JPH0761820A - Production of nuclear fuel pellet - Google Patents

Production of nuclear fuel pellet

Info

Publication number
JPH0761820A
JPH0761820A JP5206768A JP20676893A JPH0761820A JP H0761820 A JPH0761820 A JP H0761820A JP 5206768 A JP5206768 A JP 5206768A JP 20676893 A JP20676893 A JP 20676893A JP H0761820 A JPH0761820 A JP H0761820A
Authority
JP
Japan
Prior art keywords
pellets
nuclear fuel
powder
ratio
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5206768A
Other languages
Japanese (ja)
Inventor
Tadao Yato
唯夫 八登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP5206768A priority Critical patent/JPH0761820A/en
Publication of JPH0761820A publication Critical patent/JPH0761820A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To produce UO2 pellets having a large crystal grain diameter in a state thereof without any crack or breakage from UO2 powder having high activities. CONSTITUTION:This method for producing nuclear fuel pellets comprises reducing a formed body of UO2 powder having high activities at a temperature within the range of 500-1000 deg.C, thereby regulating the O/U ratio to <=2.25, then sintering the reduced formed body at 1200-1800 deg.C in a reducing atmosphere and affording the UO2 pellets having 2.00 O/U ratio in a method for producing the nuclear fuel pellets having a large crystal grain diameter by forming the UO2 powder and sintering the formed body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、活性度の大きなUO2
粉末から結晶粒径の大きな核燃料ペレットを製造する方
法に関する。更に詳しくは、照射時における核分裂生成
ガスの保持性能に優れたUO2核燃料ペレットの製造方
法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to UO 2 having high activity.
The present invention relates to a method for producing a nuclear fuel pellet having a large crystal grain size from a powder. More specifically, the present invention relates to a method for producing UO 2 nuclear fuel pellets having excellent retention performance of fission product gas during irradiation.

【0002】[0002]

【従来の技術】近年、原子力発電における技術革新の試
みのひとつとして、原子炉燃料をより長期間使用する、
いわゆる高燃焼度化の計画が検討されている。この高燃
焼度化に伴って燃料からの核分裂生成ガス(FPガス)
の放出が増大し、これによる燃料棒内の内圧上昇及びペ
レット−被覆管ギャップの熱伝導度の低下が起こり、燃
料の健全性が低下する可能性があるため、高燃焼度化を
実現するにはFPガスのペレット外への放出を低減する
ことが必要である。
2. Description of the Related Art In recent years, as one of the attempts of technological innovation in nuclear power generation, the use of nuclear reactor fuel for a longer period,
A so-called high burnup plan is being considered. The fission product gas (FP gas) from the fuel accompanying this higher burnup
Emission increases, which causes an increase in internal pressure in the fuel rod and a decrease in the thermal conductivity of the pellet-cladding gap, which may reduce the fuel integrity. It is necessary to reduce the emission of FP gas outside the pellet.

【0003】このFPガスの保持効果を高めるために
は、ペレットの結晶粒径を大きくするのが有効であるこ
とが判っている。本出願人は重ウラン酸アンモニウム
(ADU)の生成条件をコントロールすることにより、
UO2粉末から結晶粒径が20μm 以上の大きなUO2
ペレットを製造する方法を提案してきた(例えば、特開
昭6 2−297215)。
It has been found that increasing the crystal grain size of the pellet is effective for enhancing the effect of retaining the FP gas. By controlling the conditions for the production of ammonium diuranate (ADU), the applicant has
UO 2 grain size from the powder is not less than 20μm large UO 2
A method for producing pellets has been proposed (for example, JP-A-6-297215).

【0004】[0004]

【発明が解決しようとする課題】しかし、上記方法で用
いる高活性粉末の取扱い及び成形を大気下で行い、この
高活性粉末の成形体を通常の条件で焼結すると、焼結し
た後のペレットに割れ、欠けを生じる不具合があった。
この理由は次のように考えられる。即ち、製造された初
期の高活性のUO2粉末はO/U比(ウランに対する酸
素の原子比)が2.00に近い状態であるが、粉末での
保管及びペレットへの成形を大気下で行うと、保管中の
粉末及び成形中のペレットが大気中の酸素により徐々に
酸化されO/U比が次第に大きくなっていく。そして酸
化が進行してO/U比が2.25付近になると、結晶構
造はUO2相から高次の酸化物であるU49相に変化
し、更に酸化が進行するとU37相に変化していく。こ
のような高次の酸化物になった成形体をそのまま通常の
焼結雰囲気である水素中で特に注意を払うことなく高温
に加熱して焼結すると、焼結時にU49或いはU37
らUO2への相の変化が生じることにより、焼結後のペ
レットには割れ、欠けが入る確率が極めて高くなる。
However, when the high activity powder used in the above method is handled and molded in the atmosphere and the compact of this high activity powder is sintered under normal conditions, the pellets after sintering are formed. There was a problem of cracking and chipping.
The reason for this is considered as follows. That is, the initially produced highly active UO 2 powder had an O / U ratio (atomic ratio of oxygen to uranium) close to 2.00, but was stored in powder and molded into pellets under air. When this is done, the powder being stored and the pellets being molded are gradually oxidized by oxygen in the atmosphere, and the O / U ratio gradually increases. Then, when the oxidation progresses and the O / U ratio approaches 2.25, the crystal structure changes from the UO 2 phase to the U 4 O 9 phase which is a higher-order oxide, and when the oxidation further proceeds, U 3 O 7 Change into phases. When such a high-order oxide formed body is heated as it is in a normal sintering atmosphere of hydrogen without being particularly careful to be heated to a high temperature and sintered, U 4 O 9 or U 3 is produced at the time of sintering. Due to the change of the phase from O 7 to UO 2 , the probability of cracks and chips in the pellets after sintering becomes extremely high.

【0005】本発明の目的は、高活性度のUO2粉末か
ら結晶粒径の大きなUO2ペレットを割れや欠けのない
状態で製造する方法を提供することにある。
An object of the present invention is to provide a method for producing UO 2 pellets having a large crystal grain size from a highly active UO 2 powder without cracking or chipping.

【0006】[0006]

【課題を解決するための手段】本発明は、活性度の大き
なUO2粉末を成形し、この成形体を焼結して結晶粒径
の大きなUO2ペレットを製造する核燃料ペレットの製
造方法の改良である。その特徴ある構成は、前記成形体
を500〜1000℃の温度範囲で加熱還元することに
よりO/U比を2.25以下に調節する第1工程と、前
記還元した成形体を1200〜1800℃の温度範囲の
還元雰囲気中で焼結することによりO/U比が2.00
の焼結ペレットを得る第2工程とを含むことにある。
DISCLOSURE OF THE INVENTION The present invention provides an improved method for producing nuclear fuel pellets, in which UO 2 powder having a high activity is molded and the compact is sintered to produce UO 2 pellets having a large crystal grain size. Is. The characteristic constitution is that the first step of adjusting the O / U ratio to 2.25 or less by heating and reducing the molded body in the temperature range of 500 to 1000 ° C., and the reduced molded body of 1200 to 1800 ° C. O / U ratio is 2.00 by sintering in a reducing atmosphere in the temperature range of
And a second step of obtaining a sintered pellet of 1.

【0007】なお、焼結密度をコントロールするため
に、成形は原料UO2粉末に600℃以下の温度で分解
し揮発する平均粒径が5〜300μmの気孔形成剤を
0.3〜1.4重量%均一に添加した後で行うことが好
ましい。
In order to control the sintered density, the raw material UO 2 powder is decomposed at a temperature of 600 ° C. or less and volatilized with 0.3 to 1.4 of a pore-forming agent having an average particle diameter of 5 to 300 μm. It is preferable to carry out after the addition is made uniformly by weight.

【0008】第1工程において、UO2粉末の成形体を
500〜1000℃の温度範囲でかつ還元雰囲気中で加
熱することによりO/U比を2.25以下に調節する。
この還元加熱処理は焼結が顕著に起こる前に存在する相
をUO2の状態にするために行う。加熱温度が500℃
未満では還元速度が非常に遅いため比較的短時間に還元
を終了させることができず、一方1000℃を超えると
焼結が顕著になるのでそれぞれ好ましくない。O/U比
を2.25以下とするための還元雰囲気としては、水素
とスチームの混合ガス又は一酸化炭素と二酸化炭素の混
合ガスなどを利用することが可能であり、いずれの混合
ガスを使用する場合も2種類のガスの混合比をコントロ
ールすることにより理論的に酸素ポテンシャルを−21
0kJ/mol以下とすることが好ましい。
In the first step, the O / U ratio is adjusted to 2.25 or less by heating the UO 2 powder compact in a temperature range of 500 to 1000 ° C. and in a reducing atmosphere.
This reduction heat treatment is performed in order to bring the existing phase into UO 2 state before significant sintering occurs. Heating temperature is 500 ℃
If it is less than 1, the reduction rate is very slow and the reduction cannot be completed in a relatively short time. On the other hand, if it exceeds 1000 ° C., the sintering becomes remarkable, which is not preferable. As the reducing atmosphere for setting the O / U ratio to 2.25 or less, a mixed gas of hydrogen and steam, a mixed gas of carbon monoxide and carbon dioxide, or the like can be used, and any mixed gas can be used. In this case, the oxygen potential can be theoretically -21 by controlling the mixing ratio of the two gases.
It is preferably 0 kJ / mol or less.

【0009】また第2工程において、還元雰囲気中で1
200〜1800℃の高温で焼結することにより緻密化
を終了させると同時に焼結体のO/U比を製品としての
ペレットの規格値として通常要求される2.00に調節
する。1200℃未満では緻密化が不十分になり、一方
1800℃を超えると工業的な加熱システムでは実現困
難となりかつエネルギ消費が甚大となり、好ましくな
い。O/U比を2.00に調節するためには理論的に雰
囲気の酸素ポテンシャルを−340kJ/mol以下と
することが好ましい。このような酸素ポテンシャルの雰
囲気は第1工程での加熱と同様に水素とスチームの混合
ガス又は一酸化炭素と二酸化炭素の混合ガスなどを利用
することにより、2種類のガスの混合比をコントロール
して得られる。
In the second step, 1 in the reducing atmosphere
The densification is completed by sintering at a high temperature of 200 to 1800 ° C., and at the same time, the O / U ratio of the sintered body is adjusted to 2.00 which is usually required as a standard value of pellets as a product. If the temperature is lower than 1200 ° C, the densification becomes insufficient, while if it exceeds 1800 ° C, it becomes difficult to realize with an industrial heating system and energy consumption becomes enormous, which is not preferable. In order to adjust the O / U ratio to 2.00, it is theoretically preferable that the oxygen potential of the atmosphere is −340 kJ / mol or less. The atmosphere of such oxygen potential controls the mixing ratio of the two kinds of gas by using a mixed gas of hydrogen and steam or a mixed gas of carbon monoxide and carbon dioxide as in the heating in the first step. Obtained.

【0010】[0010]

【作用】第1工程において、UO2粉末の成形体を還元
雰囲気中で500〜1000℃の温度で加熱することに
より、第2工程の焼結が顕著に起こる前に存在する相を
UO2相にして、O/U比を2.25以下に調節する。
また第2工程において、還元雰囲気中で1200〜18
00℃の高温で焼結することにより、第1工程で加熱し
た成形体をUO2相のままの状態で緻密化し、ペレット
のO/U比を2.00に調節する。
In the first step, the UO 2 powder compact is heated at a temperature of 500 to 1000 ° C. in a reducing atmosphere so that the UO 2 phase existing before the significant sintering in the second step occurs. Then, the O / U ratio is adjusted to 2.25 or less.
In the second step, 1200 to 18 in a reducing atmosphere.
By sintering at a high temperature of 00 ° C., the compact heated in the first step is densified in the state of the UO 2 phase as it is, and the O / U ratio of the pellet is adjusted to 2.00.

【0011】[0011]

【実施例】以下、本発明を実施例により説明する。本発
明はこれらの実施例により制限されない。 <実施例1>遊離のフッ酸を含まない100gU/L濃
度のUO22溶液と28%のアンモニア水の反応により
生成した重ウラン酸アンモニウムを焙焼還元して比表面
積が約10m2/gのUO2粉末を得た。この粉末に気孔
形成剤として平均粒径が10〜100μmのシュウ酸ア
ンモニウムを1.0重量%の割合で添加した。この粉末
を大気中で数日間保管して、成形圧3t/cm2で成形
した。図1に示すように、この成形体を室温(約25
℃)の飽和水蒸気で加湿した水素気流中で600℃/h
の昇温速度で700℃まで加熱し、そこで1時間保持し
た後、同じ昇温速度と雰囲気で1750℃まで加熱して
そこで4時間保持した。続いて600℃/hの降温速度
により加湿した水素気流中で室温まで冷却してUO2
レットを得た。
EXAMPLES The present invention will be described below with reference to examples. The invention is not limited by these examples. <Example 1> Ammonium diuranate produced by the reaction of a 100 gU / L UO 2 F 2 solution containing no free hydrofluoric acid with 28% ammonia water was roasted and reduced to have a specific surface area of about 10 m 2 / g of UO 2 powder was obtained. Ammonium oxalate having an average particle diameter of 10 to 100 μm was added to the powder as a pore forming agent at a ratio of 1.0% by weight. The powder was stored in the air for several days and molded at a molding pressure of 3 t / cm 2 . As shown in FIG.
600 ° C / h in a hydrogen stream humidified with saturated steam (° C)
The temperature was raised to 700 ° C. and held for 1 hour, and then the temperature was raised to 1750 ° C. and held there for 4 hours. Subsequently, UO 2 pellets were obtained by cooling to room temperature in a humidified hydrogen stream at a temperature decrease rate of 600 ° C./h.

【0012】<実施例2>実施例1と同様にして得られ
たUO2粉末を実施例1と同様に成形した。図2に示す
ように、この成形体を室温から600℃/hの昇温速度
により二酸化炭素と一酸化炭素の混合比が10対1の混
合気流中で700℃まで加熱し、そこで1時間保持した
後、一酸化炭素のみの雰囲気に切換えて同じ昇温速度で
1750℃まで加熱してそこで4時間保持した。続いて
600℃/hの降温速度により一酸化炭素のみの雰囲気
で室温まで冷却してUO2ペレットを得た。
Example 2 UO 2 powder obtained in the same manner as in Example 1 was molded in the same manner as in Example 1. As shown in FIG. 2, this molded body was heated from room temperature to 700 ° C. in a mixed air stream having a mixing ratio of carbon dioxide and carbon monoxide of 10: 1 at a heating rate of 600 ° C./h, and kept there for 1 hour. After that, the atmosphere was changed to only carbon monoxide, and the mixture was heated to 1750 ° C. at the same heating rate and kept there for 4 hours. Then, it was cooled to room temperature in a carbon monoxide only atmosphere at a temperature decrease rate of 600 ° C./h to obtain UO 2 pellets.

【0013】<比較例1>実施例1と同様にして得られ
たUO2粉末を実施例1と同様に成形した。図3に示す
ように、成形後、直ちにこの成形体を室温から600℃
/hの昇温速度により飽和水蒸気で加湿した水素気流中
で1750℃まで加熱してそこで4時間保持した。続い
て600℃/hの降温速度により加湿した水素気流中で
室温まで冷却してUO2ペレットを得た。
Comparative Example 1 UO 2 powder obtained in the same manner as in Example 1 was molded in the same manner as in Example 1. As shown in FIG. 3, immediately after molding, the molded body was heated from room temperature to 600 ° C.
It was heated to 1750 ° C. in a hydrogen stream moistened with saturated steam at a heating rate of / h and held there for 4 hours. Subsequently, UO 2 pellets were obtained by cooling to room temperature in a humidified hydrogen stream at a temperature decrease rate of 600 ° C./h.

【0014】実施例1、実施例2及び比較例1の3種類
のUO2ペレットについて、その原料のUO2粉末のO/
U比、焼結体であるペレットの割れの有無、焼結密度、
結晶粒径及び焼結体のO/U比を測定した。その結果を
表1に示す。また、700℃の中間保持直後のO/U比
を調べるため、実施例1及び実施例2の中間保持した成
形体をそれぞれ700℃から室温まで急冷した。これら
のO/U比を表1の※印の箇所に示す。 (以下、余白)
Regarding the three types of UO 2 pellets of Example 1, Example 2 and Comparative Example 1, the O / O of the raw material UO 2 powder was used.
U ratio, presence / absence of cracks in pellets that are sintered bodies, sintering density,
The crystal grain size and the O / U ratio of the sintered body were measured. The results are shown in Table 1. Further, in order to examine the O / U ratio immediately after the intermediate holding at 700 ° C., each of the molded bodies of Example 1 and Example 2 held intermediately was rapidly cooled from 700 ° C. to room temperature. These O / U ratios are shown in Table 1 at the points marked with *. (Hereafter, margin)

【0015】[0015]

【表1】 [Table 1]

【0016】表1の結果から、O/U比の高い粉末を成
形した成形体を中間保持することなく焼結する比較例1
では焼結後のペレットに割れが入るのに対して、焼結に
入る前に還元雰囲気で中間保持状態を入れてO/U比の
増加を防ぎ、その後焼結する処理を行った実施例1及び
実施例2では焼結密度及び結晶粒径に悪影響を与えるこ
となく、焼結体であるペレットの割れの発生を防止する
ことが可能であることが判った。
From the results shown in Table 1, Comparative Example 1 in which a compact formed from a powder having a high O / U ratio was sintered without intermediate holding
In contrast to the case where cracks occur in the pellets after sintering, an intermediate holding state is put in a reducing atmosphere to prevent an increase in the O / U ratio before the sintering, and then the sintering is performed. Further, in Example 2, it was found that it is possible to prevent the occurrence of cracks in the pellet, which is a sintered body, without adversely affecting the sintered density and the crystal grain size.

【0017】[0017]

【発明の効果】以上述べたように、本発明によれば、活
性度の大きなUO2粉末の成形体を500〜1000℃
の温度範囲で加熱還元した後、1200〜1800℃の
温度範囲の還元雰囲気中で焼結することにより、結晶粒
径の大きなUO2ペレットを割れや欠けのない状態で製
造することができる。また、気孔形成剤を添加した上記
UO2粉末の成形体を焼結することにより、所定の焼結
密度を有しかつ割れや欠けのない大粒径のUO2ペレッ
トを製造して高燃焼度化の燃料として有効に利用するこ
とができる。
As described above, according to the present invention, a UO 2 powder compact having a high activity is formed at 500 to 1000 ° C.
After heat-reducing in the temperature range of 1, and sintering in a reducing atmosphere in the temperature range of 1200 to 1800 ° C., UO 2 pellets having a large crystal grain size can be produced without cracks or chips. Further, by sintering the above-mentioned UO 2 powder compact to which a pore-forming agent is added, large-sized UO 2 pellets having a predetermined sintering density and free from cracks and chips are produced to obtain a high burnup. It can be effectively used as a fuel for chemicals.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例1の成形体の熱処理状況を示すタ
イムチャート。
FIG. 1 is a time chart showing a heat treatment state of a molded body of Example 1 of the present invention.

【図2】本発明実施例2の成形体の熱処理状況を示すタ
イムチャート。
FIG. 2 is a time chart showing a heat treatment state of a molded body of Example 2 of the present invention.

【図3】本発明比較例1の成形体の熱処理状況を示すタ
イムチャート。
FIG. 3 is a time chart showing the heat treatment state of the molded body of Comparative Example 1 of the present invention.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 活性度の大きなUO2粉末を成形し、こ
の成形体を焼結して結晶粒径の大きなUO2ペレットを
製造する核燃料ペレットの製造方法において、 前記成形体を500〜1000℃の温度範囲で加熱還元
することによりO/U比を2.25以下に調節する第1
工程と、 前記還元した成形体を1200〜1800℃の温度範囲
の還元雰囲気中で焼結することによりO/U比が2.0
0の焼結ペレットを得る第2工程とを含むことを特徴と
する核燃料ペレットの製造方法。
1. A method for producing nuclear fuel pellets, comprising molding UO 2 powder having a high activity and sintering the molded body to manufacture UO 2 pellets having a large crystal grain size. The O / U ratio is adjusted to 2.25 or less by heating and reducing in the temperature range of 1st.
And an O / U ratio of 2.0 by sintering the reduced compact in a reducing atmosphere in a temperature range of 1200 to 1800 ° C.
And a second step of obtaining sintered pellets of No. 0.
【請求項2】 第1工程の還元雰囲気が−210kJ/
mol以下の酸素ポテンシャルである請求項1記載の核
燃料ペレットの製造方法。
2. The reducing atmosphere in the first step is -210 kJ /
The method for producing a nuclear fuel pellet according to claim 1, wherein the oxygen potential is mol or less.
【請求項3】 第2工程の還元雰囲気が−340kJ/
mol以下の酸素ポテンシャルである請求項1記載の核
燃料ペレットの製造方法。
3. The reducing atmosphere in the second step is -340 kJ /
The method for producing a nuclear fuel pellet according to claim 1, wherein the oxygen potential is mol or less.
【請求項4】 第1工程又は第2工程の還元雰囲気が水
素とスチームの混合ガス雰囲気である請求項1記載の核
燃料ペレットの製造方法。
4. The method for producing nuclear fuel pellets according to claim 1, wherein the reducing atmosphere in the first step or the second step is a mixed gas atmosphere of hydrogen and steam.
【請求項5】 第1工程又は第2工程の還元雰囲気が一
酸化炭素と二酸化炭素の混合ガス雰囲気である請求項1
記載の核燃料ペレットの製造方法。
5. The reducing atmosphere in the first step or the second step is a mixed gas atmosphere of carbon monoxide and carbon dioxide.
A method for producing a nuclear fuel pellet as described.
JP5206768A 1993-08-23 1993-08-23 Production of nuclear fuel pellet Withdrawn JPH0761820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5206768A JPH0761820A (en) 1993-08-23 1993-08-23 Production of nuclear fuel pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5206768A JPH0761820A (en) 1993-08-23 1993-08-23 Production of nuclear fuel pellet

Publications (1)

Publication Number Publication Date
JPH0761820A true JPH0761820A (en) 1995-03-07

Family

ID=16528772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5206768A Withdrawn JPH0761820A (en) 1993-08-23 1993-08-23 Production of nuclear fuel pellet

Country Status (1)

Country Link
JP (1) JPH0761820A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234753A (en) * 2005-02-28 2006-09-07 Global Nuclear Fuel-Japan Co Ltd Manufacturing method of nuclear fuel pellet
JP2010190717A (en) * 2009-02-18 2010-09-02 Japan Atomic Energy Agency Method for manufacturing nuclear fuel pellet for fast breeder reactors in fast breeder reactor cycle
JP2010190719A (en) * 2009-02-18 2010-09-02 Japan Atomic Energy Agency Method for manufacturing nuclear fuel pellet for fast breeder reactors

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006234753A (en) * 2005-02-28 2006-09-07 Global Nuclear Fuel-Japan Co Ltd Manufacturing method of nuclear fuel pellet
JP4608337B2 (en) * 2005-02-28 2011-01-12 株式会社グローバル・ニュークリア・フュエル・ジャパン Method for producing nuclear fuel pellets
JP2010190717A (en) * 2009-02-18 2010-09-02 Japan Atomic Energy Agency Method for manufacturing nuclear fuel pellet for fast breeder reactors in fast breeder reactor cycle
JP2010190719A (en) * 2009-02-18 2010-09-02 Japan Atomic Energy Agency Method for manufacturing nuclear fuel pellet for fast breeder reactors

Similar Documents

Publication Publication Date Title
JP3106113B2 (en) Recycling method for pellet scrap of oxide nuclear fuel
US6251309B1 (en) Method of manufacturing large-grained uranium dioxide fuel pellets containing U3O8
US4438050A (en) Method for the manufacture of very dense oxidic nuclear fuel bodies
US9653188B2 (en) Fabrication method of burnable absorber nuclear fuel pellets and burnable absorber nuclear fuel pellets fabricated by the same
JPH02175616A (en) Production of uo2 pellet
JP3976716B2 (en) Method for producing sintered nuclear fuel containing tungsten metal mesh
JPH0761820A (en) Production of nuclear fuel pellet
JPH0954187A (en) Producing method for nuclear fuel pellet using uranium oxide particle as raw material
JPH0755975A (en) Producing nuclear fuel pellet
JP2790548B2 (en) Manufacturing method of nuclear fuel sintered body
JP2588947B2 (en) Manufacturing method of oxide nuclear fuel sintered body
JP2006275795A (en) Nuclear fuel pellet and its manufacturing method
US4885147A (en) Process for preparing a large-grained UO2 fuel
JPH09127290A (en) Sintering method for nuclear fuel pellet
JP2701049B2 (en) Method for producing oxide nuclear fuel body by air sintering
KR100450711B1 (en) Method of manufacturing nuclear fuel pellet consisting of duplex grains
JP2701043B2 (en) Method for producing oxide nuclear fuel body having double microstructure
JP3051388B1 (en) Manufacturing method of nuclear fuel sintered body
JP2505119B2 (en) Manufacturing method of nuclear fuel pellets
JPH0316634B2 (en)
JPH09127280A (en) Production of nuclear fuel particle
JPH039296A (en) Production of nuclear fuel pellet
JPH0470594A (en) Fabrication of nuclear fuel pellet of oxide with niobia additive
JP3040918B2 (en) Nuclear fuel pellet density control method
JPH08231226A (en) Production of uo2 powder

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001031