JPH0694876A - Nuclear fuel pellet - Google Patents

Nuclear fuel pellet

Info

Publication number
JPH0694876A
JPH0694876A JP3017340A JP1734091A JPH0694876A JP H0694876 A JPH0694876 A JP H0694876A JP 3017340 A JP3017340 A JP 3017340A JP 1734091 A JP1734091 A JP 1734091A JP H0694876 A JPH0694876 A JP H0694876A
Authority
JP
Japan
Prior art keywords
nuclear fuel
pellet
fuel pellet
crystal grain
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3017340A
Other languages
Japanese (ja)
Inventor
Mutsumi Hirai
睦 平井
Kenichi Ito
賢一 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP3017340A priority Critical patent/JPH0694876A/en
Publication of JPH0694876A publication Critical patent/JPH0694876A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To reduce the integrated discharge amount of a gaseous nuclear fission products (FP) at a high burnup, and to suppress its rapid swelling at the output increasing time, by adding a specific amount of oxide having Ti and Si as the main component or an oxide having Ti, Si, and Al as the main component to a nuclear fuel pellet, so as to make the mean crystal grain diameter a specific value or higher. CONSTITUTION:This nuclear fuel pellet includs an additive which consists of an oxide having Ti and Si as the main component, or an oxide having Ti, Si, and Al as the main component. A titania silicate (Ti-Si-O) powder of 0.25wt% in the weight part ratio and a uranium deoxide powder are mixed to form a cylindrical compact, and it is sintered at about 1700 deg.C in a reduction ambiance for about 4h, so as to obtain a nuclear fuel pellet in which a phase 9 which consists of Ti-Si-O is precipitated on the crystal grain field of a nuclear fission substance 8. Since the mean crystal grain diameter of the pellet is made about 50mum or more, the atomic composition ratio {Ti/(Ti+Si)} is made about 0.3 or more. In the pellet of the crystal grain diameter about 50mum or more obtained in such a way, the FP gas discharge ratio is reduced lower than the conventional one, and in the pellet of the crystal grain diameter about 95mum or more, the FP gas discharge ratio is made less than half that of the conventional one.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軽水炉に装荷される核
燃料ペレットに係り特に気体状核分裂生成物(FP)の
放出を抑制し、かつ耐PCI(ペレット被覆管相互作
用)性能に優れた核燃料ペレットに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear fuel pellet loaded in a light water reactor, and in particular, it suppresses the release of gaseous fission products (FP) and is excellent in PCI (pellet cladding interaction) performance. Regarding pellets.

【0002】[0002]

【従来の技術】現在、軽水炉では経済性の向上のため
に、燃料の高燃焼度化および高出力化が計画されてい
る。この際、燃料棒の設計上はつぎのような問題があ
る。 (1)燃料棒中心温度の上昇 (2)燃料棒内のFPガス放出量の増加 (3)核燃料ペレットと被覆管との相互作用。 図4は従来の核燃料棒の断面略示図である。燃料棒7の
内部に複数個の核燃料ペレット1が積層して充填されて
いる。
2. Description of the Related Art Currently, in light water reactors, in order to improve economic efficiency, it is planned to increase the burnup and output of fuel. At this time, there are the following problems in designing the fuel rod. (1) Increase in center temperature of fuel rod (2) Increase in amount of FP gas released in fuel rod (3) Interaction between nuclear fuel pellet and cladding tube FIG. 4 is a schematic sectional view of a conventional nuclear fuel rod. Inside the fuel rod 7, a plurality of nuclear fuel pellets 1 are stacked and filled.

【0003】二酸化ウランを主成分とする燃料ペレット
を原子炉内で燃焼させると、クリプトン(Kr)、キセ
ノン(Xe)等のFPガスが発生する。
When fuel pellets containing uranium dioxide as a main component are burned in a nuclear reactor, FP gases such as krypton (Kr) and xenon (Xe) are generated.

【0004】従来の核燃料ペレットの平均結晶粒径は、
5〜10μmである。結晶粒内のガス原子の1部は拡散
して結晶粒界に移動し、粒界気泡として析出し、また粒
界気泡を成長させる。粒界気泡の成長は、燃料ペレット
のスエリングの要因であると共に、FPガス放出の重要
な律速段階である。結晶粒界面上で気泡が十分に成長す
ると気泡が相互に連結し、遂にはペレット外部に通じる
FPガスの放出ル−トが形成される。粒界が外部に連結
するとき、粒内の気泡内に保持されていたFPガスは、
ペレット外に急放出される。ペレットから放出されたF
Pガスは被覆管内圧を増加させる。燃料棒は、被覆管内
のガス圧力が冷却水による外圧を超えないか、たとえ超
えても燃料棒の健全性が保てるように、機械的に十分な
安全裕度をもって設計されている。燃料の取り出し平均
燃焼度を増大化する際、たとえFPガスの放出率を一定
値に抑えてもガス放出量は燃焼度に比例して増加する。
The average grain size of conventional nuclear fuel pellets is
It is 5 to 10 μm. A part of the gas atoms in the crystal grain diffuses and moves to the crystal grain boundary, precipitates as a grain boundary bubble, and grows a grain boundary bubble. Grain boundary bubble growth is a factor in fuel pellet swelling and is an important rate-limiting step in FP gas release. When the bubbles grow sufficiently on the crystal grain interface, the bubbles are connected to each other, and finally a release route of FP gas communicating with the outside of the pellet is formed. When the grain boundary is connected to the outside, the FP gas retained in the bubbles inside the grain is
Suddenly released outside the pellet. F released from pellets
P gas increases the cladding internal pressure. The fuel rod is mechanically designed with a sufficient safety margin so that the gas pressure in the cladding tube does not exceed the external pressure of the cooling water, or the integrity of the fuel rod is maintained even if it exceeds the external pressure. When increasing the fuel removal average burnup, even if the release rate of the FP gas is suppressed to a constant value, the gas release amount increases in proportion to the burnup.

【0005】この問題に対しては、燃料棒内のプレナム
容積を大きくし、内圧増加を抑える方法が考えられる。
しかし、プレナム容積を大きくすると、燃料棒の全長を
長くするか、燃料スタック長を減少させる必要があり、
単位炉心体積当りの燃料インベントリが減少し、得策で
ない。燃焼度の増加は、また、燃料ペレット内に保持さ
れたFPガス濃度を増加させる。これらのガスが単原子
または微小気泡の形で保持されれば、スエリングへの影
響は小さい。燃焼が進んだ燃料が出力上昇を受けた場合
は、粒界に集積したFPガスによって気泡が急成長し、
バ−スト的ガス放出を生じたり、急速なスエリングによ
ってペレットと被覆管との間に強い機械的相互作用(P
CI)を生じることが考えられる。
For this problem, a method of increasing the plenum volume in the fuel rod and suppressing an increase in internal pressure can be considered.
However, increasing the plenum volume requires either increasing the overall length of the fuel rods or decreasing the fuel stack length,
Fuel inventory per unit core volume decreases, which is not a good idea. Increasing burnup also increases the FP gas concentration retained within the fuel pellets. If these gases are held in the form of monatoms or microbubbles, the effect on swelling is small. When the burned fuel receives an output increase, bubbles rapidly grow due to the FP gas accumulated at the grain boundaries,
Strong mechanical interaction (P) between the pellet and cladding due to burst outgassing or rapid swelling.
CI) may occur.

【0006】これらの問題点を解決するために、結晶粒
径を大きくし、軟質な相を析出させることが考えられて
いる。これに関し、Al−Si−O等を添加し、焼結し
たペレットについての2、3の報告がある。例えば、特
願昭63−289054号公報では、Al−Si−Oを
添加し、1650℃、4時間で湿性分解アンモニア中で
焼結した結果が報告されているが、平均結晶粒径は33
μm以下である。
In order to solve these problems, it has been considered to increase the crystal grain size and precipitate a soft phase. In this regard, there are a few reports on pellets sintered by adding Al-Si-O or the like. For example, Japanese Patent Application No. 63-289054 reports the result of adding Al-Si-O and sintering in wet decomposed ammonia at 1650 ° C. for 4 hours, but the average crystal grain size is 33.
μm or less.

【0007】また、特願昭63−294863号公報、
特願昭63−293772号公報では、Mg−Si−O
またはMg−Al−OまたはMg−Al−Si−Oを添
加し焼結した例が記載されている。しかし、これも16
40℃、7時間焼結しても30μm程度しか得られてい
ない。さらに、特願昭63−74954号公報ではAl
化合物を添加し、大粒径化する方法が記載されている
が、1750℃、5時間の焼結でも38μm以下の粒径
しか得られていない。
Further, Japanese Patent Application No. Sho 63-294863,
Japanese Patent Application No. 63-293772 discloses Mg-Si-O.
Alternatively, an example in which Mg-Al-O or Mg-Al-Si-O is added and sintered is described. However, this is also 16
Even after sintering at 40 ° C. for 7 hours, only about 30 μm was obtained. Furthermore, in Japanese Patent Application No. 63-74954, Al is used.
A method of adding a compound to increase the particle size is described, but even at 1750 ° C. for 5 hours, only a particle size of 38 μm or less is obtained.

【0008】以上のように、従来例のペレットでは、大
粒径、高密度を達成するには、高温かつ長時間の焼結お
よび複雑な焼結パタ−ンが必要となる。また、比較的低
密度な析出相が存在するため、同一体積中のFP量が低
下し、経済的でない。
As described above, the conventional pellets require high-temperature and long-time sintering and complicated sintering patterns in order to achieve a large particle size and high density. Further, since there is a precipitation phase having a relatively low density, the amount of FP in the same volume decreases, which is not economical.

【0009】[0009]

【発明が解決しようとする課題】本発明は、かかる問題
に対処してなされたもので、高燃焼度におけるFPガス
の積算放出量を軽減すると同時に、出力上昇時における
急速なスエリングを抑制し、高燃焼度化に際しても、燃
料棒や炉心等の寸法を設計変更することなく、十分な安
全裕度を確保できる核燃料ペレットを容易に提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to address such a problem, and reduces the cumulative release amount of FP gas at high burnup, and at the same time suppresses rapid swelling when the output rises. An object of the present invention is to easily provide a nuclear fuel pellet that can secure a sufficient safety margin without changing the design of the dimensions of the fuel rod, the core, etc. even when the burnup is increased.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
の本発明の核燃料ペレットの構成は、ジルコニウム基合
金の被覆管の内部に積層して充填され、核燃料酸化物の
焼結体からなる核燃料ペレットにおいて、前記核燃料ペ
レットがTi、Siを主成分とする酸化物あるいは、T
i、Si、Alを主成分とする酸化物からなる添加物を
含み、ペレットの平均結晶粒径が少なくとも50μmに
なるようにしたことである。すなはち、前記酸化物を添
加し、粒界に析出させることにより、ペレットの結晶粒
界を改質すると同時に、ペレットの平均結晶粒径を大き
くし(少なくと50μm)、さらに添加物の析出体積に
対応する割合以上に高密度化することにより解決する。
The structure of a nuclear fuel pellet of the present invention for solving the above-mentioned problems is obtained by stacking and filling the inside of a cladding tube of a zirconium-based alloy and comprising a nuclear fuel oxide sintered body. In the pellet, the nuclear fuel pellet is an oxide containing Ti or Si as a main component, or T
That is, the average crystal grain size of the pellets is set to be at least 50 μm by including an additive made of an oxide containing i, Si and Al as the main components. That is, by adding the above-mentioned oxide and precipitating it at the grain boundary, the grain boundary of the pellet is modified, and at the same time, the average grain size of the pellet is increased (at least 50 μm), and the precipitation of the additive is further performed. The solution is to densify more than the proportion corresponding to the volume.

【0011】[0011]

【作用】本発明によるペレットでは、添加物あるいはそ
の1部が焼結温度またはそれ以下で液相となり、ウラン
粒子間に存在する化学ポテンシャルの相違により液相へ
のウラン原子の溶解および液相からの析出が繰り返され
るいわゆる液相焼結機構により大粒径化が促進されるも
のと考えられる。
In the pellet according to the present invention, the additive or a part thereof becomes a liquid phase at the sintering temperature or lower, and due to the difference in the chemical potential existing between the uranium particles, the dissolution of uranium atoms in the liquid phase and It is considered that the so-called liquid phase sintering mechanism in which precipitation of is repeated is promoted to increase the grain size.

【0012】さらに、Tiを加えたことにより液相が生
じる温度(共晶点)が低下したことにより、Tiを加え
ない場合に較べて、より低い焼結温度で液相が生じ、粒
界を濡らし、さらに大粒径化を促進すると考えられる。
加えて、Tiの1部が、ウラン粒子(マトリックス)中
に固溶することによりウランマトリックス中のウラン原
子の拡散をも促進させることにより、さらに大粒径化を
促進している。そのうえ、ウラン粉末間での焼結が殆ど
進まない低温で、その結晶粒界を被覆することにより、
通常では閉気孔として残留してしまうような気孔の核
を、早い時期に液相を通して吐き出し、高密度化を容易
にするものと考えられる。
Furthermore, since the temperature at which the liquid phase is generated (eutectic point) is lowered by adding Ti, the liquid phase is generated at a lower sintering temperature as compared with the case where Ti is not added, and grain boundaries are formed. It is considered that it wets and further promotes increase in particle size.
In addition, a part of Ti forms a solid solution in the uranium particles (matrix) to promote the diffusion of uranium atoms in the uranium matrix, thereby further increasing the particle size. Moreover, by coating the grain boundaries at a low temperature at which sintering between uranium powders hardly progresses,
It is considered that the nuclei of pores, which normally remain as closed pores, are discharged through the liquid phase at an early stage to facilitate densification.

【0013】このようなペレットは、核燃料ペレットの
大粒径化によってFPガスの粒界への拡散距離を長く
し、結晶粒内で発生したFPガスの粒界への放出速度を
低下させる作用と、析出相によって粒界を改質し、粒内
から粒界に放出されたガスを析出相を通して比較的速や
かに外部に放出させる作用と、析出相が占める体積に対
応する割合以上に密度を高くすることによりぺレット単
位体積当りに含まれるFPガス量を減少させない作用と
を併せ持っている。
Such a pellet has a function of increasing the diffusion distance of the FP gas to the grain boundary by increasing the particle size of the nuclear fuel pellet and reducing the release rate of the FP gas generated in the crystal grain to the grain boundary. , The effect of reforming the grain boundary by the precipitation phase and releasing the gas released from the grain to the grain boundary to the outside relatively quickly through the precipitation phase, and increasing the density higher than the proportion corresponding to the volume occupied by the precipitation phase This also has the effect of not reducing the amount of FP gas contained in the pellet per unit volume.

【0014】上記の粒界改質によって、粒界に保持され
るガス量が小さくなる分だけFPガス放出量を大きくす
る側に働くが、結晶粒の大粒径化によって結晶粒内に保
持されるガス量が増加し、燃焼が進行した段階では、粒
内保持量の増加が粒界保持量の低下を上回り、ペレット
外への放出量が低下する。また、使用中において粒界に
保持されるガス量が小さいため、出力変動時における粒
界ガスの急放出や過渡スエリングが低減され、出力変動
時における燃料性能が向上する。要するに、結晶粒内に
保持されるガスは、できるだけ内部に保持し、結晶粒界
に析出したガスは、速やかに放出することが好ましい。
The above-mentioned grain boundary modification works to increase the amount of FP gas released by the amount of gas retained at the grain boundaries, but it is retained within the crystal grains due to the increase in the grain size. At the stage where the amount of gas that has increased and combustion has progressed, the increase in the retained amount inside the grain exceeds the decrease in the retained amount at the grain boundary, and the release amount outside the pellet decreases. In addition, since the amount of gas retained at the grain boundaries during use is small, sudden release of grain boundary gas and transient swelling during output fluctuations are reduced, and fuel performance during output fluctuations is improved. In short, it is preferable that the gas held in the crystal grains is kept as much as possible inside, and the gas deposited at the crystal grain boundaries is released promptly.

【0015】[0015]

【実施例】以下、本発明の実施例を図1〜図3を用いて
説明する。図1は本発明の核燃料ペレット組織の拡大模
式図である。図1において、8は核分裂性物質であり、
9は粒界析出相(Ti−Si−O)である。すなわち、
従来の核燃料ペレットの代わりに図1に示すような核分
裂性物質8の結晶粒界にTi−Si−Oからなる相9を
析出させた核燃料ペレットを製造した。その製造方法
は、核燃料ペレットの重量分率で0.25wt%のチタ
ニアシリケ−ト(Ti−Si−O)粉末と二酸化ウラン
粉末とを混合し、円柱状の成型体とした後、還元性雰囲
気中で、約1700℃で4時間焼結することにより、核
燃料ペレットを得た。添加物は、約1600℃で液化
し、焼結中にこの添加物が結晶粒界に浸入し、粒界を覆
うように析出した。
Embodiments of the present invention will be described below with reference to FIGS. FIG. 1 is an enlarged schematic view of the nuclear fuel pellet structure of the present invention. In FIG. 1, 8 is a fissile material,
9 is a grain boundary precipitation phase (Ti-Si-O). That is,
Instead of the conventional nuclear fuel pellet, a nuclear fuel pellet was produced in which the phase 9 made of Ti—Si—O was precipitated at the grain boundary of the fissile material 8 as shown in FIG. The production method is as follows. A titania silicate (Ti-Si-O) powder and a uranium dioxide powder having a weight fraction of the nuclear fuel pellets of 0.25 wt% are mixed to form a columnar molded body, and then, in a reducing atmosphere. Then, a nuclear fuel pellet was obtained by sintering at about 1700 ° C. for 4 hours. The additive was liquefied at about 1600 ° C., the additive penetrated into the grain boundaries during the sintering, and was deposited so as to cover the grain boundaries.

【0016】焼結後のペレットの結晶粒径に影響を及ぼ
す因子として添加物の濃度と組成が考えられる。図2は
ペレットの平均粒径に及ぼす添加物の濃度および組成の
関係を調べるために実施した実験結果を取りまとめた図
である。図2の縦軸の平均粒径を50μm以上とするた
めには、原子構成比(Ti/Ti+Si)は、約0.3
以上でなければならないことがわかる。これら焼結体の
理論密度(TD)は、いずれも96.5%以上であっ
た。
The concentration and composition of the additive are considered as factors that affect the crystal grain size of the pellet after sintering. FIG. 2 is a diagram summarizing the results of experiments carried out to investigate the relationship between the concentration and composition of additives that affect the average particle size of pellets. In order to set the average particle size on the vertical axis of FIG. 2 to 50 μm or more, the atomic composition ratio (Ti / Ti + Si) is about 0.3.
It turns out that it must be above. The theoretical density (TD) of each of these sintered bodies was 96.5% or more.

【0017】図3は本発明の核燃料ペレットの結晶粒径
とFPガス放出率との関係を計算した図である。すなわ
ち、核燃料ペレットを一定線出力で燃焼度100GWd
/tUまで照射した場合におけるFPガス放出率の低減
効果を結晶粒径の関数として計算した結果を図示したも
のである。図3において、縦軸は相対FPガス放出率
(従来ペレットに対して)であり、横軸は結晶粒径(μ
m)を表す。図3の結果から、本発明のペレットの内、
結晶粒径が約50μm以上のものでは、従来ペレットの
ガス放出率(粒径10μm)より低減され、約95μm
以上のものでは、約半分以下に低減することが期待され
る。
FIG. 3 is a graph showing the relationship between the crystal grain size of the nuclear fuel pellet of the present invention and the FP gas release rate. That is, burnup of 100 GWd of nuclear fuel pellets at a constant line output
6 is a graph showing the result of calculation of the effect of reducing the FP gas release rate when irradiated up to / tU as a function of crystal grain size. In FIG. 3, the vertical axis is the relative FP gas release rate (relative to conventional pellets), and the horizontal axis is the crystal grain size (μ
represents m). From the results of FIG. 3, among the pellets of the present invention,
When the crystal grain size is about 50 μm or more, the gas release rate (grain size 10 μm) of the conventional pellet is reduced to about 95 μm.
With the above, it is expected to be reduced to less than about half.

【0018】つぎに本実施例のペレットの相対密度につ
いて考える。チタニアシリケ−トの真密度は、約3g/
cm3であり、UO2の理論密度が10.96g/cm3
であることから、0.25wt%のチタニアシリケ−ト
は、ペレットの全体積の約1.5%を占めると考えられ
る。通常使用される燃料ペレットの気孔率は、5%(相
対密度は95%)程度であるが、本実施例のペレット気
孔率は、3.5%以下である。この高密度化により単位
ペレット体積当りのUO2装荷量を減少させることなく
粒界析出相を形成したペレットが得られた。
Next, the relative density of the pellets of this embodiment will be considered. The true density of titania silicate is about 3 g /
cm 3 , and the theoretical density of UO 2 is 10.96 g / cm 3
Therefore, it is considered that 0.25 wt% of titania silicate accounts for about 1.5% of the total volume of the pellet. The porosity of the fuel pellets that is normally used is about 5% (relative density is 95%), but the pellet porosity of this embodiment is 3.5% or less. Due to this densification, pellets having a grain boundary precipitation phase formed were obtained without reducing the UO 2 loading amount per unit pellet volume.

【0019】この結果から、添加物の濃度と組成を選ぶ
ことにより、粒界は改質され、かつ結晶粒径が大きく、
高密度なペレットを製作できることが分かった。以上
は、Ti−Si−Oについて説明したが、Ti−Si−
Al−Oについても同様な効果が期待できる。
From these results, by selecting the concentration and composition of the additive, the grain boundary was modified and the crystal grain size was large,
It was found that high-density pellets can be manufactured. Although Ti-Si-O has been described above, Ti-Si-
Similar effects can be expected for Al-O.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
核燃料ペレットからのガス状FPの放出を抑制し、かつ
核燃料棒の耐PCI性能を向上させることができる。ま
た、容易に高密度のペレットが得られるようになった。
As described above, according to the present invention,
It is possible to suppress the release of gaseous FP from the nuclear fuel pellets and improve the PCI resistance performance of the nuclear fuel rods. Moreover, high-density pellets can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の核燃料ペレット組織の拡大模式図であ
る。
FIG. 1 is an enlarged schematic view of a nuclear fuel pellet structure of the present invention.

【図2】本発明の核燃料ペレットの平均結晶粒径と添加
物組成、濃度との関係図である。
FIG. 2 is a graph showing the relationship between the average crystal grain size of the nuclear fuel pellet of the present invention, the additive composition, and the concentration.

【図3】本発明の核燃料ペレットの結晶粒径と相対FP
ガス放出率の関係図である。
FIG. 3 Crystal grain size and relative FP of the nuclear fuel pellet of the present invention
It is a relationship diagram of a gas release rate.

【図4】従来の核燃料棒の断面略示図である。FIG. 4 is a schematic cross-sectional view of a conventional nuclear fuel rod.

【符号の説明】[Explanation of symbols]

1 核燃料ペレット 2 被覆管 3 上部端栓 4 下部端栓 5 プレナムスプリング 6 ゲッタ− 7 燃料棒 8 核分裂性物質 9 粒界析出相 1 Nuclear Fuel Pellet 2 Cladding Tube 3 Upper End Plug 4 Lower End Plug 5 Plenum Spring 6 Getter 7 Fuel Rod 8 Fissionable Material 9 Grain Boundary Precipitation Phase

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年10月25日[Submission date] October 25, 1993

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図4】 [Figure 4]

【図3】 [Figure 3]

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ジルコニウム基合金の被覆管の内部に積
層して充填され、核燃料酸化物の焼結体からなる核燃料
ペレットにおいて、前記核燃料ペレットがTi、Siを
主成分とする酸化物あるいは、Ti、Si、Alを主成
分とする酸化物からなる添加物を含み、ペレットの平均
結晶粒径が少なくとも50μmであることを特徴とする
核燃料ペレット。
1. A nuclear fuel pellet comprising a sintered body of a nuclear fuel oxide, which is laminated and filled inside a cladding tube of a zirconium-based alloy, wherein the nuclear fuel pellet is Ti, an oxide containing Si as a main component, or Ti. , Si, and Al as the main components, and an additive made of an oxide, wherein the average grain size of the pellets is at least 50 μm.
【請求項2】 請求項1記載の核燃料ペレットにおい
て、核燃料ペレットへの添加物の量は、0.25wt%
以下とすることを特徴とする核燃料ペレット。
2. The nuclear fuel pellet according to claim 1, wherein the amount of the additive to the nuclear fuel pellet is 0.25 wt%.
A nuclear fuel pellet characterized by the following.
【請求項3】 請求項2記載の核燃料ペレットにおい
て、前記核燃料ペレットの相対密度は96%TD以上で
あることを特徴とする核燃料ペレット。
3. The nuclear fuel pellet according to claim 2, wherein the nuclear fuel pellet has a relative density of 96% TD or more.
【請求項4】 請求項1記載の核燃料ペレットにおい
て、添加物相の平均原子構成比(Ti/Ti+Siある
いはTi/Ti+Si+Al)が0.3以上であり、添
加濃度が0.25wt%以下であることを特徴とする核
燃料ペレット。
4. The nuclear fuel pellet according to claim 1, wherein the additive phase has an average atomic composition ratio (Ti / Ti + Si or Ti / Ti + Si + Al) of 0.3 or more and an additive concentration of 0.25 wt% or less. Nuclear fuel pellets characterized by.
JP3017340A 1991-02-08 1991-02-08 Nuclear fuel pellet Pending JPH0694876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3017340A JPH0694876A (en) 1991-02-08 1991-02-08 Nuclear fuel pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3017340A JPH0694876A (en) 1991-02-08 1991-02-08 Nuclear fuel pellet

Publications (1)

Publication Number Publication Date
JPH0694876A true JPH0694876A (en) 1994-04-08

Family

ID=11941328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017340A Pending JPH0694876A (en) 1991-02-08 1991-02-08 Nuclear fuel pellet

Country Status (1)

Country Link
JP (1) JPH0694876A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828715A (en) * 1995-08-22 1998-10-27 Hitachi, Ltd. Fuel rods, its manufacturing method and fuel assembly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828715A (en) * 1995-08-22 1998-10-27 Hitachi, Ltd. Fuel rods, its manufacturing method and fuel assembly

Similar Documents

Publication Publication Date Title
RU2735243C2 (en) Completely ceramic microencapsulated fuel, made with burnable absorber as a sintering intensifier
RU2723561C2 (en) Method of producing completely ceramic microencapsulated nuclear fuel
JP5905835B2 (en) Nuclear fuel, nuclear fuel element, nuclear fuel assembly, and nuclear fuel manufacturing method
JP5508369B2 (en) Method for adjusting solid solution concentration of crystal grain boundary and vicinity of crystal grain boundary of heterogeneous additive element, and method of manufacturing nuclear fuel sintered body having large crystal grain using the same
US5882552A (en) Method for recycling fuel scrap into manufacture of nuclear fuel pellets
RU2352004C2 (en) METHOD OF OBTAINING OF NUCLEAR FUEL TABLETS ON BASIS OF IMMIXED OXIDE (U, Pu)O2 OR (U, Th)O2
KR101462738B1 (en) Fission products capture Uranium dioxide nuclear fuel containing ceramic microcell and method of manufacturing the same
US9653188B2 (en) Fabrication method of burnable absorber nuclear fuel pellets and burnable absorber nuclear fuel pellets fabricated by the same
EP0502395B1 (en) Nuclear fuel pellets and method of manufacturing the same
JP6409051B2 (en) New substances made from uranium, gadolinium and oxygen and their use as depleting neutron poisons
JPH0694876A (en) Nuclear fuel pellet
EP2082402B1 (en) High burn-up nuclear fuel pellets
JP6699882B2 (en) Nuclear fuel compact, method of manufacturing nuclear fuel compact, and nuclear fuel rod
JP3076058B2 (en) Nuclear fuel pellet and method for producing the same
CA1100302A (en) High performance nuclear fuel element
JP4135976B2 (en) Modified nuclear fuel for delaying RIM effect
JP2655908B2 (en) Method for producing nuclear fuel pellet containing gatolinium oxide having large crystal grain size
JPH01248092A (en) Manufacture of nuclear fuel pellet
KR101474153B1 (en) Fission products capture Uranium dioxide nuclear fuel containing metal microcell and method of manufacturing the same
JPH0743487A (en) Nuclear fuel pellet
JPH0371674B2 (en)
JP2860615B2 (en) Fuel assembly for plutonium firing
JPH05196770A (en) Nuclear fuel pellet
JPH09127280A (en) Production of nuclear fuel particle
JPH03249595A (en) Nuclear fuel pellet