JPS6020634A - Cmos logical circuit - Google Patents

Cmos logical circuit

Info

Publication number
JPS6020634A
JPS6020634A JP58129008A JP12900883A JPS6020634A JP S6020634 A JPS6020634 A JP S6020634A JP 58129008 A JP58129008 A JP 58129008A JP 12900883 A JP12900883 A JP 12900883A JP S6020634 A JPS6020634 A JP S6020634A
Authority
JP
Japan
Prior art keywords
circuit
during
channel
point
digit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58129008A
Other languages
Japanese (ja)
Inventor
「ばつ」山 知二
Tomoji Nukiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58129008A priority Critical patent/JPS6020634A/en
Publication of JPS6020634A publication Critical patent/JPS6020634A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/096Synchronous circuits, i.e. using clock signals
    • H03K19/0963Synchronous circuits, i.e. using clock signals using transistors of complementary type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Logic Circuits (AREA)

Abstract

PURPOSE:To attain high speed operation by eliminating the need for an inverter for the purpose of phase matching of each stage. CONSTITUTION:In the i-th stage and the (i+1)th stage constituting a carry circuit comprising a full adder or the like by a Domino circuit, an N-channel positive logical circuit comprising n11-n15 clipped between a point being pulled up and a point being pulled down by an N-channel transistor (TR) n10 includes an j-digit output C as an input during a sampling period of a P-channel TR p10 during the precharge period of the i-digit, i.e., while a clock phi is 0. Further, in the (i+1)-th digit, a negative logical circuit comprising P-channel TRs p21-p25 clipped between a P-channel TR n20 pulled down for an output point D during the precharge period, i.e., while the clock phi is 0 and a point pulled up by an N- channel TR n20 while the clock phi is logical 1 includes a j-digit output C as the input. The Domino circuit is formed by the positive logical circuit as mentioned above and a negative logical circuit comprising elements being complementary to the elements controlled by the input including at least one output of the said positive logical circuit and costituting the positive logical circuit.

Description

【発明の詳細な説明】 木兄ゆ」は、相補1M08(以後CMO8と称す)論理
回路に関し、特に論理信号がサンプリング期間中に将棋
倒し的に伝搬するよう構成されたダイナミック論理回路
(ドミノ回路)の回路構成に関する。
[Detailed Description of the Invention] Kineiyu'' relates to complementary 1M08 (hereinafter referred to as CMO8) logic circuits, and particularly to dynamic logic circuits (domino circuits) configured such that logic signals propagate like a chess game during a sampling period. Regarding circuit configuration.

CMO8論理回路は、nMO8(P型基板nチャネルM
O8)レシオ論理回路等に比して定常状態での消費電流
が極めて小さく、特に大量の素子が小さな領域に集中し
て発熱が問題となる大規模集積回路(LSI)を構成す
る回路構成として特に有効と考えられる。しかしスタテ
ィックCMOSwi理回路はP−nの相補に論理を構成
するため回路規模が大きくなることとこれに伴い大力端
子が多く寄生容量による信号伝搬遅延で動作スピードを
制限している。またモノリシックのCM 08・LSI
では、808 (S 1licon on 5apph
ive)ヤツインウエル(Twin Well )構造
等の特殊な構造をとらない限り、高校度なウェル構造を
要し、この結果接合容量が比較的大きく、これが更に動
作スピードを制限している。
The CMO8 logic circuit consists of nMO8 (P-type substrate n-channel M
O8) The current consumption in the steady state is extremely small compared to ratio logic circuits, etc., and it is especially suitable for circuit configurations constituting large-scale integrated circuits (LSI) where a large number of elements are concentrated in a small area and heat generation is a problem. It is considered effective. However, since the static CMOSwi logic circuit has a complementary logic of P-n, the circuit scale becomes large and the operation speed is limited by signal propagation delay due to parasitic capacitance due to the large number of high-power terminals. Also monolithic CM 08 LSI
So, 808 (S 1licon on 5apph
ive) Unless a special structure such as a twin well structure is adopted, a high-grade well structure is required, resulting in a relatively large junction capacitance, which further limits the operating speed.

これらの欠点を解消すべく構成されたのがダイナミック
CMO8論理回路で中でも第1図に示す如くドミノ回路
畝すンプリング期間中一度だけの論理値の変化が可能で
(但し構成によシ決る、一方向の変化だけ)相を適当に
整合することで信号伝搬゛が恰 、将棋倒し的に波及す
るよう構成することが可能で長いバスの論理を1つのプ
リチャージ、サンプリング期11!〕に実現することが
出来る。
A dynamic CMO8 logic circuit was constructed to eliminate these drawbacks, and as shown in Figure 1, it is possible to change the logic value only once during the domino circuit ridge sampling period (however, depending on the configuration, it is possible to change the logic value only once). By appropriately matching the phases (only changes in direction), it is possible to configure the signal propagation to spread like a chess player, and the logic of a long bus can be precharged and sampled during the sampling period 11! ] can be realized.

第1図は全加算器等のキャリー回路をドミノ回路で構成
したi段とi+1段を図示する回路図で図中にp・n文
字で示されたPチャネル・nチャネルエンバースメント
トランジスタで構成されておシー相クロックψで制御さ
れている。以後動作を正論理で記述するがクロックψは
適当なチー−ディで周期的にI・イレベル(論理値″′
1#)とローレベル(論理値パ0″′)を取る矩形波で
論理値″1#レベルで全てのnチャネル・トランジスタ
が導通” (J N ” I)チャネル・トランジスタ
がしゃ断“OF F ”するよう、論理値”θ″でnグ
ーヤネル・トランジスタ”OFF” I)チャネル・ト
ランジスタ@l U N 71するよう論理レベル及び
各トランジスタのしきい電圧(論理しきい値:VTL)
が設定されている。ここでnチャネル・トランジスタP
、 、 P2はクロックψ″′0#の期間゛ON” し
ており電源よ’)Pt、Ptのチャネルを介してA・B
点は論理値″1j′にプリチャージされるこの間されて
いるため定常電流は流れない。この間はブリ・チャージ
期間と呼ばれこの期間に入力ai biai+l、bi
+l・・・・・・は安定値に設定されている。
Figure 1 is a circuit diagram illustrating the i stage and i+1 stage in which carry circuits such as full adders are constructed using domino circuits. It is controlled by the phase clock ψ. From now on, the operation will be described in terms of positive logic, but the clock ψ is set periodically to the I level (logical value '''
1#) and low level (logical value 0'''), all n-channel transistors are conductive at the logic value ``1#'' level (J N '' I) channel transistors are cut off ``OF'' I) Channel transistor @ l U N 71 Logic level and threshold voltage of each transistor (logic threshold: VTL)
is set. Here, the n-channel transistor P
, , P2 is ``ON'' for the period of clock ψ'''0# and is connected to A and B via the Pt and Pt channels.
During this period, the point is precharged to the logic value "1j", so no steady current flows.
+l... is set to a stable value.

更にキャリーci−i、ci、ci+1は未定でよ匹か
のクロックψが“l#になる期間60#→1′1”への
−回だけの変化しか許されないため、この期間に変化す
るものであれば“0”でなければならない。クロックψ
がul”になるとP、、P2は“OFF”し 代りに”
1 y n2が’ON”する。
Furthermore, the carries ci-i, ci, and ci+1 are undetermined and only change in this period, since the clock ψ is allowed to change only - times from 60# to 1'1 during which it becomes l#. If so, it must be “0”. clock ψ
When becomes ``ul'', P2 is turned ``OFF'' instead.
1 y n2 turns 'ON'.

ここでも又電源グランドを結ぶ直流バスは存在しないか
ら定常的な′電流はない。A点の値は、aibi及びc
i−1でこの期間に決定されるが特にa i vb i
 = lのとき、これはc i−1で決定されるci−
1はクロックψが1#に変化したとき既に設定されてい
るかこの期間に′0”→″1″に1度だけ変化すること
が可能でこの条件でCi−1が“0#のときA点はul
”のまま、′0#→″1”に変化すればnqのチャネル
を介しA点にチャージされた電荷はグランドに落ち0”
となる。
Again, there is no DC bus connecting the power supply ground, so there is no steady current. The value of point A is aibi and c
i-1 is determined during this period, but especially a i vb i
= l, this is determined by ci-1
1 has already been set when the clock ψ changes to 1#, or it can change only once from '0' to '1' during this period. Under this condition, when Ci-1 is '0#', the A point is ul
If `` remains as it is and changes from ``0# to ``1'', the charge charged at point A via the nq channel will fall to the ground and become 0.''
becomes.

このようにA点が°゛0”に変化したと1! ps w
 ”sはインバータを構成しているためCiは0”→I
t 177に変化するかくのごとくi段の論理は全加算
器等のキャリー回路として動作するしかもC1は、段の
i+1段にとってクロックψが”O″′のとき“0″で
クロックψが@1#のとき0”または”0#′→パIM
の許される変化しかしないのでキャリーはクロックψが
1″の期間、つまシサンプリング期間に、かくの如く動
作でCi+1C1+。・・・・・・と将棋倒し的に伝搬
する。ここでトランジスタP3.n3及びp4.n4の
インバータ構成はこの独の動作を保証する意味で重要で
るる。これは前記したようにサンプリング期間中に許さ
れる信号の変化を整合することとA点、B点のレベルを
補止する意味を有している。しかしこれらの信号伝搬速
度を上ける際このインバータの1段分の論理は常に障害
でめシ、素子数も増加される欠点になシうる。
In this way, when point A changes to °゛0'', it is 1! ps w
``s constitutes an inverter, so Ci is 0'' → I
In this way, the logic of the i stage operates as a carry circuit such as a full adder, and C1 is "0" when the clock ψ is "O"' for the i+1 stage, and the clock ψ is @1. When # is 0" or "0#' → pa IM
Since there is only a permissible change in , the carry is propagated in a chess-like manner during the period when the clock ψ is 1'' and during the sampling period as Ci+1C1+... Here, the transistors P3, n3 and The inverter configuration of p4.n4 is important in ensuring this unique operation.As mentioned above, this is necessary to match the signal changes allowed during the sampling period and to compensate for the levels at points A and B. However, when increasing the signal propagation speed, the logic for one stage of this inverter always suffers from failures, and the number of elements also increases.

本発明は上記の如く、ドミノ回路において各段に相、整
合を目的とするインバータ構成を設けることなくプリチ
ャージM rks’Jにプルアップされる出力点と、サ
ンプリング期間中にプルダウンされる節点との間に介在
する第1の正論理回路網と、第1の論理回路の出力を少
なくとも1つ以上含む入力群で制御され、第1の論理回
路構成素子と相補間係にある素子で構成され、しかもプ
リ・チャージヨリ」間中プルダウンさt″Lる出力点と
サンプリングJ91間中プルダワンされる点に介在する
第2の負論理回路網で結成される。またはこれらの連鎖
的接続によって構Imされるドミノ回路によって他に特
殊な機構を付加することなく上記欠点を解消し、高速動
作が可能でしかも構成素子数の少ないCMOSドミノ論
理回路を構成する上で著しい効果がある。
As described above, the present invention provides an output point that is pulled up to a precharge M rks'J and a node that is pulled down during a sampling period without providing an inverter configuration for the purpose of phase matching at each stage in a domino circuit. controlled by a first positive logic circuit interposed therebetween and an input group including at least one output of the first logic circuit, and composed of elements in complementary/interpolative relationship with the first logic circuit constituent elements. , and a second negative logic circuit interposed between the output point that is pulled down during the pre-charge period and the point that is pulled down during the sampling J91. The domino circuit described above eliminates the above drawbacks without adding any other special mechanism, and has a remarkable effect in constructing a CMOS domino logic circuit that is capable of high-speed operation and has a small number of constituent elements.

本発明の基本的構成要素は、プリチャージ期間中出力点
をプルアップ(Full −up)する素子又は制御機
構、ザンブリング期間中プルダウン(1’ull−do
wn )を制御する素子又は機構、これらにはさまれた
第1の正論理回路、更に第1の論理回路構成素子と相補
関係にある素子で構成され、第1の論理回路の少なくと
も1つ以上の含む入力群で制御され、ブリ・チャージ期
間中出力点をpull −d gw口する素子或いは、
制御機構とサンプリング期間中pull−upされる素
子又は機構ではさまれた第2の負論理回路を含む。
The basic components of the present invention are an element or control mechanism that pulls up the output point (Full-up) during the precharge period, and a pull-down (1'ull-do) during the Zumbling period.
wn ), a first positive logic circuit sandwiched therebetween, and an element having a complementary relationship with the first logic circuit component, and at least one of the first logic circuits. an element that is controlled by a group of inputs and that pulls the output point during the pre-charge period, or
It includes a second negative logic circuit sandwiched between the control mechanism and an element or mechanism that is pulled up during the sampling period.

次に第2図を診照して本発明の具体的実施例について述
べる。
Next, a specific embodiment of the present invention will be described with reference to FIG.

第2図は、本発明の一実施例を示すためのCMO8論理
回路図で図1で示したと同様全加算器論理回路等の桁上
げ(Φヤリー)回路に適用されたもので桁目においてプ
リチャージ期間中、つまシクロツクψが”0”の期間中
出力点Cを電源にpull−upするpチャネル・トラ
ンジスタplOサンプリング期間中にnチャネル・トラ
ンジスタnIoでpull −downされる点にはさ
まれた”11〜”Isのnチャネルの正論理回路、!+
1桁目では、プリチャージ期間、つまシクロツクψ″′
0”で出力点りをpull −downするpチャネル
・トランジスタ20と、クロックψ”J#でnチャネル
・トランジスタr120によってpull−upされる
点ではさまれたp21〜p2Bのpチャネル・トランジ
スタで構成された負論理回路で入力としてj桁d出力C
を含む構成から成る。かかる構成では、クロックψが@
 0 #、プリチャージ期間、ploを介し0点は1”
にプリチャージされ一方、D点はpカを介し′0#にプ
リセットされるこのときnl。、n20はいずれも″”
OFF”’L、ているため直流バスはj。
FIG. 2 is a CMO8 logic circuit diagram showing one embodiment of the present invention, which is applied to a carry (Φ carry) circuit such as a full adder logic circuit, similar to that shown in FIG. During the charging period, the p-channel transistor plO pulls up the output point C to the power supply while the clock ψ is "0". During the sampling period, the n-channel transistor nIo pulls down the output point C. ``11~''Is n-channel positive logic circuit,! +
The first digit indicates the precharge period, the clock cycle ψ″′
Consists of a p-channel transistor 20 that pulls down the output point at 0'', and p-channel transistors p21 to p2B sandwiched between a point that pulls up the output point at clock ψ''J# and an n-channel transistor r120. j digits d output C as input in negative logic circuit
It consists of a configuration including. In such a configuration, the clock ψ is @
0 #, precharge period, 0 points through plo is 1”
On the other hand, point D is preset to '0#' via p. At this time, nl. , n20 are all ""
OFF"'L, so the DC bus is j.

j+1桁のいずれの論理回路にも存在しない。クロック
ψ11#、サンプリング期間、pto+pzoは”OF
F’l、、”IO+n20は’ON”するからやはシ直
流バスはどこにも存在しないが、j桁目ではn11〜”
14の状態で0点の値が決定される、ここでj桁目の入
力は″0#→″1″′方向には、このサンプリング期間
中、−壓だけの変化は許きれる。
It does not exist in any of the j+1 digit logic circuits. Clock ψ11#, sampling period, pto+pzo are “OF
F'l..."Since IO+n20 is 'ON', there is no DC bus anywhere, but in the jth digit, n11~"
The value of the 0 point is determined in the state of 14. Here, the j-th digit input is allowed to change by only -1 in the direction of "0#→"1"' during this sampling period.

これに伴い0点の値は′1−或いは′1”→″0#へこ
の間変化するこの0点の値は論理的にはここではキャリ
ーの反転値となっている。一方j+1桁目の論理は、p
21〜p24の状態でD点が決定されるがj+1桁目で
は、入力が@I 1 #→″0”方向にこのサンプリン
グ期間中一度だけ変化が許されしたがってこの桁に入力
されたj桁目のキャリー出力の変化と矛質しない。また
j+1桁目は、負論理になっているためj+1桁目の桁
上げキャリーの反転論理を桁上げ信号として直接入力し
ても論理的に整合しているそして出力りもまた負論理の
キャリーの反転論理なので正論理のキャIJ−人力とし
て直接使用出来る。このようにj+1桁目の出力をj桁
目の論理回路と同様な回路に接続するのが可能でまた、
j桁目の桁上げ入力としてこの例j+1桁目同様の回路
の構成で桁上げ出力を接続出来るのでこの種の構成を多
段に縦続接続して論理信号を将棋倒し的に伝搬するドミ
ノ回路として構成することが可能である。
Along with this, the value of the 0 point changes from '1-' or '1' to '0#' during this time, and logically this value is the inverted carry value here. On the other hand, the logic of the j+1st digit is p
Point D is determined in the state of 21 to p24, but at the j+1st digit, the input is allowed to change only once in the direction of @I 1 # → "0" during this sampling period, so the jth digit input to this digit is consistent with the change in carry output. Also, the j+1st digit is in negative logic, so even if the inverted logic of the j+1st carry carry is directly input as a carry signal, it is logically consistent, and the output is also the same as the negative logic carry. Since it is inverted logic, it can be used directly as a positive logic machine. In this way, it is possible to connect the output of the j+1st digit to a circuit similar to the logic circuit of the jth digit, and
As the carry input for the jth digit, the carry output can be connected with a circuit configuration similar to the j+1st digit in this example, so this type of configuration can be connected in cascade in multiple stages to form a domino circuit that propagates the logic signal in a chess-like manner. Is possible.

以上説明したように、プリチャージ期間中にpull−
upされる出力点と、サンプリング期間中にpull−
downされる点にはさまれた第1の正論理回路段と、
第1の論理回路段の出力を少なくとも1つは含む入力で
制御され第1の論理回路を構成する素子と相補関係にあ
る素子で構成され、プリチャージ期間中、pull−d
Ownされる出力点とサンプリング期間中pull−u
pされる点ではさまれた第2の負論理回路段で構成され
る或いは、これらの連鎖的接続によるCMO8論理回路
によって高速で素子数の少ないしかも0MO8特有の消
費電流の少ない特性を有するドミノ回路を構成する上で
著しい効果が必る。
As explained above, during the precharge period, pull-
The output points that are pulled up and the output points that are pulled up during the sampling period are
a first positive logic circuit stage sandwiched between points to be down;
It is controlled by an input including at least one output of the first logic circuit stage, and is composed of elements having a complementary relationship with the elements constituting the first logic circuit, and during the precharge period, the pull-d
Owned output point and pull-u during sampling period
A domino circuit that is composed of a second negative logic circuit stage sandwiched between two negative logic circuits, or a CMO8 logic circuit connected in a chain of these stages, is fast, has a small number of elements, and has the characteristic of low current consumption peculiar to 0MO8. It is sure to have a significant effect on structuring the system.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来のダイナミックCMO8論理回路の一つ
で論理信号が将棋倒し的に伝搬するよう構成されたドミ
ノ回路で組まれた全加算器等の桁上げ(キャリー)回路
を構成する回路図でi桁目の論理回路を構成する。第2
図は、本発明の一実施例を示すドミノ回路図で第1図と
同様桁上げ(キャリー)回路を構成した例である。j桁
目の論理回路を構成するp工〜p24・・−・−・pチ
ャネル・トランジスタ。
Figure 1 is a circuit diagram configuring a carry circuit such as a full adder, which is one of the conventional dynamic CMO8 logic circuits and is made up of domino circuits configured so that logic signals are propagated in a chess-like manner. Configure the i-th digit logic circuit. Second
The figure is a domino circuit diagram showing an embodiment of the present invention, and is an example in which a carry circuit is configured in the same way as in FIG. 1. p-channel transistors constituting the j-th digit logic circuit.

Claims (1)

【特許請求の範囲】[Claims] プリチャージされる出力点とサンプリング期間中リセッ
トされる節点との間に介在する第1の論理回路群と、第
1の論理回路の出力を少なくとも含む入力で制御され前
記第1の論理回路群を構成する素子と相補関係の素子で
構成され、プリチャージ期間中リセットされる出力点と
サンプリング期間中チャージされる節点との間に介在す
る第2の論理回路群とを含むCM OS @理回路。
a first logic circuit group interposed between an output point to be precharged and a node to be reset during a sampling period; and a first logic circuit group controlled by an input including at least an output of the first logic circuit. A CM OS @ logic circuit that is composed of elements that are complementary to the constituent elements and includes a second logic circuit group that is interposed between an output point that is reset during a precharge period and a node that is charged during a sampling period.
JP58129008A 1983-07-15 1983-07-15 Cmos logical circuit Pending JPS6020634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58129008A JPS6020634A (en) 1983-07-15 1983-07-15 Cmos logical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58129008A JPS6020634A (en) 1983-07-15 1983-07-15 Cmos logical circuit

Publications (1)

Publication Number Publication Date
JPS6020634A true JPS6020634A (en) 1985-02-01

Family

ID=14998877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58129008A Pending JPS6020634A (en) 1983-07-15 1983-07-15 Cmos logical circuit

Country Status (1)

Country Link
JP (1) JPS6020634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425625A (en) * 1987-07-22 1989-01-27 Hitachi Ltd Multistage logic circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425625A (en) * 1987-07-22 1989-01-27 Hitachi Ltd Multistage logic circuit

Similar Documents

Publication Publication Date Title
US5642061A (en) Short circuit current free dynamic logic clock timing
US6621358B2 (en) Differential voltage controlled oscillator, and method therefor
JP3502116B2 (en) Two-stage CMOS latch circuit with single wire clock
JPH0876976A (en) Xor circuit, inversion selector circuit and adding circuit using these circuits
JP3120492B2 (en) Semiconductor integrated circuit
JPS6020634A (en) Cmos logical circuit
JPH0683065B2 (en) Divider circuit
JP2560698B2 (en) Latch circuit
US6323688B1 (en) Efficient half-cycle clocking scheme for self-reset circuit
JP2786463B2 (en) Flip-flop circuit
JPS6240816A (en) Latching circuit, and flip-flop circuit using this latching circuit
JP2618025B2 (en) Single-phase to differential signal conversion circuit
JP2644368B2 (en) Input signal buffer circuit
JP2699496B2 (en) Output circuit
JPH0254690B2 (en)
JP2546398B2 (en) Level conversion circuit
JP2735268B2 (en) LSI output buffer
JPH04172809A (en) Flip flop circuit
JPH0431630Y2 (en)
JPS61252707A (en) Latch circuit
JPH07109980B2 (en) Semiconductor integrated circuit
JPS62231521A (en) Semiconductor integrated circuit
JPH03283815A (en) Output buffer circuit
JPS5829658B2 (en) Waveform converter
JPS6298827A (en) Semiconductor integrated circuit device