JPH09127280A - Production of nuclear fuel particle - Google Patents

Production of nuclear fuel particle

Info

Publication number
JPH09127280A
JPH09127280A JP7309955A JP30995595A JPH09127280A JP H09127280 A JPH09127280 A JP H09127280A JP 7309955 A JP7309955 A JP 7309955A JP 30995595 A JP30995595 A JP 30995595A JP H09127280 A JPH09127280 A JP H09127280A
Authority
JP
Japan
Prior art keywords
particles
heating
heated
particle
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7309955A
Other languages
Japanese (ja)
Inventor
Kazutoshi Tokai
和俊 渡海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP7309955A priority Critical patent/JPH09127280A/en
Publication of JPH09127280A publication Critical patent/JPH09127280A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a large particle size fuel particle for high burnup by using an redox low temperature sintering method without adding U3 O8 . SOLUTION: By heating ADU particle produced with exterior gelation method in the air at 800 deg.C or lower, gelling agent such as polyvinyl alcohol is removal to make it UO3 or U3 O8 particle. This particle of UO3 or U3 O8 is first heated and sintered in slightly oxidizing atmosphere and then heated in reducing atmosphere to make the O/U ratio of the above UO3 or U3 O8 particle be 2.0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高温ガス炉等で使用
される核燃料粒子に係り、詳しくは結晶粒径を粗大化さ
せた高燃焼度用燃料粒子の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nuclear fuel particle used in a high temperature gas reactor or the like, and more particularly to a method for producing a high burnup fuel particle having a coarse crystal grain size.

【0002】[0002]

【従来の技術】高温ガス炉用燃料や振動充填法燃料に
は、被覆粒子燃料という、UO2 燃料核を高密度炭素や
SiC等で多層に被覆した粒子状燃料が使用される。
2. Description of the Related Art As a fuel for a high temperature gas reactor and a fuel for a vibration filling method, a particulate fuel in which a UO 2 fuel core is coated in multiple layers with high density carbon, SiC or the like, which is called a coated particle fuel, is used.

【0003】これら高温ガス炉用燃料や振動充填法燃料
の場合、軽水炉燃料で進められている高燃焼度化は現在
議論されておらず、特に結晶の大粒径化は検討されてい
ないが、今後はFP保持特性等の面から大粒径化が必要
になると考えられる。
In the case of these fuels for high temperature gas reactors and fuels of the vibration filling method, the high burnup which has been promoted in light water reactor fuels has not been discussed at present, and the grain size increase of crystals has not been examined, In the future, it will be necessary to increase the particle size in terms of FP retention characteristics.

【0004】粒子燃料と対比されるペレット燃料では、
大粒径化のために、(1)添加物、(2)高温焼結法、
(3)活性粉末使用法、(4)酸化還元高温焼結法、
(5)酸化還元低温焼結法などの方法が考えられる。こ
の内、(5)の酸化還元低温焼結法は、添加物に頼ら
ず、また高温度加熱も不要であるためメリットが多い。
In pellet fuels as opposed to particulate fuels,
(1) additives, (2) high temperature sintering method for increasing the particle size,
(3) Active powder usage method, (4) Redox high temperature sintering method,
(5) A method such as a redox low temperature sintering method is conceivable. Among these, the oxidation-reduction low-temperature sintering method (5) has many advantages because it does not rely on additives and does not require high-temperature heating.

【0005】これに対し、前記粒子燃料は、通常はゲル
化法により、ウランを含む溶液を媒体中でADU(重ウ
ラン酸アンモニウム)・ゲル化させたものを仮焼・焼結
することによって製造される。したがって、上記(1)
〜(4)の手法については、この粒子燃料の製造に容易
に適用が可能であるが、(5)の酸化還元低温焼結法に
ついては、ADUを出発物質としたUO2 粉末の場合
は、大粒径化を目的とするために焼結前にU3 8 を所
要割合添加する必要があり、このことから上記ゲ化法で
はこのような操作は困難であると考えられる。
On the other hand, the particulate fuel is usually produced by a gelation method by calcination and sintering a gelled solution of uranium-containing solution in a medium of ADU (ammonium diuranate). To be done. Therefore, the above (1)
The methods of (4) to (4) can be easily applied to the production of this particulate fuel, but the oxidation-reduction low-temperature sintering method of (5), in the case of UO 2 powder starting from ADU, It is necessary to add U 3 O 8 in a required ratio before sintering for the purpose of increasing the grain size. From this, it is considered that such an operation is difficult in the above-mentioned gelatinization method.

【0006】[0006]

【発明が解決しようとする課題】本発明は叙上の如き実
状に対処し、上記U3 8 を添加することなしに上記酸
化還元低温焼結法を行い、これにより高燃焼度用の大粒
径の燃料粒子を製造することを目的とするものである。
SUMMARY OF THE INVENTION The present invention addresses the above situation and performs the oxidation-reduction low temperature sintering method without adding the U 3 O 8 to obtain a large burnup for high burnup. It is intended to produce fuel particles having a particle size.

【0007】[0007]

【課題を解決するための手段】すなわち、上記目的に適
合する本発明の核燃料粒子の製造方法は、外部ゲル化法
で生成したADU(重ウラン酸アンモニウム)粒子を空
気中にて約400℃〜800℃で加熱することによりP
VA(ポリビニルアルコール)等のゲル化助剤を除去し
てUO3 またはU3 8 の粒子となし、このUO3 また
はU3 8 の粒子を、先ず微酸化雰囲気にて加熱・焼結
し、次いで還元雰囲気で加熱することにより、上記UO
3 またはU3 8 粒子のO/U比を2.0 ± 0.05 となす
ことを特徴とする。
That is, in the method for producing nuclear fuel particles of the present invention which meets the above-mentioned object, ADU (ammonium diuranate) particles produced by the external gelation method are heated to about 400 ° C in air. P by heating at 800 ℃
A gelling aid such as VA (polyvinyl alcohol) is removed to form UO 3 or U 3 O 8 particles, and these UO 3 or U 3 O 8 particles are first heated and sintered in a slightly oxidizing atmosphere. Then, by heating in a reducing atmosphere, the UO
The O / U ratio of 3 or U 3 O 8 particles is 2.0 ± 0.05.

【0008】また、上記本発明の製造方法において、上
記微酸化雰囲気を酸素濃度10- 3〜5×102 ppm
のN2 等の不活性ガスまたは同酸素濃度のCO/CO2
ガスとして、この微酸化雰囲気にて前記UO3 またはU
3 8 粒子を加熱温度約1000〜1400℃で約30
分〜3時間加熱・焼結した後、水素を含む上記還元雰囲
気にて約1000〜1400℃で約30分〜3時間加熱
することも可能である。
Further, in the above-mentioned manufacturing method of the present invention, the slightly oxidizing atmosphere is changed to an oxygen concentration of 10 −3 to 5 × 10 2 ppm.
Inert gas such as N 2 or CO / CO 2 with the same oxygen concentration
As a gas, in the slightly oxidizing atmosphere, the UO 3 or U
3 O 8 particles are heated at a temperature of about 1000 to 1400 ° C. for about 30
After heating / sintering for 3 minutes to 3 hours, it is also possible to heat at about 1000 to 1400 ° C. for about 30 minutes to 3 hours in the reducing atmosphere containing hydrogen.

【0009】さらに、上記本発明の各製造方法におい
て、上記ゲル化助剤を除去して得たUO3 またはU3
8 粒子を、上記微酸化雰囲気による加熱・焼結前に、還
元雰囲気にて約400℃〜900℃で加熱し、上記UO
3 またはU3 8 粒子のO/U比と粒子の安定性とを調
整することも可能である。
Further, in each of the above-mentioned production methods of the present invention, UO 3 or U 3 O obtained by removing the gelling aid is obtained.
Before heating and sintering the 8 particles in the above-mentioned slightly oxidizing atmosphere, they are heated in a reducing atmosphere at about 400 ° C to 900 ° C to obtain the above-mentioned UO.
It is also possible to adjust the O / U ratio of the 3 or U 3 O 8 particles and the stability of the particles.

【0010】[0010]

【発明の実施の形態】外部ゲル化法による一般的な粒子
燃料の製法は図1に示すようなものである。ここで、外
部ゲル化法の場合、ゲル化の助剤としてPVA(ポリビ
ニルアルコール)等の有機結合剤を必要とするため、焼
結に先立ちこれらを分解除去するための工程が必要であ
る。これは、ペレット製造時の脱バインダー工程と同様
であり、加熱温度は還元雰囲気の場合は約900℃前後
であり、空気中(酸化雰囲気中)では粒子形状の保持が
必要であるため約700℃前後である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A general method for producing a particulate fuel by the external gelation method is as shown in FIG. Here, in the case of the external gelation method, since an organic binder such as PVA (polyvinyl alcohol) is required as an auxiliary agent for gelation, a step for decomposing and removing these is necessary before sintering. This is similar to the binder removal step during pellet production, the heating temperature is around 900 ° C in the reducing atmosphere, and the particle shape must be maintained in the air (in the oxidizing atmosphere) at approximately 700 ° C. Before and after.

【0011】一方、ゲル化法により製造されたADU球
の熱重量分析を行ったところ、図2のような結果を得
た。更に、酸化雰囲気中で約500℃で加熱して得られ
たUO3 粒子を還元雰囲気で加熱をすると同図の破線の
ような重量変化を示した。
On the other hand, thermogravimetric analysis of ADU spheres produced by the gelation method gave the results shown in FIG. Furthermore, when UO 3 particles obtained by heating at about 500 ° C. in an oxidizing atmosphere were heated in a reducing atmosphere, a weight change as shown by the broken line in the figure was shown.

【0012】ADU経由のUO2 + xを酸化還元低温焼
結することにより大粒径粒子を得る場合、カーボン
(C:炭素)は雰囲気中の酸素と結合するため雰囲気毒
となる。この為、同法を用いるためには、材料中のカー
ボンを除去する必要がある。
When large particle size particles are obtained by redox low temperature sintering of UO 2 + x via ADU, carbon (C: carbon) becomes an atmospheric poison because it bonds with oxygen in the atmosphere. Therefore, in order to use this method, it is necessary to remove carbon in the material.

【0013】また、酸化還元低温焼結の場合、雰囲気中
の酸素ポテンシャルに対応して材料が容易に所定のO/
U比をとれる必要があるが、本発明方法によりADUか
ら製造されたUO3 やU3 8 、及びUO3 を還元する
ことによって得られたUO2+ x(0≦x≦0.05)は、
夫々容易に温度と酸素ポテンシャルによって規定される
O/U比をとることが確認された。
Further, in the case of oxidation-reduction low temperature sintering, the material is easily made to have a predetermined O / value in accordance with the oxygen potential in the atmosphere.
Although it is necessary to obtain a U ratio, UO 3 and U 3 O 8 produced from ADU by the method of the present invention, and UO 2+ x (0 ≦ x ≦ 0.05) obtained by reducing UO 3 are
It was confirmed that the O / U ratio defined by the temperature and the oxygen potential was easily obtained.

【0014】低温酸化還元焼結法は、その加熱途中でU
2 . 2 5 (U4 9 )を通過することが重要と言われ
ている。従って、外部ゲル化法で得られたADU粒子を
空気中で加熱しUO3 又やU3 8 とした粒子を所定O
/U比(=2.25) となるような雰囲気で加熱することに
より大粒径の結晶を有する球状燃料粒子を得ることがで
きる。
In the low temperature redox sintering method, U
It is said that it is important to pass through O 2 .25 (U 4 O 9 ). Therefore, ADU particles obtained by the external gelation method are heated in air to form UO 3 or U 3 O 8 particles at a predetermined O 2.
By heating in an atmosphere having a / U ratio (= 2.25), spherical fuel particles having large-sized crystals can be obtained.

【0015】本発明はその加熱雰囲気及び条件を明らか
にしたものである。
The present invention clarifies the heating atmosphere and conditions.

【0016】[0016]

【実施例】以下さらに本発明の実施例を説明する。EXAMPLES Examples of the present invention will be further described below.

【0017】(1)実施例1 外部ゲル化法によって得られた、PVA約4%を含む粒
径約1.3 mmのADU粒子を、空気中500℃で3時間
加熱することにより粒径約1.2 mmのUO3 粒子を得
た。次いで、微酸化雰囲気中での加熱・焼結として、こ
の粒子を酸素濃度40ppmのN2 ガス中にて1100
℃まで昇温速度200℃/時で加熱し、1100℃にて
30分保持後、還元雰囲気加熱として水素雰囲気(75
%H2 /N2 )中にて1時間加熱することによりUO2
球を得た。このUO2 球の直径は約0.6 mm、密度は約
98.0%T.D、平均結晶粒径は約80μmであった。
(1) Example 1 ADU particles containing about 4% PVA and having a particle size of about 1.3 mm obtained by the external gelation method were heated in air at 500 ° C. for 3 hours to give a particle size of about 1.2 mm. UO 3 particles were obtained. Then, the particles were heated and sintered in a slightly oxidizing atmosphere, and the particles were heated to 1100 in N 2 gas having an oxygen concentration of 40 ppm.
After heating up to 200 ° C. at a heating rate of 200 ° C./hour and holding at 1100 ° C. for 30 minutes, a hydrogen atmosphere (75
% H 2 / N 2 ) to heat UO 2
I got a sphere. This UO 2 sphere has a diameter of about 0.6 mm and a density of about 98.0% T. D, the average crystal grain size was about 80 μm.

【0018】(2)実施例2 実施例1と同じ方法で製造されたUO3 粒子を75%H
2 /N2 雰囲気中、約410℃にて1時間加熱し、O/
U比約2.4 の球を得た。次いで、微酸化雰囲気中での加
熱・焼結として、この粒子を酸素濃度70ppmの窒素
雰囲気中にて1100℃の温度で30分間保持した後、
実施例1と同様な還元加熱を行いUO2球を得た。この
UO2 球の直径は約0.6 mm、密度は約98.5%T.
D、平均結晶粒径は約85μmであった。
(2) Example 2 UO 3 particles produced in the same manner as in Example 1 were treated with 75% H
In a 2 / N 2 atmosphere, heat at about 410 ° C for 1 hour, and
A ball with a U ratio of about 2.4 was obtained. Next, as heating / sintering in a slightly oxidizing atmosphere, the particles were held at a temperature of 1100 ° C. for 30 minutes in a nitrogen atmosphere having an oxygen concentration of 70 ppm,
The same reduction heating as in Example 1 was performed to obtain UO 2 spheres. This UO 2 sphere has a diameter of about 0.6 mm and a density of about 98.5% T.
D, the average crystal grain size was about 85 μm.

【0019】(3)実施例3 実施例1と同じ方法で製造されたUO3 粒子を75%H
2 /N2 雰囲気中、約500℃にて加熱しUO2 粒子を
得た。ただし、O/U比は約2.1 であった。これは取出
時に一部酸化されたものと推測された。この粒子を実施
例2と同様に微酸化雰囲気と還元雰囲気とで夫々加熱す
ることにより、直径約0.6 mm、密度は約98.7%T.
D、平均結晶粒径約90μmのUO2 粒子を得た。
(3) Example 3 UO 3 particles produced in the same manner as in Example 1 were treated with 75% H
UO 2 particles were obtained by heating at about 500 ° C. in a 2 / N 2 atmosphere. However, the O / U ratio was about 2.1. It was speculated that this was partially oxidized at the time of extraction. The particles were heated in a slightly oxidizing atmosphere and a reducing atmosphere in the same manner as in Example 2 to give a diameter of about 0.6 mm and a density of about 98.7% T.S.
D, UO 2 particles having an average crystal grain size of about 90 μm were obtained.

【0020】(4)実施例4 実施例1と同様に製造されたADU粒子を空気中にて6
00℃まで加熱することによりU3 8 粒子を得た。粒
子は完全な球体を保持し、くずれはなかった。この粒子
を実施例1と同様の微酸化雰囲気と還元雰囲気とで夫々
加熱することにより、直径約0.6 mmのUO2 粒子を得
た。密度は97.5%T.D、平均結晶粒径は約57μm
であった。
(4) Example 4 ADU particles produced in the same manner as in Example 1 were subjected to 6 in air.
U 3 O 8 particles were obtained by heating to 00 ° C. The particles retained perfect spheres and did not collapse. The particles were heated in the same slightly oxidizing atmosphere and reducing atmosphere as in Example 1 to obtain UO 2 particles having a diameter of about 0.6 mm. Density is 97.5% T. D, average crystal grain size is about 57 μm
Met.

【0021】(5)比較例1 実施例1と同様な方法で得られたADU粒子を還元雰囲
気中900℃にて1時間保持後、1600℃まで昇温
し、この温度で1時間保持し、直径約0.6 mmのUO2
粒子を得た。密度は98.2%T.Dであったが、平均結
晶粒径は約12μmであった。
(5) Comparative Example 1 ADU particles obtained by the same method as in Example 1 were kept in a reducing atmosphere at 900 ° C. for 1 hour, then heated to 1600 ° C. and kept at this temperature for 1 hour. UO 2 with a diameter of about 0.6 mm
The particles were obtained. Density is 98.2% T. However, the average crystal grain size was about 12 μm.

【0022】(6)比較例2 実施例1と同様な方法で得られたADU粒子を還元雰囲
気中約310℃にて1時間保持することによりUO3
子を得た。これを実施例1と同様に微酸化雰囲気と還元
雰囲気とで夫々加熱処理し、UO2 粒子を得た。密度は
98.7%T.Dであったが平均結晶粒径は2μm以下で
あった。
(6) Comparative Example 2 UO 3 particles were obtained by keeping ADU particles obtained by the same method as in Example 1 in a reducing atmosphere at about 310 ° C. for 1 hour. This was heat-treated in a slightly oxidizing atmosphere and a reducing atmosphere in the same manner as in Example 1 to obtain UO 2 particles. Density is 98.7% T. However, the average crystal grain size was 2 μm or less.

【0023】なお、UO3 又はU3 8 粒子をADU粒
子から空気中加熱により製造する場合は、800℃を越
えると形状変化が生じると共にもろくなり、取扱い上困
難をきたす。
When UO 3 or U 3 O 8 particles are produced from ADU particles by heating in air, if the temperature exceeds 800 ° C., the shape changes and the material becomes brittle, which is difficult to handle.

【0024】また、還元雰囲気では700℃前後より、
上記ADU粒子中のPVA等有機物の分解・除去が始ま
り、900℃前後でほぼ終了する。このようにして得た
UO3 又はU3 8 粒子を用いて、前記実施例(1)に
示すような酸化・還元・焼結を行ってもほぼ同様な結果
が得られるが、経済上不利である。
In a reducing atmosphere, from around 700 ° C.,
Decomposition / removal of organic substances such as PVA in the ADU particles starts and is almost completed at around 900 ° C. Using the UO 3 or U 3 O 8 particles obtained in this way, almost the same results can be obtained by carrying out the oxidation, reduction and sintering as shown in the above Example (1), but it is economically disadvantageous. Is.

【0025】更に、ADU粒子を直接、微酸化雰囲気に
て加熱すると、図2の斜線の部分のいずれかを通過し、
やはり実施例(1)と同様な大粒径の結晶を有する粒子
を得ることができるが、分解によって生ずるアンモニ
ア、CO2 等の処理・調整が困難であり、経済的に不利
と考えられる。
Furthermore, when the ADU particles are directly heated in a slightly oxidizing atmosphere, they pass through any of the shaded portions in FIG.
Particles having crystals of large particle size similar to those in Example (1) can be obtained, but it is considered economically disadvantageous because it is difficult to treat and adjust ammonia, CO 2 and the like generated by decomposition.

【0026】焼結及び還元温度は夫々1000℃以下で
も可能であるが、不必要に時間が長くなり、また140
0℃以上でも可能であるが、そうすると高温焼結と実質
的に差がなくなる。
The sintering temperature and the reduction temperature can be 1000 ° C. or less, but the time becomes unnecessarily long and 140
Although it is possible to use it at 0 ° C. or higher, it is substantially the same as the high temperature sintering.

【0027】[0027]

【発明の効果】以上説明したように、本発明の核燃料粒
子の製造方法は、外部ゲル化法で生成したADU粒子を
空気中にて800℃以下で加熱することによりPVA等
ゲル化助剤を除去してUO3 またはU3 8 の粒子とな
し、このUO3 またはU3 8の粒子を、先ず微酸化雰
囲気にて加熱・焼結し、次いで還元雰囲気で加熱するこ
とにより、上記UO3 またはU3 8 粒子のO/U比を
ほぼ2.0となすものであり、被覆管に粒子を詰める振動
充填法燃料や高温ガス炉用の粒子燃料を、高燃焼度用の
大結晶粒径の粒子として経済的に製造せしめるとの顕著
な効果を奏するものである。
As described above, according to the method for producing nuclear fuel particles of the present invention, the ADU particles produced by the external gelation method are heated in the air at 800 ° C. or lower to give a gelling aid such as PVA. The particles are removed to form UO 3 or U 3 O 8 particles, and the UO 3 or U 3 O 8 particles are first heated and sintered in a slightly oxidizing atmosphere, and then in a reducing atmosphere to obtain the above UO 3 or U 3 O 8 particles. The O / U ratio of 3 or U 3 O 8 particles is set to about 2.0, and the vibration filling method fuel in which the particles are packed in the cladding tube and the particle fuel for high temperature gas reactor are used as large crystals for high burnup. It has a remarkable effect that it can be economically produced as particles having a particle size.

【図面の簡単な説明】[Brief description of the drawings]

【図1】代表的な外部ゲル化法による粒子燃料の製造方
法を示すチャート図である。
FIG. 1 is a chart showing a method for producing a particulate fuel by a typical external gelation method.

【図2】外部ゲル化法によって製造したADU粒子の熱
重量分析結果を示すグラフである。
FIG. 2 is a graph showing a thermogravimetric analysis result of ADU particles manufactured by an external gelation method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 外部ゲル化法で生成した重ウラン酸アン
モニウム粒子を空気中にて約400℃〜800℃で加熱
することによりポリビニルアルコール等のゲル化助剤を
除去してUO3 またはU3 8 の粒子となし、このUO
3 またはU38 の粒子を、先ず微酸化雰囲気にて加熱
・焼結し、次いで還元雰囲気で加熱することにより、上
記UO3 またはU3 8 粒子のO/U比を2.0 ±0.05と
なすことを特徴とする核燃料粒子の製造方法。
1. A gelling aid such as polyvinyl alcohol is removed by heating ammonium biuranate particles produced by the external gelation method in air at about 400 ° C. to 800 ° C. to remove UO 3 or U 3. particles and none of the O 8, the UO
By heating and sintering 3 or U 3 O 8 particles in a slightly oxidizing atmosphere and then in a reducing atmosphere, the O / U ratio of the UO 3 or U 3 O 8 particles is set to 2.0 ± 0.05. A method for producing nuclear fuel particles, characterized by comprising:
【請求項2】 上記微酸化雰囲気を酸素濃度10- 3
5×102 ppmのN2 等の不活性ガスまたは同酸素濃
度のCO/CO2 ガスとして、この微酸化雰囲気にて前
記UO3 またはU3 8 粒子を加熱温度約1000〜1
400℃で約30分〜3時間加熱・焼結した後、水素を
含む上記還元雰囲気にて約1000〜1400℃で約3
0分〜3時間加熱する請求項1記載の核燃料粒子の製造
方法。
2. The oxygen concentration in the slightly oxidizing atmosphere is 10.sup.- 3 .
The UO 3 or U 3 O 8 particles are heated at a heating temperature of about 1000 to 1 in this slightly oxidizing atmosphere as an inert gas such as 5 × 10 2 ppm of N 2 or CO / CO 2 gas having the same oxygen concentration.
After heating and sintering at 400 ° C for about 30 minutes to 3 hours, at about 1000 to 1400 ° C for about 3 in the reducing atmosphere containing hydrogen.
The method for producing nuclear fuel particles according to claim 1, wherein the heating is performed for 0 minutes to 3 hours.
【請求項3】 上記ゲル化助剤を除去して得たUO3
たはU3 8 粒子を、上記微酸化雰囲気による加熱・焼
結前に、還元雰囲気にて約400℃〜900℃で加熱
し、上記UO3 またはU3 8 粒子のO/U比と粒子の
安定性とを調整する請求項1または2記載の核燃料粒子
の製造方法。
3. UO 3 or U 3 O 8 particles obtained by removing the gelling aid are heated at about 400 ° C. to 900 ° C. in a reducing atmosphere before heating and sintering in the slightly oxidizing atmosphere. The method for producing nuclear fuel particles according to claim 1 or 2, wherein the O / U ratio of the UO 3 or U 3 O 8 particles and the particle stability are adjusted.
JP7309955A 1995-11-01 1995-11-01 Production of nuclear fuel particle Pending JPH09127280A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7309955A JPH09127280A (en) 1995-11-01 1995-11-01 Production of nuclear fuel particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7309955A JPH09127280A (en) 1995-11-01 1995-11-01 Production of nuclear fuel particle

Publications (1)

Publication Number Publication Date
JPH09127280A true JPH09127280A (en) 1997-05-16

Family

ID=17999372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7309955A Pending JPH09127280A (en) 1995-11-01 1995-11-01 Production of nuclear fuel particle

Country Status (1)

Country Link
JP (1) JPH09127280A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001814A (en) * 2005-06-24 2007-01-11 Nuclear Fuel Ind Ltd Method and apparatus for continuously manufacturing ammonium diuranate particle
CN103159262A (en) * 2011-12-14 2013-06-19 中核建中核燃料元件有限公司 Processing technology of U3O8 or gadolinium-containing U3O8 oversize product
US9558853B2 (en) 2011-12-13 2017-01-31 Korea Atomic Energy Research Institute Porous UO2 sintered pellets and method for fabricating porous UO2 sintered pellets and electrolytic reduction using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001814A (en) * 2005-06-24 2007-01-11 Nuclear Fuel Ind Ltd Method and apparatus for continuously manufacturing ammonium diuranate particle
US9558853B2 (en) 2011-12-13 2017-01-31 Korea Atomic Energy Research Institute Porous UO2 sintered pellets and method for fabricating porous UO2 sintered pellets and electrolytic reduction using same
CN103159262A (en) * 2011-12-14 2013-06-19 中核建中核燃料元件有限公司 Processing technology of U3O8 or gadolinium-containing U3O8 oversize product

Similar Documents

Publication Publication Date Title
JP3106113B2 (en) Recycling method for pellet scrap of oxide nuclear fuel
JPS62232595A (en) Nuclear fuel sintered body and manufacture thereof
KR102102977B1 (en) Method of manufacturing nuclear fuel pellet consisting of duplex grains
US7485246B2 (en) Fabrication method of sintered duplex nuclear fuel pellet
US4512939A (en) Method for manufacturing oxidic sintered nuclear fuel bodies
JP3188685B2 (en) Method for producing sintered uranium dioxide having large crystal grains
US3641227A (en) Manufacture of ceramic artefacts having pores
JPH09127280A (en) Production of nuclear fuel particle
JPH0954187A (en) Producing method for nuclear fuel pellet using uranium oxide particle as raw material
JP5153981B2 (en) Manufacturing method of MOX type nuclear fuel pellets
US4882100A (en) Uo2 pellet fabrication process
JPH0368898A (en) Method of manufacturing nuclear fuel pellet
JPH0755975A (en) Producing nuclear fuel pellet
JPH0761820A (en) Production of nuclear fuel pellet
JP2588947B2 (en) Manufacturing method of oxide nuclear fuel sintered body
JPH09127279A (en) Nuclear fuel pellet and production thereof
JP3051388B1 (en) Manufacturing method of nuclear fuel sintered body
JP2907694B2 (en) Method for producing nuclear fuel pellets
JPH08231226A (en) Production of uo2 powder
JP2662359B2 (en) Method for producing nuclear fuel pellets
JP3071671B2 (en) Method of controlling grain size of UO2 sintered pellet
JP4135976B2 (en) Modified nuclear fuel for delaying RIM effect
JP2911866B1 (en) Method for producing nuclear fuel pellets
JPH0316634B2 (en)
JPH039296A (en) Production of nuclear fuel pellet

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20041019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050208