JP3021970B2 - Functional superconducting magnetic shield and magnetometer using the same - Google Patents

Functional superconducting magnetic shield and magnetometer using the same

Info

Publication number
JP3021970B2
JP3021970B2 JP4151818A JP15181892A JP3021970B2 JP 3021970 B2 JP3021970 B2 JP 3021970B2 JP 4151818 A JP4151818 A JP 4151818A JP 15181892 A JP15181892 A JP 15181892A JP 3021970 B2 JP3021970 B2 JP 3021970B2
Authority
JP
Japan
Prior art keywords
superconducting
magnetometer
magnetic
superconductor
functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4151818A
Other languages
Japanese (ja)
Other versions
JPH05337095A (en
Inventor
宏一 横澤
健一 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4151818A priority Critical patent/JP3021970B2/en
Publication of JPH05337095A publication Critical patent/JPH05337095A/en
Application granted granted Critical
Publication of JP3021970B2 publication Critical patent/JP3021970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、特に生体から発生する
磁場を検出する生体磁気検出装置の磁気雑音を遮蔽する
のに好適な、機能性超伝導磁気シールド、及び機能性超
伝導磁気シールドとSQUID(超伝導量子干渉計)磁
束計を組み合わせた磁束計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a functional superconducting magnetic shield and a functional superconducting magnetic shield which are particularly suitable for shielding magnetic noise of a biomagnetism detecting device for detecting a magnetic field generated from a living body. The present invention relates to a magnetometer combined with a SQUID (superconducting quantum interferometer) magnetometer.

【0002】[0002]

【従来の技術】従来の生体磁気検出装置は例えばレビュ
ーオブサイエンテフィックインスツルメンツ53巻12
号、(1982)、1815頁〜1845頁(Rev.Sci.
Instrum.,Vol.53,No.12,1982 pp.1815-1845)に記載さ
れている。この従来例の概略を図6に示す。生体磁場、
特に脳から発生する磁場は地磁気の1億分の1という微
小量である。そこで外乱の磁気雑音を遮蔽するため、生
体磁気検出装置は被検体とともに強磁性体(パーマロ
イ)の磁気シールドルーム200の中に入れられてい
る。パーマロイの磁気シールドルームの磁気遮蔽率、即
ち、外界の磁場に対する内部の磁場の比は一般に用いら
れているもので1/1000程度である。
2. Description of the Related Art A conventional biomagnetism detecting device is disclosed, for example, in Review of Scientific Instruments, Vol.
No., (1982), pp. 1815-1845 (Rev. Sci.
Instrum., Vol.53, No.12, 1982 pp.1815-1845). FIG. 6 schematically shows this conventional example. Biomagnetic field,
In particular, the magnetic field generated from the brain is as small as one hundred millionth of geomagnetism. Therefore, in order to shield magnetic noise due to disturbance, the biomagnetism detection device is placed in a magnetically shielded room 200 made of a ferromagnetic material (permalloy) together with the subject. The magnetic shielding ratio of the Permalloy magnetic shield room, that is, the ratio of the internal magnetic field to the external magnetic field is about 1/1000, which is generally used.

【0003】生体磁気計測装置の検出器部分であるSQ
UID(超伝導量子干渉計)を利用する磁束計は、一般
に生体信号を検出する微分型の検出コイル21、これを
SQUIDに伝達する入力コイル22、高感度の磁束−
電圧変換素子であるSQUID30、帰還変調コイル2
3及び駆動回路からなる。検出コイル、入力コイル、帰
還変調コイル、SQUIDは超伝導体であり、さらに超
伝導体の磁気シールド100がSQUIDと入力コイ
ル、帰還変調コイル部分を覆っている。
[0003] The SQ, which is a detector part of a biomagnetism measuring device,
A magnetometer utilizing a UID (superconducting quantum interferometer) generally includes a differential detection coil 21 for detecting a biological signal, an input coil 22 for transmitting the signal to a SQUID, and a high-sensitivity magnetic flux.
SQUID 30 as voltage conversion element, feedback modulation coil 2
3 and a drive circuit. The detection coil, input coil, feedback modulation coil, and SQUID are superconductors, and the magnetic shield 100 of the superconductor covers the SQUID, the input coil, and the feedback modulation coil.

【0004】超伝導体の磁気シールドの役割は外界の磁
気雑音によるSQUIDの誤動作を防ぐことにある。ま
た、微分型検出コイルの役割は、パーマロイの磁気シー
ルドルーム200の中でなお信号磁場の1000倍程度
ある磁気雑音の中から信号を選択的に検出することにあ
る。図6では、微分型検出コイルとして1次微分型検出
コイルを例示している。1次微分型の検出コイルは、互
いに逆向きに巻かれた2つの1ターンのコイルと入力コ
イルが1本の超伝導閉ループをなす構成であり、2つの
1ターンのコイルに加わる磁束の差分だけがSQUID
に伝達する。ここで遠方に磁場源のある雑音磁場は2つ
のコイルに加わる磁束量が等しく、近傍に磁場源のある
生体磁場は2つのコイルに加わる磁束量に差を生じるた
め、信号を選択的に検出することができる。
[0004] The role of the magnetic shield of the superconductor is to prevent malfunction of the SQUID due to external magnetic noise. Further, the role of the differential detection coil is to selectively detect a signal from magnetic noise that is still about 1000 times the signal magnetic field in the permalloy magnetic shield room 200. FIG. 6 illustrates a primary differential detection coil as the differential detection coil. The first-order differential detection coil has a configuration in which two one-turn coils wound in opposite directions and an input coil form a single superconducting closed loop, and only the difference between the magnetic flux applied to the two one-turn coils is obtained. Is SQUID
To communicate. Here, a noise magnetic field having a magnetic field source in the distance has the same amount of magnetic flux applied to the two coils, and a biomagnetic field having a magnetic field source in the vicinity causes a difference in the amount of magnetic flux applied to the two coils. Therefore, the signal is selectively detected. be able to.

【0005】上記の従来型の生体磁気検出装置では、入
力コイルと帰還変調コイル、SQUID(点線31の内
部)は磁気結合をよくするため薄膜で一体形成するのが
一般的である。一方検出コイルは石英管にニオブ−チタ
ン線を巻いて構成する方法やフレキシブルな基板上に薄
膜で構成する方法(例えば特開昭122584号)が知
られているが、いずれも入力コイルとの間に超伝導結合
部60を必要とする。また、このような構成のSQUI
D磁束計では微分型検出コイルの検出した磁束とSQU
IDに伝達される磁束の比(磁束伝達率)は一般に0.
01程度に過ぎず、磁束伝達率が小さく感度よく磁気を
検出することができないという問題があった。この問題
を解決するため検出コイルを使用しないダイレクトカッ
プリング型SQUID磁束計も提案されているが(アイ
イーイーイートランザクションズオンマグネティクス2
7巻2号、(1991)、2793頁〜2796頁(IE
EETransactions on Magnetics,Vol.27,No2,1991 pp.279
3-2796))パーマロイの磁気シールドルームに対しては
1/10000〜/100000程度の高い磁気遮蔽率
が要求されるとういう問題があった。
In the above-described conventional biomagnetism detecting device, the input coil, the feedback modulation coil, and the SQUID (inside the dotted line 31) are generally formed as a single thin film to improve magnetic coupling. On the other hand, a method of forming a detection coil by winding a niobium-titanium wire around a quartz tube or a method of forming a thin film on a flexible substrate (for example, JP-A-122584) is known. Requires the superconducting coupling part 60. In addition, the SQUIS having such a configuration
In the D magnetometer, the magnetic flux detected by the differential detection coil and the SQUA
The ratio of the magnetic flux transmitted to the ID (magnetic flux transmission rate) is generally 0.
However, there is a problem that the magnetic flux transmission rate is so small that magnetism cannot be detected with high sensitivity. In order to solve this problem, a direct coupling type SQUID magnetometer that does not use a detection coil has also been proposed (see IEE Transactions on Magnetics 2).
7, No. 2, (1991), pp. 2793-2796 (IE
EETransactions on Magnetics, Vol.27, No2,1991 pp.279
3-2796)) There is a problem that a high magnetic shielding ratio of about 1/10000 to / 100,000 is required for a magnetic shielding room of Permalloy.

【0006】[0006]

【発明が解決しようとする課題】上記のように、検出コ
イルをもつSQUID磁束計では、検出コイルと入力コ
イルの間に信頼性の高い超伝導結合部が要求され、構成
が複雑である。また、検出コイルの交換にあたっては超
伝導結合部を外して再び接合する必要がある。さらに磁
束伝達効率が0.01程度と非常に小さいという問題も
ある。本発明の目的は磁気遮蔽率1/1000程度のパ
ーマロイの磁気シールド中で動作するSQUID磁束計
において、検出コイルを使用せず、超伝導結合部を無く
すとともに磁束伝達率を向上させた機能性超伝導磁気シ
ールドを提供することにある。特に生体から発生する磁
場を検出する生体磁気検出装置の磁気雑音を遮蔽するの
に好適な、機能性超伝導磁気シールド、及び機能性超伝
導磁気シールドとSQUID(超伝導量子干渉計)磁束
計を組み合わせた磁束計を提供することある。
As described above, the SQUID magnetometer having the detection coil requires a highly reliable superconducting coupling portion between the detection coil and the input coil, and the configuration is complicated. In addition, when replacing the detection coil, it is necessary to remove the superconducting coupling portion and join it again. Further, there is a problem that the magnetic flux transmission efficiency is very small, about 0.01. An object of the present invention is to provide a SQUID magnetometer operating in a permalloy magnetic shield having a magnetic shielding ratio of about 1/1000, without using a detection coil, eliminating a superconducting coupling portion and improving a magnetic flux transmission rate. It is to provide a conductive magnetic shield. Particularly, a functional superconducting magnetic shield, a functional superconducting magnetic shield and a SQUID (superconducting quantum interferometer) magnetometer suitable for shielding magnetic noise of a biomagnetism detecting device for detecting a magnetic field generated from a living body. Combined magnetometers may be provided.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するた
め、平面上、あるいは曲面上の予め定められた空間を超
伝導体で包囲して形成され、同じ面積を有する二つの空
間をそれぞれ包囲する二つの超伝導包囲体(例えば円
環)を、これをコイルとしてみた場合の巻線方向が同方
向となるように超伝導結体で結び、全体で1本の超伝導
閉ループをなすようにして機能性超伝導磁気シールドを
構成する。また、SQUIDを超伝導磁気シールドの最
もS/Nの高い位置、例えば一方の円環に密着して配置
する。即ち、機能性超伝導磁気シールドは、平面上、あ
るいは曲面上の所定の空間を超伝導体で包囲して形成さ
れ、同じ面積を有する二つの空間をそれぞれ包囲する二
つの超伝導包囲体と、この二つの超伝導包囲体を連結す
る超伝導連結体からなり、全体で1本の超伝導閉ループ
をなし、雑音磁場を選択的に遮蔽することを特徴とす
る。二つの超伝導包囲体を形成する超伝導体の巻線方向
が等しくなるように超伝導連結体が形成され、二つの超
伝導包囲体の間の距離が超伝導包囲体の最外寸法の3倍
以上にする。機能性超伝導磁気シールドは、超伝導包囲
体が石英管にニオブ−チタン線を巻きつけて形成、ある
いはフレキシブルな基板で形成する。超伝導包囲体が包
囲する空間の形状は円、三角形、少なくとも4辺を有す
る多角形、正多角形とする。
In order to achieve the above object, a predetermined space on a plane or a curved surface is formed by surrounding a predetermined space with a superconductor, and surrounds two spaces having the same area, respectively. Two superconducting enclosures (for example, a ring) are connected by a superconducting body so that the winding direction is the same when viewed as a coil, and a single superconducting closed loop is formed as a whole. Construct a functional superconducting magnetic shield. In addition, the SQUID is arranged in close contact with the highest S / N position of the superconducting magnetic shield, for example, one of the rings. That is, the functional superconducting magnetic shield is formed by surrounding a predetermined space on a plane or a curved surface with a superconductor, and two superconducting enclosures respectively surrounding two spaces having the same area, It comprises a superconducting connector that connects the two superconducting enclosures, forms a single superconducting closed loop as a whole, and selectively shields a noise magnetic field. The superconducting connector is formed such that the winding directions of the superconductors forming the two superconducting enclosures are equal, and the distance between the two superconducting enclosures is 3 which is the outermost dimension of the superconducting enclosure. More than double. In the functional superconducting magnetic shield, the superconducting enclosure is formed by winding a niobium-titanium wire around a quartz tube or by a flexible substrate. The shape of the space surrounded by the superconducting enclosure is a circle, a triangle, a polygon having at least four sides, and a regular polygon.

【0008】機能性超伝導磁気シールドにSQUID磁
束計を超伝導包囲体の一方の面に密着して配置し、SQ
UID磁束計の超伝導体からなる磁気検出部の外郭部分
の形状が超伝導包囲体の形状と等しくし、磁気検出部を
なす超伝導体と超伝導包囲体を形成する超伝導体の最短
の距離が、これら超伝導体のいずれかの断面の最大寸法
より小さくする。磁気検出部の外郭部分の超伝導体と超
伝導包囲体を形成する超伝導体とが、外郭部分で連続し
てこれら超伝導体の少なくとも一部分が重なって配置さ
れる。SQUID磁束計は、例えばSQUIDリングを
並列分割した構造を有するダイレクトカップリング型S
QUIDとする。また、機能性超伝導磁気シールドは、
超伝導体が柱状体に沿って巻きつけられながら柱状体の
軸方向に進み形成された螺旋状超伝導体の一方の端と他
方の端が、螺旋状超伝導体の外部で連結され全体で1本
の超伝導閉ループをなし、雑音磁場を選択的に遮蔽する
ことを特徴とする。この機能性超伝導磁気シールドの中
に、SQUIDリングを並列分割した構造を有するダイ
レクトカップリング型SQUID磁束計を、その磁気検
出部を含む平面を螺旋状超伝導体の軸に垂直に1個ある
いは複数個配置する。この柱状体の軸に垂直な断面の形
状は、円、三角形、少なくとも4辺を有する多角形、正
多角形のいずれかとする。
The SQUID magnetometer is placed on the functional superconducting magnetic shield in close contact with one surface of the superconducting enclosure,
The shape of the outer portion of the magnetic detection section made of the superconductor of the UID magnetometer is made equal to the shape of the superconducting enclosure, and the shortest of the superconductor forming the magnetic detection section and the superconductor forming the superconducting enclosure The distance is smaller than the largest dimension of the cross section of any of these superconductors. The superconductor in the outer portion of the magnetic detection unit and the superconductor forming the superconducting enclosure are arranged so that at least a part of the superconductors are continuously overlapped in the outer portion. The SQUID magnetometer is, for example, a direct coupling type S having a structure in which a SQUID ring is divided in parallel.
QUID. Also, the functional superconducting magnetic shield,
One end and the other end of the spiral superconductor formed in the axial direction of the column while the superconductor is wound along the column are connected outside the spiral superconductor, and It is characterized by forming a single superconducting closed loop and selectively shielding a noise magnetic field. In this functional superconducting magnetic shield, a direct coupling type SQUID magnetometer having a structure in which the SQUID ring is divided in parallel is provided with one plane perpendicular to the axis of the helical superconductor, including a plane including the magnetic detection unit. Arrange a plurality. The shape of the cross section perpendicular to the axis of the columnar body is any one of a circle, a triangle, a polygon having at least four sides, and a regular polygon.

【0009】[0009]

【作用】本発明の機能性超伝導磁気シールドを構成する
2つの円環を貫く磁束について以下説明する。磁場源が
遠方にある場合、2つの円環に加わる磁束の量が等しい
ため、マイスナー効果による磁気遮蔽は2つの円環にお
いて等しい。一方、磁場源が近傍にあり、円環までの距
離が2つの円環で各々異なる場合は、2つの円環に加わ
る磁束の量が異なるため、その差の磁束は円環を貫らぬ
くように動作する。一次微分コイルの場合と同様に、遠
方の磁場源は雑音源、近傍の磁場源は信号源と考える
と、機能性超伝導磁気シールドにおいてはシールドの内
部あるいは周囲において、信号磁場と雑音磁場に分布が
生じていることになる。ここで信号磁場の雑音磁場に対
する比の最も高い位置にSQUID磁束計の磁気検出部
を配置すれば信号磁場を選択的に検出することができ
る。このSQUIDの配置は超伝導結合を必要とせず、
信頼性が高い上に脱着が容易である。また検出コイルが
不要のため、磁束伝達率も向上する。要約すれば従来の
超伝導体の磁気シールドが信号磁場、雑音磁場をともに
遮蔽するのに対して、本発明の機能性超伝導磁気シール
ドは雑音磁場を選択的に遮蔽するという機能を有するこ
とに特徴がある。
The magnetic flux penetrating the two rings constituting the functional superconducting magnetic shield of the present invention will be described below. When the magnetic field source is far away, the magnetic shielding due to the Meissner effect is equal in the two rings because the amount of magnetic flux applied to the two rings is equal. On the other hand, when the magnetic field source is in the vicinity and the distance to the ring is different between the two rings, the amount of magnetic flux applied to the two rings is different, so that the difference magnetic flux does not penetrate the ring. Works. As in the case of the first derivative coil, if the distant magnetic field source is considered as a noise source and the nearby magnetic field source is considered as a signal source, the functional superconducting magnetic shield has a distribution of signal magnetic field and noise magnetic field inside or around the shield. Has occurred. Here, the signal magnetic field can be selectively detected by arranging the magnetic detector of the SQUID magnetometer at the position where the ratio of the signal magnetic field to the noise magnetic field is the highest. This SQUID arrangement does not require superconducting coupling,
It is highly reliable and easy to remove. Further, since no detection coil is required, the magnetic flux transmission rate is also improved. In summary, while the conventional magnetic shield of superconductor shields both the signal magnetic field and the noise magnetic field, the functional superconductive magnetic shield of the present invention has the function of selectively shielding the noise magnetic field. There are features.

【0010】[0010]

【実施例】本発明による機能性超伝導磁気シールドの一
実施例を図1に示す。2つの円環状超伝導体11、12
が超伝導結線13によって結合され、全体で1本の超伝
導閉ループをなし、機能性超伝導磁気シールド10を形
成している。ここで同方向の磁場に対して流れる電流の
方向は各々の円環で同方向になるように結線されてい
る。図1の実線で示された機能性超伝導磁気シールド1
0の製造方法としては、石英管にニオブ−チタン線を巻
きつけてもよく、またフレキシブルな基板上に成膜して
折り曲げてもよい。図1で点線は円柱であり、2つの円
環状超伝導体11、12は、円柱の中心軸に垂直で断面
積が円柱の断面積に等しく、超伝導結線13は円柱の外
面上にある(図1では、形状の理解をしやすくするた
め、点線と実線の円形部分は意識的に径を変えて示して
ある)。なお、図1では、円形の平面空間を超伝導体が
囲み、二つの超伝導包囲体11、12を形成する。超伝
導包囲体が囲む空間は円形に限らず、予め定められた平
面上、あるいは曲面上の空間を超伝導体で包囲して形成
された同じ面積を有する二つの空間であってもよいこと
は言うまでもない。超伝導包囲体の形状は任意でよく、
例えば、3角形あるいは4、6、8角形等の多角形、正
多角形とする。とくに、多チャンネル磁気計測装置で
は、機能性超伝導磁気シールドとSQUID磁束計を組
み合わせた磁束計を多数、密に配列するために、3、
4、6角形等の正多角形とするのが望ましい。
FIG. 1 shows an embodiment of a functional superconducting magnetic shield according to the present invention. Two annular superconductors 11, 12
Are connected by a superconducting connection 13 to form a single superconducting closed loop and form a functional superconducting magnetic shield 10. Here, the directions of the currents flowing with respect to the magnetic field in the same direction are connected in the same direction in each of the rings. Functional superconducting magnetic shield 1 shown by a solid line in FIG.
As a manufacturing method of No. 0, a niobium-titanium wire may be wound around a quartz tube, or a film may be formed on a flexible substrate and bent. In FIG. 1, the dotted line is a cylinder, the two annular superconductors 11 and 12 are perpendicular to the central axis of the cylinder, and the cross-sectional area is equal to the cross-sectional area of the cylinder, and the superconducting connection 13 is on the outer surface of the cylinder ( In FIG. 1, the circles of the dotted line and the solid line are consciously changed in diameter for easy understanding of the shape.) In FIG. 1, a superconductor surrounds a circular planar space, and two superconducting enclosures 11 and 12 are formed. The space surrounded by the superconducting enclosure is not limited to a circle, but may be two spaces having the same area formed by surrounding a space on a predetermined plane or a curved surface with a superconductor. Needless to say. The shape of the superconducting enclosure may be arbitrary,
For example, a polygon such as a triangle, 4, 6, or octagon, or a regular polygon is used. In particular, in a multi-channel magnetometer, a large number of magnetometers, each of which combines a functional superconducting magnetic shield and a SQUID magnetometer, are densely arranged.
It is desirable to use a regular polygon such as a quadrangle and a hexagon.

【0011】また、いうまでもなく本発明の機能性超伝
導磁気シールドは必要に応じて液体ヘリウムまたは液体
窒素などの寒剤に漬けられる。図1に示した機能性超伝
導磁気シールドの円環の1つを被検体に接近させる。こ
こで被検体に近い円環11には雑音磁束An1と信号磁
束As1の和が加わり、被検体から遠い円環12には雑
音磁束An2と信号磁束As2の和が加わるものとす
る。この場合、超伝導磁気シールドのマイスナー効果に
より閉ループに電流が流れ、このループ電流による磁束
と印加磁束の和として、被検体から遠い円環、被検体に
近い円環をそれぞれ貫く磁束は以下のようになる(図1
の上方向を+方向とする。)
Also, needless to say, the functional superconducting magnetic shield of the present invention is immersed in a cryogen such as liquid helium or liquid nitrogen as required. One of the rings of the functional superconducting magnetic shield shown in FIG. 1 is brought close to the subject. Here, the sum of the noise magnetic flux An1 and the signal magnetic flux As1 is added to the ring 11 close to the subject, and the sum of the noise magnetic flux An2 and the signal magnetic flux As2 is added to the ring 12 far from the subject. In this case, a current flows in a closed loop due to the Meissner effect of the superconducting magnetic shield, and as a sum of the magnetic flux due to the loop current and the applied magnetic flux, the magnetic flux penetrating through a ring far from the subject and a circle near the subject are as follows. (Figure 1
Let the upward direction be the + direction. )

【0012】[0012]

【数1】 (An1−An2)/2+(As1−As2)/2 −(An1−An2)/2−(As1−As2)/2 ……(数1) (An1−An2)の値は1次微分コイルと同様に円環
11と円環12の面積の差の精度、2つの円環の面方向
の傾きの精度に依存してが決まり、現実的な値としては
通常、(An1−An2)≒An1/1000程度であ
る。極限の場合として、An1=An2、As2=0と
すると
(An1-An2) / 2 + (As1-As2) / 2- (An1-An2) / 2- (As1-As2) / 2 (1) The value of (An1-An2) is primary. Like the differential coil, the accuracy of the difference between the areas of the ring 11 and the ring 12 depends on the accuracy of the inclination of the two rings in the plane direction, and the actual value is usually (An1-An2) ≒ An is about 1/1000. As an extreme case, if An1 = An2 and As2 = 0,

【0013】[0013]

【数2】 被検体に近い円環で ;+As1/2 被検体から遠い円環で ;−As1/2 …………(数2) となる。以上の説明のように、本発明の機能性超伝導磁
気シールドを用いると、いずれの円環でも近傍の磁束の
S/Nが1000倍程度向上することがわかる。上記の
動作が十分に行われるためには、一方の円環による磁場
の歪が他方の円環に影響を与えないことが必要である。
このためには2つの円環の距離(1次微分コイルとの対
照から以下ベースラインと称する)が円環の直径の3倍
以上、即ち二つの超伝導包囲体の間の距離が超伝導包囲
体の最外寸法の3倍以上あれば十分である。
## EQU2 ## In a ring close to the subject: + As1 / 2 In a ring far from the subject: -As1 / 2 (Formula 2) As described above, when the functional superconducting magnetic shield of the present invention is used, it can be understood that the S / N of the magnetic flux in the vicinity of any ring is improved by about 1000 times. In order for the above operation to be performed sufficiently, it is necessary that the distortion of the magnetic field due to one ring does not affect the other ring.
For this purpose, the distance between the two rings (hereinafter referred to as the baseline in contrast to the first derivative coil) is at least three times the diameter of the ring, ie the distance between the two superconducting enclosures is More than three times the outermost dimension of the body is sufficient.

【0014】次に本発明による機能性超伝導磁気シール
ドを用いたSQUID磁束計の構成を述べる。SQUI
Dは従来技術で述べたダイレクトカップリング型SQU
ID(図3)を用いるのが適当である。ダイレクトカッ
プリング型SQUIDはいわゆるSQUIDリングが直
接磁場を検知する構造であり、SQUIDリングの自己
インダクタンスが過大になるのを防ぐため、SQUID
リングを並列分割した構造を有する。このダイレクトカ
ップリング型SQUID32を、図2(a)に示すよう
に一方の円環12に密着して配置する。この際、円環1
2を貫く磁束を、可能な限り漏れなく検知するため、図
2(b)の部分拡大断面図に示すように、ダイレクトカ
ップリング型SQUID32の外郭部分の超伝導体33
の内部端位置34または外部端位置35が、円環12の
超伝導体36の内部端位置37と外部端位置38の間に
入るようにする。例えば、本図のようにダイレクトカッ
プリング型SQUID32の磁気検出部の形状が超伝導
包囲体の形状と等しく、ダイレクトカップリング型SQ
UID32の外郭部分の超伝導体33の幅が円環12の
超伝導体36の幅より小さく、ダイレクトカップリング
型SQUID32の外郭部分の超伝導体33は円環12
の超伝導体36の上に重なっていればよい。また、ダイ
レクトカップリング型SQUIDの磁気検出部の外郭部
分の超伝導体と超伝導包囲体を形成する超伝導体とが、
外郭部分で連続してこれら超伝導体の少なくとも一部分
が重なって配置されていればよい。さらに、ダイレクト
カップリング型SQUID32の磁気検出部をなす超伝
導体と超伝導包囲体のをなす超伝導体の間の最短距離
が、ダイレクトカップリング型SQUID32の磁気検
出部をなす超伝導体と超伝導包囲体のをなす超伝導体の
いずれかの断面の最大寸法より小さくなるように密着さ
せる。この構成により、SQUIDリングを貫く磁束の
S/Nは機能性超伝導磁気シールドのない場合に比べて
1000倍程度向上する。そのため本SQUID磁束計
は遮蔽率1/1000程度の一般的なシールドルーム内
で使用可能である。しかもダイレクトカップリング型S
QUIDの磁束伝達率が高いという利点が活かされる。
数1から磁束伝達率は0.5である。
Next, the configuration of a SQUID magnetometer using a functional superconducting magnetic shield according to the present invention will be described. SQUI
D is the direct coupling type SKU described in the prior art
It is appropriate to use the ID (FIG. 3). The direct coupling type SQUID has a structure in which a so-called SQUID ring directly detects a magnetic field. In order to prevent the self-inductance of the SQUID ring from becoming excessive, a SQUID is used.
It has a structure in which rings are divided in parallel. The direct coupling type SQUID 32 is arranged in close contact with one of the rings 12 as shown in FIG. At this time, the ring 1
In order to detect the magnetic flux penetrating through the SQUID 2 as much as possible, as shown in the partially enlarged sectional view of FIG.
Is located between the inner end position 37 and the outer end position 38 of the superconductor 36 of the ring 12. For example, as shown in this figure, the shape of the magnetic detection unit of the direct coupling type SQUID 32 is equal to the shape of the superconducting enclosure, and the direct coupling type
The width of the superconductor 33 in the outer part of the UID 32 is smaller than the width of the superconductor 36 in the ring 12, and the superconductor 33 in the outer part of the direct coupling type SQUID 32 is
It is sufficient that the superconductor 36 overlaps the superconductor 36. Further, the superconductor in the outer portion of the magnetic detection unit of the direct coupling type SQUID and the superconductor forming the superconducting enclosure are:
It suffices that at least a part of these superconductors be continuously arranged at the outer portion so as to overlap. Further, the shortest distance between the superconductor forming the magnetic detection unit of the direct coupling type SQUID32 and the superconductor forming the superconducting enclosure is equal to the superconductor forming the magnetic detection unit of the direct coupling type SQUID32. The superconductors forming the conductive enclosure are brought into close contact with each other so as to be smaller than the maximum dimension of any of the cross sections. With this configuration, the S / N of the magnetic flux passing through the SQUID ring is improved by about 1000 times as compared with the case without the functional superconducting magnetic shield. Therefore, the present SQUID magnetometer can be used in a general shielded room having a shielding ratio of about 1/1000. Moreover, direct coupling type S
The advantage that the magnetic flux transmission rate of the QUID is high is utilized.
From Equation 1, the magnetic flux transmission rate is 0.5.

【0015】図2のSQUID磁束計において、本発明
による機能性超伝導磁気シールドは従来の1次微分コイ
ルと同様の役割をはたす。しかし磁気シールドとSQU
ID間には超伝導結合部を必要としない。従来用いられ
ている微分コイルとSQUID間の超伝導接合は一般に
異種金属間接合であり、例えば鉛、ニオブ等の超伝導体
を用いた場合では室温と液体ヘリウム温度間の熱サイク
ルに対して安定であることなど高い信頼性が要求されて
いた。本実施例では、超伝導結合部を必要としないため
装置が単純化され、信頼性が大幅に向上する。また、必
要に応じてベースラインの異なる機能性超伝導磁気シー
ルドに交換する場合も、本発明では超伝導結合部がない
ので、従来のように超伝導結合部を脱着する必要がな
く、簡便であり、さらに信頼性が維持できる。次に本発
明による機能性超伝導磁気シールドを用いた多チャンネ
ル生体磁気計測装置の一実施例を図4に示す。本図では
発明の主要部を拡大して図示している。図2で示したの
と同じ原理のSQUID磁束計が37個、プラスティッ
クの低温槽(デュワ)70内に配置されている。さらに
デュワは被検体とともにパーマロイの磁気シールド20
0に入れられている。本実施例においてはデュワの底面
にダイレクトカップリング型SQUID32が配置され
ておりバイアス電流供給、帰還変調磁束印加の線及び信
号線90はデュワの底面から壁面に沿って室温部につな
がっている。本発明の機能性超伝導磁気シールド10は
底面のダイレクトカップリング型SQUID32の上に
密着して配置する。ここでは対称性をよくするためダイ
レクトカップリング型SQUIDは6角形をしており、
機能性超伝導磁気シールドの形状もこれに合わせ6角柱
である。本図では機能性超伝導磁気シールド10は必要
な数37のうちの一部の配置の様子を示す。本実施例に
よれば生体磁気計測装置において測定対象部位や環境雑
音に応じてベースラインの変更が容易であるという効果
がある。例えば環境雑音に比べて信号量の大きい心臓磁
場の場合測定の場合は、機能性超伝導磁気シールドを取
り外してマグネトメータとして用いる。脳磁場測定にお
いて信号源が深い場合はベースラインの長い機能性超伝
導磁気シールドを用いる。信号源が浅い場合はベースラ
インの短い機能性超伝導磁気シールドを用いる。これら
の変更が超伝導結合部を脱着することなく行うことがで
きる。本実施例においては機能性超伝導磁気シールドと
ダイレクトカップリング型SQUIDの上下を反転して
も機能的に何ら変わりがない。
In the SQUID magnetometer of FIG. 2, the functional superconducting magnetic shield according to the present invention plays a role similar to that of a conventional primary differential coil. However, magnetic shield and SKU
No superconducting coupling is required between the IDs. The conventional superconducting junction between the differential coil and the SQUID is generally a dissimilar metal junction. For example, when a superconductor such as lead or niobium is used, it is stable against a thermal cycle between room temperature and liquid helium temperature. Therefore, high reliability was required. In this embodiment, since the superconducting coupling portion is not required, the device is simplified, and the reliability is greatly improved. Also, when replacing with a functional superconducting magnetic shield having a different baseline as necessary, the present invention does not have a superconducting coupling part, so there is no need to detach and attach the superconducting coupling part as in the conventional case, which is simple and convenient. Yes, and can maintain reliability. Next, an embodiment of a multi-channel biomagnetism measuring apparatus using a functional superconducting magnetic shield according to the present invention is shown in FIG. In this figure, the main part of the invention is shown in an enlarged manner. 37 SQUID magnetometers having the same principle as shown in FIG. 2 are arranged in a plastic low temperature tank (Dewar) 70. In addition, Dewa has a Permalloy magnetic shield 20 with the subject.
It is put in 0. In this embodiment, the direct coupling type SQUID 32 is arranged on the bottom surface of the dewar, and the line for supplying the bias current and applying the feedback modulation magnetic flux and the signal line 90 are connected from the bottom surface of the dewar to the room temperature along the wall surface. The functional superconducting magnetic shield 10 of the present invention is disposed in close contact with the direct coupling type SQUID 32 on the bottom surface. Here, the direct coupling type SQUID has a hexagonal shape to improve symmetry,
The shape of the functional superconducting magnetic shield is also a hexagonal prism. In this figure, the functional superconducting magnetic shield 10 shows the arrangement of a part of the required number 37. According to the present embodiment, there is an effect that the baseline can be easily changed in the biomagnetism measuring device according to the measurement target site and the environmental noise. For example, in the case of measurement in the case of a cardiac magnetic field having a larger signal amount than environmental noise, the functional superconducting magnetic shield is removed and used as a magnetometer. When the signal source is deep in brain magnetic field measurement, a functional superconducting magnetic shield with a long baseline is used. If the signal source is shallow, a functional superconducting magnetic shield with a short baseline is used. These changes can be made without removing the superconducting coupling. In this embodiment, even if the functional superconducting magnetic shield and the direct coupling type SQUID are turned upside down, there is no functional change.

【0016】機能性超伝導磁気シールドの構造の他の実
施例を図5に示す。螺旋の超伝導線が一本の超伝導閉ル
ープをなし上下端が連結され、全体で1本の超伝導閉ル
ープをなしており、内部で信号磁場と雑音磁場の分布が
ある。この中でS/Nの高い位置にダイレクトカップリ
ング型SQUID32を1個配置する。ここで、ダイレ
クトカップリング型SQUIDの磁気検出部を含む平面
は螺旋の軸に垂直である。図5に示した機能性超伝導磁
気シールドは螺旋の形状であるが、超伝導体が柱状体に
沿って巻きつけられながら柱状体の軸方向に進み形成さ
れた螺旋状超伝導体の一方の端と他方の端が、螺旋状超
伝導体の外部で連結され全体で1本の超伝導閉ループを
なし、この柱状体の軸に垂直な断面の形状は、円、三角
形、少なくとも4辺を有する多角形、正多角形のいずれ
でもよく、さらに断面は任意でよい。本実施例では、S
QUIDを配置する位置を自由に選択できるほか、一つ
の機能性超伝導磁気シールドの中に複数個のSQUID
を配置して複数の点で同時に測定ができるという効果が
ある。また、本実施例の機能性超伝導磁気シールドを複
数用いて、多チャンネル生体磁気計測が可能なことは言
うまでもない。又、本発明による機能性超伝導磁気シー
ルドとダイレクトカップリング型SQUIDを組み合わ
せた磁束計は生体磁気計測のみならず、種々の極微小磁
気の検出にも適用できることは言うまでもない。
Another embodiment of the structure of the functional superconducting magnetic shield is shown in FIG. The spiral superconducting wire forms a single superconducting closed loop, and the upper and lower ends are connected to form a single superconducting closed loop. There is a distribution of a signal magnetic field and a noise magnetic field inside. Among them, one direct coupling type SQUID 32 is arranged at a high S / N position. Here, the plane including the magnetic detection unit of the direct coupling type SQUID is perpendicular to the axis of the spiral. Although the functional superconducting magnetic shield shown in FIG. 5 has a spiral shape, the superconductor is wound along the column and advances in the axial direction of the column while one of the spiral superconductors is formed. The end and the other end are connected outside the helical superconductor to form a single superconducting closed loop, and the shape of the cross section perpendicular to the axis of the column has a circle, a triangle, and at least four sides. Any of a polygon and a regular polygon may be used, and the cross section may be arbitrary. In this embodiment, S
The position where the QUID is arranged can be freely selected, and a plurality of SQUIDs can be placed in one functional superconducting magnetic shield.
The effect is that measurement can be performed simultaneously at a plurality of points by disposing the. Needless to say, multi-channel biomagnetic measurement can be performed using a plurality of the functional superconducting magnetic shields of the present embodiment. Further, it goes without saying that the magnetometer combining the functional superconducting magnetic shield and the direct coupling type SQUID according to the present invention can be applied not only to biomagnetic measurement but also to detection of various kinds of extremely small magnetism.

【0017】[0017]

【発明の効果】以上説明したように、本発明によれば、
磁気遮蔽率1/1000程度のパーマロイ磁気シールド
中で動作するSQUID磁束計において、いわゆる検出
コイルが不要となり、同時に超伝導結合部が不要となる
効果がある。このため装置の構成が単純となり、信頼性
は大幅に向上する。また、SQUIDに入力する信号磁
束を従来の50倍程度に増加させる効果がある。
As described above, according to the present invention,
In a SQUID magnetometer operated in a permalloy magnetic shield having a magnetic shielding ratio of about 1/1000, there is an effect that a so-called detection coil becomes unnecessary and a superconducting coupling part becomes unnecessary. This simplifies the configuration of the device and greatly improves reliability. In addition, there is an effect that the signal magnetic flux input to the SQUID is increased to about 50 times that of the related art.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である機能性超伝導磁気シー
ルドを示す斜視図。
FIG. 1 is a perspective view showing a functional superconducting magnetic shield according to one embodiment of the present invention.

【図2】本発明の機能性超伝導磁気シールドを用いたS
QUID磁束計を示す(a)斜視図、(b)円環の円環
のなす面に垂直な方向での部分拡大断面図。
FIG. 2 is a graph showing the relationship between S and S using the functional superconducting magnetic shield of the present invention.
FIG. 2A is a perspective view showing a QUID magnetometer, and FIG. 2B is a partially enlarged cross-sectional view in a direction perpendicular to a plane formed by the ring.

【図3】本発明の機能性超伝導磁気シールドを用いたS
QUID磁束計に適したダイレクトカップリング型SQ
UIDの平面図。
FIG. 3 is a graph showing the relationship between S and S using the functional superconducting magnetic shield of the present invention.
Direct coupling type SQ suitable for QUID magnetometer
The top view of UID.

【図4】本発明の機能性超伝導磁気シールドを用いた多
チャンネル生体磁気計測装置の一実施例を示す斜視図。
FIG. 4 is a perspective view showing one embodiment of a multi-channel biomagnetism measuring apparatus using the functional superconducting magnetic shield of the present invention.

【図5】本発明の他の実施例である機能性超伝導磁気シ
ールドを示す斜視図。
FIG. 5 is a perspective view showing a functional superconducting magnetic shield according to another embodiment of the present invention.

【図6】従来のSQUID磁束計を示す構成図。FIG. 6 is a configuration diagram showing a conventional SQUID magnetometer.

【符号の説明】[Explanation of symbols]

10…機能性超伝導磁気シールド、11、12、円環、
13…結線、21…検出コイル、22…入力コイル、2
3…帰還変調コイル、30…SQUID、31…SQU
ID、32…ダイレクトカップリング型SQUID、3
3…ダイレクトカップリング型SQUIDの外郭部分の
超伝導体、34…内部端位置、35…外部端位置、36
…円環の超伝導体、37…内部端位置、38…外部端位
置、60…超伝導結合部、70…低温槽(デュワ)、9
0…バイアス電流供給、帰還変調磁束印加の線及び信号
線、100…従来の超伝導磁気シールド、200…強磁
性磁気シールド。
10 ... Functional superconducting magnetic shield, 11, 12, ring,
13 ... connection, 21 ... detection coil, 22 ... input coil, 2
3: feedback modulation coil, 30: SQUID, 31: SQUI
ID, 32 ... direct coupling type SQUID, 3
3 ... superconductor in the outer part of the direct coupling type SQUID, 34 ... inner end position, 35 ... outer end position, 36
... annular superconductor, 37 ... inner end position, 38 ... outer end position, 60 ... superconducting joint part, 70 ... low temperature tank (Dewa), 9
0: line for supplying bias current and application of feedback modulation magnetic flux and signal line; 100: conventional superconducting magnetic shield; 200: ferromagnetic shield.

Claims (25)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平面上又は曲面上の所定の空間を超伝導体
で包囲して形成され、同じ面積を有する二つの空間をそ
れぞれ包囲する二つの超伝導包囲体と、該二つの超伝導
包囲体を連結する超伝導連結体からなり、全体で1本の
超伝導閉ループをなし、雑音磁場を遮蔽することを特徴
とする機能性超伝導磁気シールド。
A predetermined space on a plane or a curved surface is defined as a superconductor.
And two spaces with the same area
Two superconducting enclosures each surrounding the two superconducting
It consists of a superconducting connector that connects the enclosures, and one
Features a superconducting closed loop and shields noise magnetic fields
Functional superconducting magnetic shield.
【請求項2】請求項1に記載の機能性超伝導磁気シール
ドに於いて、前記二つの超伝導包囲体を形成する超伝導
体の巻線方向が等しくなるように前記超伝導連結体が形
成されたことを特徴とする機能性超伝導磁気シールド。
2. The functional superconducting magnetic seal according to claim 1.
The superconducting material forming the two superconducting enclosures
The superconducting coupler is shaped so that the winding directions of the bodies are equal.
Functional superconducting magnetic shield characterized by being made.
【請求項3】請求項1に記載の機能性超伝導磁気シール
ドに於いて、前記二つの超伝導包囲体の間の距離が前記
超伝導包囲体の最外寸法の3倍以上であることを特徴と
する機能性超伝導磁気シールド。
3. The functional superconducting magnetic seal according to claim 1.
The distance between the two superconducting enclosures is
Characterized in that it is at least three times the outermost dimension of the superconducting enclosure
Functional superconducting magnetic shield.
【請求項4】請求項1に記載の機能性超伝導磁気シール
ドに於いて、前記超伝導包囲体が石英管にニオブ−チタ
ン線を巻きつけて形成されたことを特徴とする機能性超
伝導磁気シールド。
4. The functional superconducting magnetic seal according to claim 1.
The superconducting enclosure is placed in a quartz tube with niobium-titanium.
Functional super-characteristics formed by winding wire
Conductive magnetic shield.
【請求項5】請求項1に記載の機能性超伝導磁気シール
ドに於いて、前記超伝導包囲体がフレキシブルな基板で
形成されたことを特徴とする機能性超伝導磁気シール
ド。
5. The functional superconducting magnetic seal according to claim 1.
The superconducting enclosure is a flexible substrate
Functional superconducting magnetic seal characterized by being formed
De.
【請求項6】請求項1に記載の機能性超伝導磁気シール
ドに於いて、前記超伝導包囲体が包囲する空間の形状
が、円、三角形、少なくとも4辺を有する多角形、少な
くとも4辺を有する正多角形の何れかであることを特徴
とする機能性超伝導磁気シールド。
6. The functional superconducting magnetic seal according to claim 1.
The shape of the space that the superconducting enclosure surrounds
But circles, triangles, polygons with at least four sides, few
It is at least one of regular polygons with four sides
Functional superconducting magnetic shield.
【請求項7】平面上又は曲面上の所定の空間を超伝導体
で包囲して形成され、同じ面積を有する二つの空間をそ
れぞれ包囲する二つの超伝導包囲体と、該二つの超伝導
包囲 体を連結する超伝導連結体からなり、全体で1本の
超伝導閉ループをなし、前記二つの超伝導包囲体を形成
する超伝導体の巻線方向が等しくなるように前記超伝導
連結体が形成され、前記二つの超伝導包囲体の間の距離
が前記超伝導包囲体の最外寸法の3倍以上であり、雑音
磁場を遮蔽することを特徴とする機能性超伝導磁気シー
ルド。
7. A predetermined space on a plane or a curved surface is defined by a superconductor.
And two spaces with the same area
Two superconducting enclosures each surrounding the two superconducting
It consists of a superconducting connector that connects the enclosures , and one
Form a superconducting closed loop, forming the two superconducting enclosures
The superconductor so that the winding directions of the superconductors are equal.
A link is formed and the distance between the two superconducting enclosures
Is at least three times the outermost dimension of the superconducting enclosure,
Functional superconducting magnetic sheet characterized by shielding magnetic field
Ludo.
【請求項8】請求項1に記載の機能性超伝導磁気シール
ドにSQUID磁束計を前記超伝導包囲体の一方の面に
密着して配置したことを特徴とする磁束計。
8. The functional superconducting magnetic seal according to claim 1.
SQUID magnetometer on one side of the superconducting enclosure
A magnetometer characterized by being closely mounted.
【請求項9】請求項8に記載の磁束計において、前記S
QUID磁束計の超伝導体からなる磁気検出部の外郭部
分の形状が前記超伝導包囲体の形状と等しいことを特徴
とする磁束計。
9. The magnetometer according to claim 8, wherein said S
Outer part of the magnetic detection part consisting of a superconductor of the QUID magnetometer
The shape of the minute is equal to the shape of the superconducting enclosure.
And a magnetometer.
【請求項10】請求項8に記載の磁束計において、前記
磁気検出部をなす超伝導体と前記超伝導包囲体を形成す
る超伝導体の最短の距離が、前記超伝導体の何れかの断
面の最大寸法より小さいことを特徴とする磁束計。
10. The magnetometer according to claim 8, wherein said magnetometer comprises:
Forming a superconductor forming a magnetic detecting portion and the superconducting enclosure;
The shortest distance between the superconductors
A magnetometer characterized by being smaller than the maximum dimension of the surface.
【請求項11】請求項8に記載の磁束計において、前記
磁気検出部の外郭部分の超伝導体と前記超伝導包囲体を
形成する超伝導体とが、前記外郭部分で連続して前記超
伝導体の少なくとも一部分が重なって配置されたことを
特徴とする磁束計。
11. The magnetometer according to claim 8, wherein said magnetometer comprises:
The superconductor of the outer part of the magnetic detection unit and the superconducting enclosure are
The superconductor to be formed is continuously connected to the superconductor at the outer portion.
That at least a portion of the conductor
Features magnetic flux meter.
【請求項12】請求項8に記載の磁束計において、前記
SQUID磁束計の超伝導体からなる磁気検出部の外郭
部分の形状が前記超伝導包囲体の形状と等しく、前記磁
気検出部をなす超伝導体と前記超伝導包囲体を形成する
超伝導体の最短の距離が、前記超伝導体の何れかの断面
の最大寸法より小さいことを特徴とする磁束計。
12. The magnetometer according to claim 8, wherein
Outer shell of magnetism detecting part consisting of superconductor of SQUID magnetometer
The shape of the portion is equal to the shape of the superconducting enclosure,
Forming a superconductor and a superconducting enclosure forming an air detector
The shortest distance of the superconductor is determined by any cross section of the superconductor.
A magnetometer characterized by being smaller than the maximum dimension of
【請求項13】請求項8に記載の磁束計において、前記
SQUID磁束計の超伝導体からなる磁気検出部の外郭
部分の形状が前記超伝導包囲体の形状と等しく、前記磁
気検出部をなす超伝導体と前記超伝導包囲体を形成する
超伝導体の最短の距離が、前記 超伝導体の何れかの断面
の最大寸法より小さく、かつ前記磁気検出部の外郭部分
の超伝導体と前記超伝導包囲体を形成する超伝導体と
が、前記外郭部分で連続して前記超伝導体の少なくとも
一部分が重なって配置されたことを特徴とする磁束計。
13. The magnetometer according to claim 8, wherein said magnetometer comprises:
Outer shell of magnetism detecting part consisting of superconductor of SQUID magnetometer
The shape of the portion is equal to the shape of the superconducting enclosure,
Forming a superconductor and a superconducting enclosure forming an air detector
The shortest distance of the superconductor is determined by any cross section of the superconductor.
And the outer portion of the magnetic detection unit
A superconductor and a superconductor forming the superconducting enclosure
However, at least the superconductor continuously in the outer portion
A magnetometer characterized in that a part thereof is arranged so as to overlap.
【請求項14】請求項8に記載の磁束計において、前記
SQUID磁束計がSQUIDリングを並列分割した構
造を有するダイレクトカップリング型SQUIDである
ことを特徴とする磁束計。
14. The magnetometer according to claim 8, wherein said magnetometer comprises:
The SQUID magnetometer has a structure in which the SQUID ring is divided in parallel.
Direct coupling type SQUID
A magnetometer characterized by the above.
【請求項15】請求項2に記載の機能性超伝導磁気シー
ルドにSQUID磁束計を前記超伝導包囲体の一方の面
に密着して配置したことを特徴とする磁束計。
15. The functional superconducting magnetic sheet according to claim 2,
SQUID magnetometer on one side of the superconducting enclosure
A magnetometer characterized in that it is arranged in close contact with the magnet.
【請求項16】請求項7に記載の機能性超伝導磁気シー
ルドにSQUID磁束計を前記超伝導包囲体の一方の面
に密着して配置したことを特徴とする磁束計。
16. The functional superconducting magnetic sheet according to claim 7,
SQUID magnetometer on one side of the superconducting enclosure
A magnetometer characterized in that it is arranged in close contact with the magnet.
【請求項17】請求項8に記載の磁束計を複数具備する
ことを特徴とする磁気計測装置。
17. A plurality of magnetometers according to claim 8.
A magnetic measuring device characterized by the above-mentioned.
【請求項18】請求項14に記載の磁束計を複数具備す
ることを特徴とする磁気計測装置。
18. A plurality of magnetometers according to claim 14.
A magnetic measuring device, characterized in that:
【請求項19】請求項15に記載の磁束計を複数具備す
ることを特徴とする磁気計測装置。
19. A plurality of magnetometers according to claim 15.
A magnetic measuring device, characterized in that:
【請求項20】超伝導体が柱状体に沿って巻きつけられ
ながら前記柱状体の軸方向に進み形成された螺旋状超伝
導体の一方の端と他方の端が、螺旋状超伝導体の外部で
連結され全体で1本の超伝導閉ループをなし、雑音磁場
を遮蔽することを特徴とする機能性超伝導磁気シール
ド。
20. A superconductor wound around a columnar body.
A spiral superconductor formed while being advanced in the axial direction of the columnar body.
One end of the conductor and the other end are outside the spiral superconductor
Connected to form a single superconducting closed loop, and a noise magnetic field
Functional superconducting magnetic seal characterized by shielding
De.
【請求項21】請求項20に記載の機能性超伝導磁気シ
ールドの中に、SQUIDリングを並列分割した構造を
有するダイレクトカップリング型SQUID磁束計を、
その磁気検出部を含む平面を前記螺旋状超伝導体の軸に
垂直に1個配置したことを特徴 とする磁束計。
21. The functional superconducting magnetic system according to claim 20,
In the field, the structure which divided the SQUID ring in parallel
Having a direct coupling type SQUID magnetometer,
The plane containing the magnetic detection part is set to the axis of the spiral superconductor.
A magnetometer characterized in that one is arranged vertically .
【請求項22】請求項25の機能性超伝導磁気シールド
に於いて、前記柱状体の軸に垂直な断面の形状が、円、
三角形、少なくとも4辺を有する多角形、少なくとも4
辺を有する正多角形の何れかであることを特徴とする機
能性超伝導磁気シールド。
22. The functional superconducting magnetic shield according to claim 25.
In the above, the shape of the cross section perpendicular to the axis of the columnar body is a circle,
Triangle, polygon with at least 4 sides, at least 4
A machine characterized by being one of regular polygons having sides
Superconductive magnetic shield.
【請求項23】請求項20に記載の機能性超伝導磁気シ
ールドの中に、SQUIDリングを並列分割した構造を
有するダイレクトカップリング型SQUID磁束計を、
その磁気検出部を含む平面を前記螺旋状超伝導体の軸に
垂直に複数個配置し、複数の点で同時に磁気を測定する
ことを特徴とする磁束計。
23. The functional superconducting magnetic system according to claim 20,
In the field, the structure which divided the SQUID ring in parallel
Having a direct coupling type SQUID magnetometer,
The plane containing the magnetic detection part is set to the axis of the spiral superconductor.
Arrange multiple units vertically and measure magnetism at multiple points simultaneously
A magnetometer characterized by the above.
【請求項24】請求項21に記載の磁束計を複数具備す
ることを特徴とする磁気計測装置。
24. A plurality of magnetometers according to claim 21.
A magnetic measuring device, characterized in that:
【請求項25】請求項23に記載の磁束計を複数具備す
ることを特徴とする磁気計測装置。
25. A plurality of magnetometers according to claim 23.
A magnetic measuring device, characterized in that:
JP4151818A 1992-06-11 1992-06-11 Functional superconducting magnetic shield and magnetometer using the same Expired - Fee Related JP3021970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4151818A JP3021970B2 (en) 1992-06-11 1992-06-11 Functional superconducting magnetic shield and magnetometer using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4151818A JP3021970B2 (en) 1992-06-11 1992-06-11 Functional superconducting magnetic shield and magnetometer using the same

Publications (2)

Publication Number Publication Date
JPH05337095A JPH05337095A (en) 1993-12-21
JP3021970B2 true JP3021970B2 (en) 2000-03-15

Family

ID=15526989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4151818A Expired - Fee Related JP3021970B2 (en) 1992-06-11 1992-06-11 Functional superconducting magnetic shield and magnetometer using the same

Country Status (1)

Country Link
JP (1) JP3021970B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4110950B2 (en) 2002-11-29 2008-07-02 株式会社日立製作所 Magnetic shield device and biomagnetic field measurement device
JP2006337297A (en) * 2005-06-06 2006-12-14 Kanazawa Inst Of Technology Superconductive magnetic sensor

Also Published As

Publication number Publication date
JPH05337095A (en) 1993-12-21

Similar Documents

Publication Publication Date Title
US5326986A (en) Parallel N-junction superconducting interferometer with enhanced flux-to-voltage transfer function
US4801882A (en) Thin film SQUID magnetometer for a device for measuring weak magnetic fields
US4613817A (en) Superconducting gradiometer coil system for an apparatus for the multi-channel measurement of weak nonstationary magnetic fields
JP2893714B2 (en) Thin film type SQUID magnetometer and biomagnetism measuring device using the same
JPS6347684A (en) Squid magnetometer for feeble magnetic-field measuring device
EP1547167B1 (en) Superconducting quantum interference device
JPS6225274A (en) Multichannel weak magnetic field measuring device
US6154026A (en) Asymmetric planar gradiometer for rejection of uniform ambient magnetic noise
Foglietti et al. 28-channel hybrid system for neuromagnetic measurements
JPH1048303A (en) Detecting coil-integrated squid
US11249148B2 (en) Magnetic flux pickup and electronic device for sensing magnetic fields
US5289121A (en) Composite pickup coil for measurement of magnetic field components in a superconducting quantum interference device
JPH08313609A (en) Radial differentiation type squid fluxmeter
JP3021970B2 (en) Functional superconducting magnetic shield and magnetometer using the same
US10732234B2 (en) Superconducting magnetic sensor
JP3000226B2 (en) SQUID magnetometer with calibration coil
Lee et al. Fabrication and magnetocardiography application of the second-order superconducting quantum interference device gradiometer made from a single-layer of YBa 2 Cu 3 O 7 film
JPS62187267A (en) Measuring instrument for superconducting magnetic field
Matlashov et al. High sensitive magnetometers and gradiometers based on DC SQUIDs with flux focuser
JP2613554B2 (en) SQUID magnetometer
JP3156396B2 (en) Differential SQUID magnetometer and biomagnetic field measurement device using the same
Fagaly et al. Magnetometer Calibration Methods
JPH08220201A (en) Superconducting quantum interferometer
JP3042148B2 (en) Orthogonal 3-axis pickup coil
JPS58210683A (en) Differentiation type squid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees