JPH0696019A - Control circuit for self-synchronizing system - Google Patents

Control circuit for self-synchronizing system

Info

Publication number
JPH0696019A
JPH0696019A JP24033892A JP24033892A JPH0696019A JP H0696019 A JPH0696019 A JP H0696019A JP 24033892 A JP24033892 A JP 24033892A JP 24033892 A JP24033892 A JP 24033892A JP H0696019 A JPH0696019 A JP H0696019A
Authority
JP
Japan
Prior art keywords
signal
becomes
self
outside
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24033892A
Other languages
Japanese (ja)
Inventor
Aruberuto Parashiosu
パラシオス・アルベルト
Kunio Uchiyama
邦男 内山
Makoto Hanawa
誠 花輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24033892A priority Critical patent/JPH0696019A/en
Publication of JPH0696019A publication Critical patent/JPH0696019A/en
Pending legal-status Critical Current

Links

Landscapes

  • Information Transfer Systems (AREA)

Abstract

PURPOSE:To provide the control circuit for the self-synchronizing system which is small in scale and generates an operation start signal I and receives a signal of data validity DV. CONSTITUTION:This control circuit consists of a 1st exclusive OR circuit(EXOR) 200 which inputs signals REQj-1 and ACKj and outputs a signal I and a 2nd EXOR 300 which inputs signals DV and ACKj+1 and outputs a signal REQj-1 becomes '1' and the signal I becomes '1' while all the signal values are '0', a logic block processes input data, so that DV becomes '1' and REQj becomes '1'. When ACKj+1 becomes '1', I becomes '0' and DV becomes '0', so that REQj is held at '1'. When REQj-1 becomes '0', I becomes '1', DV '1', REQj, '0', and ACKj+1 '0'. Then I becomes '0' and DV becomes '0', so that the initial state is entered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自己同期システム用の制
御回路に関し、特に、非パイプライン(non-pipelined)
自己同期システム(self-timed systems)の制御部の構成
に用いられるハンドシェイキング(handshaking)回路に
関する。
FIELD OF THE INVENTION This invention relates to control circuits for self-synchronizing systems, and more particularly to non-pipelined circuits.
The present invention relates to a handshaking circuit used for configuring a control unit of a self-timed system.

【0002】[0002]

【従来の技術】非パイプライン自己同期システムのハン
ドシェイキング回路の役割を果たすものとして、図2に
示す2サイクル全ハンドシェイク(2-cycle full-handsh
ake)回路に関しては、技術論文「J.E. Sutherland, "Mic
ropipelines," Communicationsof the ACM, Vol.32, N
o.6, pp.720-738, June 1989」に詳細に示されている。
また、前記の2つのハンドシェイク回路を用いる図3に
示す4サイクル全ハンドシェイク(4-cycle full-handsh
ake)回路に関しては、技術論文「G.M.Jacobs andR.W.Bro
dersen, "A Fully Asynchronous Digital Signal Proce
ssor Using Self-Timed Circuits,"IEEE Journal of So
lid-State Circuits, Vol.25, No.6, pp.1526-1537, De
c. 1990」に述べられている。更に、技術論文「T.H.-Y.Me
ng,R.W.Brodersen and D.G.Messerschmitt, "Automatic
Synthesis of Asynchronous Circuits from High-leve
l Specifications," IEEE Trans. on CAD Vol.8, No.1
1, pp.1185-1205, Nov. 1989」に図4に示す半ハンドシ
ェイク(half-handshake)回路について述べられている。
2. Description of the Related Art As a function of a handshaking circuit of a non-pipeline self-synchronous system, a 2-cycle full-handsh shown in FIG.
ake) circuit, refer to the technical paper “JE Sutherland,“ Mic
ropipelines, "Communications of the ACM, Vol.32, N
o.6, pp.720-738, June 1989 ".
In addition, the 4-cycle full-handshake shown in FIG.
ake) circuit, refer to the technical paper "GM Jacobs and R.W. Bro.
dersen, "A Fully Asynchronous Digital Signal Proce
ssor Using Self-Timed Circuits, "IEEE Journal of So
lid-State Circuits, Vol.25, No.6, pp.1526-1537, De
c. 1990 ”. Furthermore, the technical paper “TH-Y.Me
ng, RWBrodersen and DGMesserschmitt, "Automatic
Synthesis of Asynchronous Circuits from High-leve
l Specifications, "IEEE Trans. on CAD Vol.8, No.1
1, pp.1185-1205, Nov. 1989 "describes a half-handshake circuit shown in FIG.

【0003】[0003]

【発明が解決しようとする課題】非パイプライン自己同
期システムは、図5のように構成され、データ処理部に
対応するロジックブロックが、DCVSL (Differential Ca
scode Voltage Switch Logic:「C.K.Erdelyi,W.R.Griffi
n and R.D.Kilmoyer, "Cascode Voltage SwitchLogic D
esign," VLSI DESIGN, pp.78-86, Oct.1984」)か、SSDL
(Sample-Set Differential Logic:「T.A.Grotjohn and
B.Hoefflinger, "Sample-Set Differential Logic for
Complex High-speed VLSI," IEEE Journal of Solid-St
ate Circuits, Vol.SC-21, No.2, pp.367-369, Oct. 19
84」)か、LDCL (Latched Domino CMOS Logic:「J.A.Preto
rius,A.S.Shubat and C.A.Salama, "Latched Domino CM
OS Logic," IEEE Journal of Solid-State Circuits, V
ol.SC-21, No.4, pp.514-522, Aug. 1986」)あるいは、E
CDL (Enable-disable Differential Logic:「Shih-Lien
Lu, "Implementation of Iterative Networks with CMO
S Differential Logic," IEEE Journal of Solid-State
Circuits, Vol.23, No.4, pp.1013-1017, Aug. 1988」)
論理で実現される。図5のロジックブロックの基本的な
構成は図6に示す。同図のIの制御信号が「0」のとき、
上の二つのp型MOSトランジスタ300及び305は導通状
態になり、下のn型MOSトランジスタ324はハイイン
ピーダンスとなる。これによってロジックブロックの機
能を実現するn型MOSトランジスタで構成される木
(以下ではn型MOS木と略する)が切り離され、ロジッ
クブロックの出力F及びFの否定値(図にFバーと図示)
両方が「1」になってデータ有効を表示する信号DV(Dat
a Valid)が「0」になる。
The non-pipeline self-synchronization system is configured as shown in FIG. 5, and the logic block corresponding to the data processing unit is a DCVSL (Differential Ca
scode Voltage Switch Logic: `` CK Erdelyi, WR Griffi
n and RDKilmoyer, "Cascode Voltage SwitchLogic D
esign, "VLSI DESIGN, pp.78-86, Oct. 1984") or SSDL
(Sample-Set Differential Logic: `` TAG rotjohn and
B. Hoefflinger, "Sample-Set Differential Logic for
Complex High-speed VLSI, "IEEE Journal of Solid-St
ate Circuits, Vol.SC-21, No.2, pp.367-369, Oct. 19
84 '') or LDCL (Latched Domino CMOS Logic: `` JA Preto
rius, ASShubat and CASalama, "Latched Domino CM
OS Logic, "IEEE Journal of Solid-State Circuits, V
ol.SC-21, No.4, pp.514-522, Aug. 1986)) or E
CDL (Enable-disable Differential Logic: "Shih-Lien
Lu, "Implementation of Iterative Networks with CMO
S Differential Logic, "IEEE Journal of Solid-State
Circuits, Vol.23, No.4, pp.1013-1017, Aug. 1988 '')
It is realized by logic. The basic configuration of the logic block of FIG. 5 is shown in FIG. When the control signal of I in the figure is "0",
The upper two p-type MOS transistors 300 and 305 become conductive, and the lower n-type MOS transistor 324 becomes high impedance. A tree composed of n-type MOS transistors that realizes the function of a logic block by this
(Hereinafter, abbreviated as n-type MOS tree) is separated, and the output of logic block F and the negative value of F (shown as F bar in the figure)
Signal DV (Dat that both become "1" and display data valid
a Valid) becomes "0".

【0004】上記の図2、図3及び図4のハンドシェイ
キング回路のREQj信号を図5のI信号とし、同図5のD
V信号をREQj信号とすれば、図5のシステムの構成に用
いることができる。しかし、前記の何れの回路を用いる
と、制御のプロトコルが4サイクルになる。つまり、全
ての信号が元の初期状態に戻らない限り次のデータを処
理することができない。4サイクルのプロトコルの最初
の2サイクルが処理過程に対応し、最後の2サイクルが
要求信号及び了解信号を「0」に戻すために用いられる。
The REQ j signal of the handshaking circuits of FIGS. 2, 3 and 4 is used as the I signal of FIG. 5, and the D signal of FIG.
If the V signal is the REQ j signal, it can be used in the system configuration of FIG. However, when any of the above circuits is used, the control protocol becomes 4 cycles. That is, the next data cannot be processed unless all the signals are returned to the original initial state. The first 2 cycles of the 4-cycle protocol correspond to the process, and the last 2 cycles are used to return the request signal and the acknowledge signal to "0".

【0005】上記の4サイクルの後半の2サイクルで何
もデータが処理されない。また、この2サイクルを、図
2及び図3の回路を使用するとき、誤動作を防ぐために
必ず入力側からデータの処理を開始することが必要であ
る。このため、データの処理時間及び制御回路の出力側
から入力側への信号の伝播時間を考慮に入れなければな
らない。図4の回路を用いるときは、出力側の外部の了
解信号が入力側に伝播され、途中で各ロジックブロック
の初期化が行われ、前記のような問題が生じないが制御
回路自体が多少大きい。
No data is processed in the latter two cycles of the above-mentioned four cycles. Further, when the circuits of FIGS. 2 and 3 are used for these two cycles, it is necessary to start processing of data from the input side in order to prevent malfunction. Therefore, the processing time of the data and the propagation time of the signal from the output side to the input side of the control circuit must be taken into consideration. When the circuit of FIG. 4 is used, an external acknowledge signal on the output side is propagated to the input side, each logic block is initialized in the middle, and the above-mentioned problem does not occur, but the control circuit itself is somewhat large. .

【0006】本発明の目的は、所定のプロトコルに従
い、I及びDV信号の生成を容易し、小規模の構造を持
つ制御回路を提供することにある。
An object of the present invention is to provide a control circuit which facilitates generation of I and DV signals according to a predetermined protocol and has a small scale structure.

【0007】[0007]

【課題を解決するための手段】図1に示すように2個の
2入力の排他的論理和回路200及び210を用いる。
排他的論理和回路200の一つの入力を入力側の要求RE
Qj-1信号線に接続して、もう一つの入力を出力側からの
了解ACKj+1信号線に接続する。この出力側の了解ACKj+1
信号線を入力側への了解ACKj信号線とする。排他的論理
和回路200の出力をロジックブロックへのI制御信号
とする。排他的論理和回路210の一つの入力をロジッ
クブロックからのデータ有効信号線DVに接続し、もう
一つの入力を出力側からの了解ACKj+1信号線に接続す
る。排他的論理和回路210の出力を出力側への要求RE
Qj信号線とする。
As shown in FIG. 1, two 2-input exclusive OR circuits 200 and 210 are used.
A request RE for one input of the exclusive OR circuit 200 on the input side
Connect to the Q j-1 signal line and connect the other input to the acknowledge ACK j + 1 signal line from the output side. Acknowledgment of this output side ACK j + 1
The signal line is the acknowledge ACK j signal line to the input side. The output of the exclusive OR circuit 200 is used as the I control signal to the logic block. One input of the exclusive OR circuit 210 is connected to the data valid signal line DV from the logic block, and the other input is connected to the acknowledge ACK j + 1 signal line from the output side. Request the output of the exclusive OR circuit 210 to the output side RE
Use the Q j signal line.

【0008】[0008]

【作用】図1を用いて、本発明の手法の作用を以下に説
明する。全ての信号値が「0」のとき、外部の要求REQj-1
信号が「1」になると、外部への了解ACKj信号が「0」であ
るためIの信号が「1」になる。Iが「1」になると、ロジ
ックブロックがデータ入力を処理してDV信号を「1」に
する。DV信号が「1」になると、外部への要求REQj信号
が「1」になる。この要求REQj信号に対して外部の了解AC
Kj+1信号が「1」になるときは、外部の要求REQj-1信号が
「1」であるため、Iが「0」になり、DVの信号が「0」に
なる。DVの「1」から「0」への移動で外部への要求REQj
信号が一時的に「0」になる可能性があるが、誤動作を招
かない。この時点でI及びDV以外の信号が「1」になっ
て制御回路が待機状態になる。外部の要求REQj-1信号が
「0」になると、外部への了解ACKj信号が「1」であるため
Iの信号が「1」になる。Iが「1」になると、ロジックブ
ロックが入力データを処理してDV信号を「1」にする。
外部の了解ACKj+1信号が「1」であるため、DV信号が
「1」になると、外部への要求REQj信号が「0」になる。こ
の要求REQj信号に対して外部の了解ACKj+1信号が「0」に
なるときは、外部の要求REQj-1信号が「0」であるため、
Iが「0」になり、DVの信号が「0」になる。この場合も
DVの「1」から「0」への移動で外部への要求REQj信号が
一時的に「0」になる可能性があるが、以前のように誤動
作を招かない。この時点で全ての信号が「0」になって制
御回路が初期状態に戻る。このように図1の回路が請求
項1のプロトコルに従い、I及びDVの信号を容易に発
生し、小規模であることが確認できる。
The operation of the method of the present invention will be described below with reference to FIG. External request REQ j-1 when all signal values are "0"
When the signal becomes "1", the signal of I becomes "1" because the acknowledge ACK j signal to the outside is "0". When I goes to "1", the logic block processes the data input and brings the DV signal to "1". When the DV signal becomes "1", the request REQ j signal to the outside becomes "1". External acknowledgment AC for this request REQ j signal
When the K j + 1 signal becomes "1", the external request REQ j-1 signal is "1", so that I becomes "0" and the DV signal becomes "0". Request to the outside by moving DV from "1" to "0" REQ j
The signal may temporarily become "0", but it does not cause malfunction. At this time, signals other than I and DV become "1", and the control circuit enters the standby state. When the external request REQ j-1 signal becomes "0", the I signal becomes "1" because the external acknowledge ACK j signal is "1". When I becomes "1", the logic block processes the input data and sets the DV signal to "1".
Since the external acknowledge ACK j + 1 signal is “1”, when the DV signal becomes “1”, the external request REQ j signal becomes “0”. When the external acknowledgment ACK j + 1 signal becomes “0” with respect to this request REQ j signal, the external request REQ j-1 signal is “0”.
I becomes "0", and the DV signal becomes "0". In this case as well, the request REQ j signal to the outside may temporarily become "0" due to the movement of DV from "1" to "0", but it does not cause a malfunction as before. At this point, all the signals become "0" and the control circuit returns to the initial state. As described above, it can be confirmed that the circuit of FIG. 1 easily generates I and DV signals according to the protocol of claim 1 and is of a small scale.

【0009】[0009]

【実施例】図1のシステムに対応するタイムダイアグラ
ムを図示する図7を用いて、本発明の一つの実施例を説
明する。以下では、入力データが有効になってから入力
の要求信号が立ち上がる(または立ち下がる)までは図
7に示す遅延時間がΔ、I信号が立上りからDVの信号
が立ち上がるまで前記の遅延時間が2Δ、外部への要求
信号が立上りから外部からの了解信号が立上るまでの遅
延時間がΔであると仮定し、図1のロジックブロックが
図6のように構成されていると仮定する。図7の全ての
信号値が「0」の時点で、外部の要求REQj-1信号が立ち上
がると、外部への了解ACKj信号が「0」であるためIの信
号が「0」から「1」に変換し、ロジックブロックのn型M
OS木の片側がロジックブロックの出力Fを「0」あるい
は「1」(Fの否定値を「1」あるいは「0」)に変換させる。
このとき、図6の論理和素子600の入力が異なるため、
DV信号が「1」になる。図1の外部の了解ACKj+1信号が
「0」であるため、排他的論理和回路210の出力、つまり
外部への要求REQj信号が「1」になる。外部からの了解AC
Kj+1信号が「1」になると、外部への了解ACKj信号が「1」
になり、外部からの要求REQj-1信号及びDVの信号が
「1」であるためI及び外部への要求REQj信号が「0」にな
る。しかし、Iが「0」になるに連れてDVが「0」になる
ため、前記の要求REQj信号の「0」の状態が一時的で、制
御に影響を及ぼさない。この時点に、I及びDV以外の
全ての信号が「1」になり、制御回路が待機状態になる。
新しいデータが用意されて外部の要求REQj-1信号が立ち
下がると、外部への了解ACKj信号が「1」であるためIの
信号が「0」から「1」に変換し、ロジックブロックが新し
いデータを入力してDV信号を「1」にする。このとき、
図1の外部の了解ACKj+1信号が「1」であるため、排他的
論理和回路210の出力、つまり外部への要求REQj信号が
「0」になる。外部からの了解ACKj+1信号が「0」になると
共に外部への了解ACKj信号が「0」になり、外部からの要
求REQj+1信号が「0」であるため、I及びDVの信号が
「0」になる。前記と同様に、外部への要求REQj信号が一
時的に「1」になる。以前のように、制御に影響を及ぼさ
ない。この時点に、全ての信号が「0」になり、制御回路
が新たに初期状態になる。図5の自己同期システムが制
御信号の肯定及び否定値を用いていれば、図8の排他的
論理和及び排他的否定論理和の出力をもつ素子を用いる
ことにより、図6の論理和素子を節約することができ、
然も、図8の310と320のMOSトランジスタ及び314と3
26MOSトランジスタで構成される否定論理素子を節約
することができる。この場合は、自己同期システムの制
御部を更に小規模にすることができる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT One embodiment of the present invention will be described with reference to FIG. 7, which illustrates a time diagram corresponding to the system of FIG. Below, the delay time Δ shown in FIG. 7 from when the input data becomes valid until the input request signal rises (or falls), and the delay time 2Δ from the rise of the I signal to the rise of the DV signal is 2Δ. It is assumed that the delay time from the rise of the request signal to the outside to the rise of the acknowledge signal from the outside is Δ, and that the logic block of FIG. 1 is configured as shown in FIG. When all the signal values in FIG. 7 are "0" and the external request REQ j-1 signal rises, the external acknowledge ACK j signal is "0", so the I signal changes from "0" to "0". 1 ”, and the logic block n-type M
One side of the OS tree converts the output F of the logic block into "0" or "1" (the negative value of F is "1" or "0").
At this time, since the inputs of the logical sum element 600 in FIG. 6 are different,
The DV signal becomes "1". Since the external acknowledge ACK j + 1 signal in FIG. 1 is “0”, the output of the exclusive OR circuit 210, that is, the request REQ j signal to the outside becomes “1”. External understanding AC
When the K j + 1 signal becomes “1”, the external acknowledgment ACK j signal becomes “1”.
Since the external request REQ j-1 signal and the DV signal are "1", the I and external request REQ j signals are "0". However, since DV becomes "0" as I becomes "0", the state of "0" of the request REQ j signal is temporary and does not affect the control. At this point, all signals except I and DV are "1", and the control circuit is in a standby state.
When new data is prepared and the external request REQ j-1 signal falls, the external acknowledge ACK j signal is "1", so the I signal is converted from "0" to "1", and the logic block Inputs new data and sets the DV signal to "1". At this time,
Since the external acknowledge ACK j + 1 signal in FIG. 1 is "1", the output of the exclusive OR circuit 210, that is, the request REQ j signal to the outside becomes "0". Since the acknowledged ACK j + 1 signal from the outside becomes “0” and the acknowledged ACK j signal to the outside becomes “0”, and the request REQ j + 1 signal from the outside is “0”, I and DV Signal becomes "0". Similarly to the above, the request REQ j signal to the outside temporarily becomes "1". Does not affect control as before. At this point, all the signals become "0" and the control circuit is newly initialized. If the self-synchronizing system of FIG. 5 uses the positive and negative values of the control signal, the elements having the outputs of the exclusive OR and the exclusive NOR of FIG. Can save
Of course, the MOS transistors 310 and 320 and 314 and 3 in FIG.
It is possible to save the negative logic element composed of 26 MOS transistors. In this case, the control unit of the self-synchronization system can be made smaller.

【0010】[0010]

【発明の効果】本発明は、非パイプライン(non-pipelin
ed)自己同期システム(self-timed systems)の構成に適
用できる。しかも、小規模及び低消費電力の自己同期シ
ステムの制御部を構成することができる。また、肯定及
び否定の制御信号を用いる制御回路を構成するときは、
処理部のデータ有効信号を生成する回路を節約し、本発
明の構成要素である排他的論理和回路の構造を小さくす
ることができる。
INDUSTRIAL APPLICABILITY The present invention is a non-pipeline.
ed) Applicable to the construction of self-timed systems. Moreover, it is possible to configure a control unit of a small-scale and low power consumption self-synchronization system. Also, when configuring a control circuit that uses positive and negative control signals,
The circuit for generating the data valid signal of the processing unit can be saved, and the structure of the exclusive OR circuit which is a constituent element of the present invention can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のハンドシェイク制御回路で
ある。
FIG. 1 is a handshake control circuit according to an embodiment of the present invention.

【図2】従来技術の2サイクルのハンドシェイク制御回
路である。
FIG. 2 is a prior art two-cycle handshake control circuit.

【図3】従来技術の4サイクル全ハンドシェイク制御回
路である。
FIG. 3 is a prior art 4-cycle full handshake control circuit.

【図4】従来技術の2サイクル半ハンドシェイク制御回
路である。
FIG. 4 is a prior art two-cycle half handshake control circuit.

【図5】一般の非パイプライン自己同期システムの構成
図である。
FIG. 5 is a block diagram of a general non-pipeline self-synchronizing system.

【図6】自己システムのロジックブロックがDCVL論
理で実現されるときの構成である。
FIG. 6 is a configuration when a logic block of a self system is realized by DCVL logic.

【図7】図1の実施例の制御回路の動作を説明するタイ
ムダイアグラムである。
FIG. 7 is a time diagram explaining the operation of the control circuit of the embodiment of FIG.

【図8】図1の実施例の排他的論理和回路の一つの実現
例による回路図である。
FIG. 8 is a circuit diagram of one implementation example of the exclusive OR circuit of the embodiment of FIG.

【符号の説明】 Input Data…入力データ、Output Data…出力データ、
−−−−…制御線、I…処理開始信号、DV…データ有
効信号、VDD…電源、GND…グランド、200,210…排他的
論理和回路、500,510…否定論理素子、400,405…2入力
論理積素子、600…2入力論理和素子、300,30
5,310〜313…p型MOSトランジスタ、320〜324
…n型MOSトランジスタ、C…Muller-C素子、RE
Qj-1,REQj…要求(request)信号、ACKj,ACKj+1…了解(ac
knowledge)信号。
[Explanation of symbols] Input Data ... Input data, Output Data ... Output data,
----- Control line, I ... Processing start signal, DV ... Data valid signal, VDD ... Power supply, GND ... Ground, 200, 210 ... Exclusive OR circuit, 500, 510 ... Negative logic element, 400, 405 ... 2-input AND element, 600 ... 2-input OR element, 300, 30
5, 310-313 ... p-type MOS transistor, 320-324
… N-type MOS transistor, C… Muller-C element, RE
Q j-1 ,, REQ j ... request signal, ACK j , ACK j + 1 ... OK (ac
knowledge) signal.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】自己同期システムへの入力データが処理可
能な状態で前記自己同期システムの外部から要求(Reque
st)信号を受信することによって前記入力データの処理
を開始する開始(Initiate)信号を前記自己同期システム
に送信し、 前記入力データの処理結果が出力可能であることを示す
DV(Data Valid)信号を前記自己同期システムから受け
て外部への要求信号を発生し、この外部への要求信号に
対する外部からの了解(Acknowledge)信号を受信した
後、前記開始信号を元の状態に戻し、入力データ側の外
部へ了解信号を発生する自己同期システム用の制御回路
は、 前記自己同期システムの外部から要求信号と前記入力デ
ータ側の外部へ了解信号と入力され、前記開始信号を出
力する第1の排他的論理和回路と、 前記DV信号と前記外部からの了解信号と入力され、前
記外部への要求信号を出力する第2の排他的論理和回路
とから構成されたことを特徴とする制御回路。
1. A request from the outside of the self-synchronization system in a state in which input data to the self-synchronization system can be processed.
A DV (Data Valid) signal indicating that the start (Initiate) signal for starting the processing of the input data by receiving the st) signal is transmitted to the self-synchronization system and the processing result of the input data can be output. Is generated from the self-synchronizing system to generate a request signal to the outside, and after receiving an acknowledge signal from the outside to the request signal to the outside, the start signal is returned to the original state, and the input data side The control circuit for the self-synchronization system that generates an acknowledge signal to the outside of the first exclusive control circuit, which receives the request signal from the outside of the self-synchronization system and the acknowledge signal to the outside of the input data side and outputs the start signal Logical OR circuit and a second exclusive OR circuit which receives the DV signal and the acknowledge signal from the outside and outputs a request signal to the outside. Circuit.
JP24033892A 1992-09-09 1992-09-09 Control circuit for self-synchronizing system Pending JPH0696019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24033892A JPH0696019A (en) 1992-09-09 1992-09-09 Control circuit for self-synchronizing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24033892A JPH0696019A (en) 1992-09-09 1992-09-09 Control circuit for self-synchronizing system

Publications (1)

Publication Number Publication Date
JPH0696019A true JPH0696019A (en) 1994-04-08

Family

ID=17058004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24033892A Pending JPH0696019A (en) 1992-09-09 1992-09-09 Control circuit for self-synchronizing system

Country Status (1)

Country Link
JP (1) JPH0696019A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922090B2 (en) 2001-10-19 2005-07-26 Oki Electric Industry Co., Ltd. Transition signaling circuit and arbitrator using this circuit
US7073087B2 (en) 2001-11-16 2006-07-04 Oki Electric Industry Co., Ltd. Transition signal control unit and DMA controller and transition signal control processor using transition signal control unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6922090B2 (en) 2001-10-19 2005-07-26 Oki Electric Industry Co., Ltd. Transition signaling circuit and arbitrator using this circuit
US7073087B2 (en) 2001-11-16 2006-07-04 Oki Electric Industry Co., Ltd. Transition signal control unit and DMA controller and transition signal control processor using transition signal control unit

Similar Documents

Publication Publication Date Title
US8669779B2 (en) Systems, pipeline stages, and computer readable media for advanced asynchronous pipeline circuits
US5386585A (en) Self-timed data pipeline apparatus using asynchronous stages having toggle flip-flops
JPH0463573B2 (en)
US5224065A (en) Arithmetic operation unit having bit inversion function
US7436220B2 (en) Partially gated mux-latch keeper
JP4873459B2 (en) Latch circuit and semiconductor integrated circuit
JPS62202537A (en) Semiconductor integrated circuit device
JP3727213B2 (en) Synchronous element for converting asynchronous pulse signal to synchronous pulse signal
CN102339637B (en) Condition-precharged sense-amplifier-based flip flop
JPH0696019A (en) Control circuit for self-synchronizing system
US4882704A (en) Hand-shake type data transfer control circuit
US7429884B2 (en) Pulse-signaling circuits for networks on chip
JP3038757B2 (en) Shift register circuit
JPH04306013A (en) Latch circuit device
JPH0690165A (en) Logic circuit
JP2938589B2 (en) Semiconductor integrated circuit
JP2619386B2 (en) Semiconductor integrated circuit device
US7296176B1 (en) Method and apparatus for limiting the number of asynchronous events that occur during a clock cycle
Yu et al. A dual-rail LUT for reconfigurable logic using null convention logic
JPH06232732A (en) Self-synchronous logic circuit
JP3143022B2 (en) JK flip-flop circuit
JPS63217419A (en) Digital circuit for performing transmission of carry
JPH04148385A (en) Microcomputer cell
JPH0378008B2 (en)
JPS6020634A (en) Cmos logical circuit