en) Exciting method for superconductive magnet
JPH01290296A (en) Method of forming extra-low magnetic field space by using superconductor