JPH03248069A - Squid probe - Google Patents

Squid probe

Info

Publication number
JPH03248069A
JPH03248069A JP2046682A JP4668290A JPH03248069A JP H03248069 A JPH03248069 A JP H03248069A JP 2046682 A JP2046682 A JP 2046682A JP 4668290 A JP4668290 A JP 4668290A JP H03248069 A JPH03248069 A JP H03248069A
Authority
JP
Japan
Prior art keywords
shield body
superconducting
block
shield
squid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2046682A
Other languages
Japanese (ja)
Inventor
Megumi Shinada
恵 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2046682A priority Critical patent/JPH03248069A/en
Publication of JPH03248069A publication Critical patent/JPH03248069A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

PURPOSE:To actuate a SQUID device in a low magnetic field by arranging a superconductive shield body to be freely slidable and shiftable to a supporting body of a probe, thereby to make the magnetic field within the shield body nearly completely 0. CONSTITUTION:A supporting body 3 is provided with a superconductive magnetic shield body 4 and a superconductor block 5 along the inner peripheral surface of the block 5 along the inner peripheral surface of the shield body 4. The shield body 4 is slidable along the supporting body 3 and is selectable between two states wherein it covers a SQUID device 1 and it covers the block 5. When the shield body 4 covers the block 5 and cooled so that both are turned in the superconductive state, the magnetic field inside the shield body 4 is almost completely removed. Even if the shield body 4 is moved and the block 5 is removed in this state, no magnetic flux enters the shield body 4 because of the effect of the complete diamagnetism in the superconductive state. Therefore, if the SQUID device 1 is covered in this state, the SQUID device 1 is covered without almost any magnetic flux present in the surroundings.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は生体磁気測定や地磁気測定、あるいは一般の微
小磁場測定に使用されるSQUIDプローブに関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a SQUID probe used for biomagnetism measurement, geomagnetism measurement, or general micromagnetic field measurement.

〈従来の技術〉 SQUID(超電導量子干渉針)では、一般に、測定す
べき磁束を直接SQUID素子で拾うことはせず、磁束
トランス法等と称される入力回路が使用される。この入
力回路は、測定すべき磁束を拾うピックアップコイルお
よび入力コイルとからなる超電導閉回路で、入力コイル
はSQUID素子と磁気的に結合される。そして、この
場合、SQUID素子そのものは外部磁気に対して遮蔽
され、素子雑音の低減が計られる。
<Prior Art> In SQUID (superconducting quantum interference needle), generally, the magnetic flux to be measured is not directly picked up by the SQUID element, but an input circuit called a magnetic flux transformer method or the like is used. This input circuit is a superconducting closed circuit consisting of a pickup coil that picks up the magnetic flux to be measured and an input coil, and the input coil is magnetically coupled to the SQUID element. In this case, the SQUID element itself is shielded from external magnetism, and element noise is reduced.

このような入力回路を用いた従来のSQUIDプローブ
の構造を第2図に示す。
FIG. 2 shows the structure of a conventional SQUID probe using such an input circuit.

SQUID素子21およびピックアップコイル22はそ
れぞれ支柱23に支承され、SQUID素子21は支柱
23に設けられた配線(図示せず)を介して外部の計測
回路に接続される。
The SQUID element 21 and the pickup coil 22 are each supported by a support 23, and the SQUID element 21 is connected to an external measurement circuit via wiring (not shown) provided on the support 23.

そして、SQUID素子21の周囲には、超電導体によ
って形成された円筒状のシールド体24が配設され、5
QtJID素子21に直接作用する磁場変動を低減する
対策としている。
A cylindrical shield body 24 made of a superconductor is disposed around the SQUID element 21.
This is a measure to reduce magnetic field fluctuations that directly act on the QtJID element 21.

ところで、このような構造では、超電導磁気シールド体
24が冷却され超電導状態に到達するまでの過程で、地
磁気等がシールド体24の内部に残る。シールド体24
の内部に静磁場が存在すると、振動や熱的ゆらぎにより
磁気ノイズとなってSQUID素子21に直接影響を及
ぼす、そのため、シールド体24内にトラップされる静
磁場も極力抑える必要がある。
By the way, in such a structure, earth's magnetism etc. remain inside the shield body 24 during the process until the superconducting magnetic shield body 24 is cooled and reaches a superconducting state. Shield body 24
If a static magnetic field exists inside the shield body 24, vibrations and thermal fluctuations cause magnetic noise that directly affects the SQUID element 21. Therefore, it is necessary to suppress the static magnetic field trapped inside the shield body 24 as much as possible.

このような目的で、従来、第3図に示すような構造の超
電導シールド体も考案されている。
For this purpose, a superconducting shield body having a structure as shown in FIG. 3 has been devised.

このシールド体は熱膨張を利用したもので、冷却前には
第3図(a)に示すように折り畳まれており、冷却によ
って同図(ロ)に示すように開くような構造となってい
る。すなわち、シールド内の容積を超電導状態で拡大す
ることにより、内部の磁束密度を低減させるわけである
This shield body utilizes thermal expansion, and has a structure in which it is folded as shown in Figure 3 (a) before cooling, and opens as shown in Figure 3 (b) when cooled. . That is, by expanding the volume within the shield in a superconducting state, the internal magnetic flux density is reduced.

〈発明が解決しようとする課題〉 しかし、第3図に示す構造のシールド体は、磁束密度の
低減効果はあるものの構造的には複雑になるばかりでな
く、耐久性の点でも問題がある。
<Problems to be Solved by the Invention> However, although the shield body having the structure shown in FIG. 3 has the effect of reducing magnetic flux density, it is not only structurally complicated but also has problems in terms of durability.

また、この構造では、内部にSQUID素子を入れた状
態で折り畳むので、折り畳まれた状態でも内容積をOに
することは不可能で、内部磁束密度の低減にも自ずと限
界がある。
Furthermore, since this structure is folded with the SQUID element inside, it is impossible to reduce the internal volume to O even in the folded state, and there is naturally a limit to the reduction of internal magnetic flux density.

本発明はこのような点に鑑みてなされたもので、簡単な
構造のもとにシールド内部の磁場をほぼ完全にOにする
ことができ、SQUID素子をきわめて低い磁場環境で
動作させることのできるSQUIDプローブの提供を目
的としている。
The present invention was made in view of these points, and it is possible to make the magnetic field inside the shield almost completely O with a simple structure, and it is possible to operate the SQUID element in an extremely low magnetic field environment. The purpose is to provide SQUID probes.

〈課題を解決するための手段〉 上記の目的を達成するため、本発明では、実施例に対応
する第1図に示すように、支持体3に、SQUID素子
1を覆うための超電導磁気シールド体4と、その超電導
シールド体4の内周面に沿う形状を有する超電導体ブロ
ック5を設け、超電導シールド体4は、支持体3に沿っ
て摺動自在で、SQUID素子1を覆う状態と超電導体
ブロック5を覆う状態を選択し得るように構成している
<Means for Solving the Problems> In order to achieve the above object, in the present invention, as shown in FIG. 4 and a superconductor block 5 having a shape that follows the inner peripheral surface of the superconducting shield body 4, the superconducting shield body 4 is slidable along the support body 3, and covers the SQUID element 1 and the superconductor block 5. The configuration is such that the state in which the block 5 is covered can be selected.

く作用〉 超電導シールド体4を、超電導体ブロック5を覆った状
態にして、双方が超電導状態となるまで冷却することに
より、超電導シールド体4の内部の磁場はほぼ完全に排
除される。
Effect> The magnetic field inside the superconducting shield 4 is almost completely eliminated by placing the superconducting shield 4 in a state covering the superconducting block 5 and cooling it until both become superconducting.

この状態で超電導シールド体4を移動させて内部の超電
導体ブロック5が除かれても、超電導状態では完全反磁
性効果によってシールド体4の内部に磁束は進入せず、
従ってその状態でSQUID素子1を覆うと、SQUI
D素子1はその周囲にほとんど磁束が進入していない状
態で超電導シールド体4で覆われることになる。
Even if the superconducting shield 4 is moved in this state and the superconductor block 5 inside is removed, magnetic flux will not enter the inside of the shield 4 due to the complete diamagnetic effect in the superconducting state.
Therefore, if the SQUID element 1 is covered in that state, the SQUID
The D element 1 is covered with the superconducting shield body 4 in a state in which almost no magnetic flux enters around the D element 1.

〈実施例〉 第1図は本発明実施例の構造を示す正面図である。<Example> FIG. 1 is a front view showing the structure of an embodiment of the present invention.

SQUID素子1は棒状の支持体3の中点に支承され、
その支持体3の先端部にはピックアップコイル2が支承
されいてる。このピックアップコイル2とSQUID素
子1との関係は前記した磁束トランス法に基づ(従来の
ものと同等である。
The SQUID element 1 is supported at the midpoint of a rod-shaped support 3,
A pickup coil 2 is supported at the tip of the support 3. The relationship between the pickup coil 2 and the SQUID element 1 is based on the magnetic flux transformer method described above (equivalent to the conventional method).

支持体3と並行してシールド移動用支柱6が配設されて
おり、このシールド移動用支柱6の先端には、例えば円
筒状の超電導シールド体4が固着されている。そして、
このシールド移動用支柱6は、ガイド(図示せず)に沿
って支持体3に対してその長手方向に並行移動可能な構
造を有している。
A shield moving column 6 is arranged in parallel with the support body 3, and a cylindrical superconducting shield body 4, for example, is fixed to the tip of this shield moving column 6. and,
This shield moving column 6 has a structure that allows it to move parallel to the support body 3 in its longitudinal direction along a guide (not shown).

また、支持体3上の、SQUID素子1とピックアップ
コイル2との間には、超電導シールド体4の内周面とほ
ぼ同等の外形形状を有し、かつ、超電導シールド体4の
内周寸法よりもわずかに小さい外形寸法を有する超電導
体ブロック5が固着されている。
Moreover, the space between the SQUID element 1 and the pickup coil 2 on the support body 3 has an outer shape that is almost the same as the inner circumferential surface of the superconducting shield body 4, and is smaller than the inner circumferential dimension of the superconducting shield body 4. A superconductor block 5 having slightly smaller external dimensions is also fixed.

そして、超電導シールド体4は、シールド移動用支柱6
の移動により、超電導体ブロック5の周囲を覆う状態と
、SQUID素子1を覆う状態との少なくとも2状態を
選択できるようになっている。
Then, the superconducting shield body 4 is moved by a shield moving column 6.
By moving, at least two states can be selected: a state in which the periphery of the superconductor block 5 is covered and a state in which the SQUID element 1 is covered.

次に本発明実施例の作用を、その使用方法とともに述べ
る。
Next, the function of the embodiment of the present invention will be described together with its usage method.

まず、超電導シールド体4が超電導体ブロック5を覆う
状態とし、液体ヘリウム等の冷媒内にゆつくり浸漬し、
その全体を冷却する。シールド体4およびブロック5が
充分に冷却されてともに超電導状態になった後、シール
ド移動用支柱6を引上げ、図中二点鎖線で示すように超
電導シールド体4が5QLJID素子1を覆う状態にす
る。
First, the superconducting shield body 4 covers the superconducting block 5, and is slowly immersed in a coolant such as liquid helium.
Cool the whole thing. After the shield body 4 and the block 5 are sufficiently cooled and both become superconducting, the shield moving column 6 is pulled up so that the superconducting shield body 4 covers the 5QLJID element 1 as shown by the two-dot chain line in the figure. .

超電導シールド体4が超電導体ブロック5を覆ってその
双方が超電導状態となると、シールド体4の内部の磁束
はほとんど排除され、磁束はシールド体4の内周面と超
電導ブロック5の外周面間のわずかな隙間に存在するだ
けとなる。この状態でシールド体4を移動させたとき、
超電導状態に基づく完全反磁性効果によりシールド体4
の内部には外部磁束が侵入し得す、従ってシールド体4
内では上記したわずかな隙間に残存していた磁束が全体
に広がるだけとなって、その内部の磁束密度は極めて小
さくなる。
When the superconducting shield body 4 covers the superconducting block 5 and both become superconducting, the magnetic flux inside the shield body 4 is almost eliminated, and the magnetic flux is distributed between the inner circumferential surface of the shield body 4 and the outer circumferential surface of the superconducting block 5. It only exists in a small gap. When the shield body 4 is moved in this state,
Shield body 4 due to the perfect diamagnetic effect based on the superconducting state
External magnetic flux may penetrate into the inside of the shield body 4.
Inside, the magnetic flux remaining in the small gap mentioned above just spreads over the whole, and the magnetic flux density inside becomes extremely small.

その状態でSQUID素子1を覆う位置にまでシールド
体4を移動させると、SQUID素子1は極めて小さい
磁場環境下に置かれ、はとんど磁気ノイズの無い状態で
使用可能となる。
When the shield body 4 is moved to a position covering the SQUID element 1 in this state, the SQUID element 1 is placed in an extremely small magnetic field environment and can be used almost without magnetic noise.

なお、超電導体ブロック5の配設位置は上記の実施例の
ような位置に限定されることはないが、この実施例のよ
うに超電導体ブロック5をSQUID素子1よりもプロ
ーブの先端側に設けることによって、超電導シールド体
4内に残る磁束の低減効果は上がる。すなわち、この配
置によれば、シールド体4およびブロック5をSQUI
D素子1よりも先に超電導状態にすることが可能となる
が、その状態で超電導化される前のSQUID素子1を
覆い、素子1にかかる磁場を低くおさえた状態でSQU
ID素子1を超電導状態にするという手順をふめば、S
QUID素子1自体にトラップされる磁束が少なくなり
、素子雑音のより一層の低下が期待できる。
Note that the placement position of the superconductor block 5 is not limited to the position as in the above embodiment, but the superconductor block 5 may be provided closer to the tip of the probe than the SQUID element 1 as in this embodiment. This increases the effect of reducing the magnetic flux remaining within the superconducting shield body 4. That is, according to this arrangement, the shield body 4 and the block 5 are
It is possible to make the superconducting state before the D element 1, but in that state, the SQUID element 1 before becoming superconducting is covered and the magnetic field applied to the element 1 is kept low.
After completing the procedure of putting ID element 1 into a superconducting state, S
The amount of magnetic flux trapped in the QUID element 1 itself is reduced, and further reduction in element noise can be expected.

ここで、超電導シールド体4および超電導体ブロック5
として、SQUID素子1よりも臨界温度が充分に高い
材料を選定すれば、SQUID素子1に対する位置関係
に関わりなく上記の効果を期待できる。すなわち、SQ
UID素子1の材料として例えばTc=9.2にのNb
を使用し、シールド体4およびブロック5としてT、L
=、90 KのY B a z Cu ! OK等の材
料を使用すれば、素子1およびシールド体4.ブロック
5を同時に冷却しても、シールド体4とブロック5の方
が充分に早く超電導状態となって、上記と同等の効果が
得られる。
Here, the superconducting shield body 4 and the superconducting block 5
As long as a material whose critical temperature is sufficiently higher than that of the SQUID element 1 is selected, the above effect can be expected regardless of the positional relationship with respect to the SQUID element 1. That is, SQ
As the material of the UID element 1, for example, Nb with Tc=9.2
T and L are used as the shield body 4 and block 5.
=, 90 K of YB az Cu! If OK materials are used, the element 1 and the shield body 4. Even if the block 5 is cooled at the same time, the shield body 4 and the block 5 become superconducting much earlier, and the same effect as described above can be obtained.

〈発明の効果〉 以上説明したように、本発明によれば、SQUID素子
を磁気遮蔽するための超電導シールド体を、プローブの
支持体に対して摺動変位自在として、このシールド体で
SQUID素子および別途設けた超電導体ブロックのい
ずれかを選択的に覆い得るようにしたので、超電導シー
ルド体内の磁束密度をほぼ完全に排除した状態でSQU
ID素子を覆うことが可能となり、従来の対策に比して
SQUID素子にかかる磁場を極めて低く抑えることが
できる。また、本発明では、その構造上、第3図に示し
たものに比してシンプルで、かつ、金属疲労等の心配が
全くなく、耐久性の点において大幅に優れたものとなる
<Effects of the Invention> As described above, according to the present invention, the superconducting shield for magnetically shielding the SQUID element is slidably displaceable with respect to the support of the probe, and the shield body is used to shield the SQUID element and the SQUID element. Since it is possible to selectively cover any of the separately provided superconductor blocks, SQU
It becomes possible to cover the ID element, and the magnetic field applied to the SQUID element can be suppressed to an extremely low level compared to conventional measures. Furthermore, the structure of the present invention is simpler than that shown in FIG. 3, and there is no fear of metal fatigue, resulting in significantly superior durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明実施例の構造を示す正面図、第2図は従
来のSQUIDプローブの説明図、第3図はシールド内
の磁束密度の低減を計った従来のシールド構造の説明図
である。 1・・・・SQUID素子 2・・・・ピックアップコイル 3・・・・支持体 4・・・・超電導シールド体 5・・・・超電導体ブロック 6・・・・シールド移動用支柱
Figure 1 is a front view showing the structure of an embodiment of the present invention, Figure 2 is an explanatory diagram of a conventional SQUID probe, and Figure 3 is an explanatory diagram of a conventional shield structure designed to reduce magnetic flux density within the shield. . 1... SQUID element 2... Pick-up coil 3... Support body 4... Superconducting shield body 5... Superconducting block 6... Support for shield movement

Claims (1)

【特許請求の範囲】[Claims] 被測定磁束を拾うためのピックアップコイルと、そのピ
ックアップコイルに磁気的に結合されたSQUID素子
とをそれぞれ支持体に装着してなるプローブにおいて、
上記SQUID素子を覆うための超電導磁気シールド体
と、その超電導シールド体の内周面に略沿う形状を有す
る超電導体ブロックとを備え、上記超電導シールド体は
、上記支持体に沿って摺動自在で、上記SQUID素子
を覆う状態と上記超電導体ブロックを覆う状態を選択し
得るように構成されていることを特徴とするSQUID
プローブ。
A probe comprising a pick-up coil for picking up the magnetic flux to be measured and a SQUID element magnetically coupled to the pick-up coil, each mounted on a support body,
It includes a superconducting magnetic shield for covering the SQUID element, and a superconducting block having a shape that roughly follows the inner peripheral surface of the superconducting shield, and the superconducting shield is slidable along the support. , a SQUID configured such that a state in which the SQUID element is covered and a state in which the superconductor block is covered can be selected.
probe.
JP2046682A 1990-02-26 1990-02-26 Squid probe Pending JPH03248069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2046682A JPH03248069A (en) 1990-02-26 1990-02-26 Squid probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2046682A JPH03248069A (en) 1990-02-26 1990-02-26 Squid probe

Publications (1)

Publication Number Publication Date
JPH03248069A true JPH03248069A (en) 1991-11-06

Family

ID=12754151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2046682A Pending JPH03248069A (en) 1990-02-26 1990-02-26 Squid probe

Country Status (1)

Country Link
JP (1) JPH03248069A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321381A (en) * 1994-05-19 1995-12-08 Chodendo Sensor Kenkyusho:Kk Squid storage container and squid cooling method
JPH07321380A (en) * 1994-05-19 1995-12-08 Chodendo Sensor Kenkyusho:Kk Squid storage container and squid cooling method
JPH07321382A (en) * 1994-05-19 1995-12-08 Chodendo Sensor Kenkyusho:Kk Squid storage container and squid cooling method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07321381A (en) * 1994-05-19 1995-12-08 Chodendo Sensor Kenkyusho:Kk Squid storage container and squid cooling method
JPH07321380A (en) * 1994-05-19 1995-12-08 Chodendo Sensor Kenkyusho:Kk Squid storage container and squid cooling method
JPH07321382A (en) * 1994-05-19 1995-12-08 Chodendo Sensor Kenkyusho:Kk Squid storage container and squid cooling method

Similar Documents

Publication Publication Date Title
US20050272996A1 (en) Apparatus for measuring the neuro-magnetic field from a human brain and method for operating the same
US5187327A (en) Superconducting magnetic shield
JPH0793211B2 (en) Magnet coil device for nuclear magnetic resonance tomography equipment
JPH03248069A (en) Squid probe
US20030218872A1 (en) Superconducting magnetic shield
JP2583234B2 (en) Magnetic shield device
CN114675224A (en) Testing device and testing method for superconducting quantum interference device
US11137455B2 (en) Magnetic field measuring element, magnetic field measuring device, and magnetic field measuring system
JP2700584B2 (en) Magnetic shield for biomagnetism measurement
Rigby et al. SQUID holder with high magnetic shielding
Hoshino et al. Magnetic shield of high-T/sub c/Bi-Pb-Sr-Ca-Cu-O superconductors at 77 K for SQUID measurements
JPH01262852A (en) Probe coil for mri
JP2864095B2 (en) Magnetic shielding device
Mori et al. Magnetic shielding of the superposition of a hybrid ferromagnetic cylinder over a BPSCCO cylinder
JPH0738278A (en) Superconducting magnetic shield container
JPS62169311A (en) Superconductive magnet device for nmar imaging
Wördenweber et al. Magnetic flux in active and passive superconducting devices
Alipour et al. Shielding factor enhancement method for Bi-stage active shield in SQUID-based Magnetocardiography system
JPH07193392A (en) Magnetic shield capsule
JPH05317280A (en) Cerebral magnetic field measuring instrument
JPH0510335Y2 (en)
JPH01245598A (en) High temperature superconductor zero magnetic field standard device
JPH07321381A (en) Squid storage container and squid cooling method
TOMKÓW MODELING OF HYBRID SUPERCONDUCTING MAGNETIC SCREENS MADE OF BI-2223 SOLID CYLINDER AND YBCO COATED TAPE RINGS
JPH07240539A (en) Trapped magnetic flux removing method of superconductive magnetic shielding body