JPH0470594A - Fabrication of nuclear fuel pellet of oxide with niobia additive - Google Patents

Fabrication of nuclear fuel pellet of oxide with niobia additive

Info

Publication number
JPH0470594A
JPH0470594A JP2182653A JP18265390A JPH0470594A JP H0470594 A JPH0470594 A JP H0470594A JP 2182653 A JP2182653 A JP 2182653A JP 18265390 A JP18265390 A JP 18265390A JP H0470594 A JPH0470594 A JP H0470594A
Authority
JP
Japan
Prior art keywords
sintering
hydrogen
oxide
flow rate
nuclear fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2182653A
Other languages
Japanese (ja)
Inventor
Yasunao Yamaguchi
康直 山口
Yuhei Harada
雄平 原田
Masami Saito
正美 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2182653A priority Critical patent/JPH0470594A/en
Publication of JPH0470594A publication Critical patent/JPH0470594A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To reduce cost of formation and fabrication of nuclear fuel pellets of oxide with niobia additine by keeping sintering environment at a determined level and making such large grain size as to reduce gas release at relatively low temperature. CONSTITUTION:The sintering promoter, niobium oxide is processed in the gas flow of hydrogen or mixture of hydrogen and nitrogen at about 800 deg.C for a proper time to reduce pentavalent Nb3O5 into tetravalent Nbo2 powder. The NbO2 powder is added with 0.2-1.0 weight % to uranium oxide or mixture of uranium oxide and plutonium oxide stuff powder, mixed and formed to green pellets. These pellets are heat processed for reduction in the gas flow of hydrogen or mixture of hydrogen and nitrogen at about 800- 1,000 deg.C fro a proper time. Then, it is sintered in the sintering temperature range of 1,000-2,000 deg.C which corresponds to the inverse absolute temperature lines between -0.25--3.2 and in the gas flow range of the logarithmic flow ratio of CO2/CO lines between 2.4-0.62.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発電用の原子炉に用いられる酸化物核燃料ペレ
ット、特にニオビア添加酸化物核燃料ペレットの製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing oxide nuclear fuel pellets used in nuclear power reactors, particularly niobia-added oxide nuclear fuel pellets.

〔従来の技術〕[Conventional technology]

二酸化ウラン(102)粉末にニオブ酸化物を微量添加
すると、焼結したペレットは結晶粒径が大きく、核分裂
生成(以下、FPと呼ぶ)ガスの拡散距離が大きくなる
ことによるFPガス放出の低減と、ペレットがクリープ
しやすくなることによる耐P C I  (Pelle
t Clad Interaction)性の向上に有
効であるといわれている。
When a small amount of niobium oxide is added to uranium dioxide (102) powder, the sintered pellets have a large crystal grain size, which increases the diffusion distance of fission product (hereinafter referred to as FP) gas, which reduces FP gas release. , the pellets tend to creep more easily, resulting in increased resistance to P
It is said that this method is effective in improving tClad Interaction).

特公平1〜20399号公報によれば、ニオビア( N
b20s)を二酸化ウランに添加することによって12
〜80μm程度の大粒径のペレットが得られ、焼結条件
を1550℃以上の焼結温度で、1000体積ppmと
20,000体積ppmの間の微量の水蒸気又は二酸化
炭素を含む水素の焼結雰囲気にコントロールすることに
よって不純物の少ない所定のペレットを製造できるとし
ている。
According to Japanese Patent Publication No. 1-20399, Niobia (N
12 by adding b20s) to uranium dioxide
Pellets with a large particle size of ~80 μm are obtained, and the sintering conditions are a sintering temperature of 1550°C or higher, and hydrogen containing a trace amount of water vapor or carbon dioxide between 1000 volume ppm and 20,000 volume ppm. It is said that by controlling the atmosphere, it is possible to produce specified pellets with few impurities.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

発電用の原子炉に用いられる酸化物核燃料ペレットは、
炭素、弗素、窒素等について不純物規制があり、不純物
はできるだけ少なく、また化学組成としては酸素と金J
ig (IJ 、 Pu)の比を化学量論的組成である
約2.0に保持されていることが必要である。
Oxide nuclear fuel pellets used in nuclear reactors for power generation are
There are impurity regulations for carbon, fluorine, nitrogen, etc., and impurities are kept as low as possible, and the chemical composition is oxygen and gold.
It is necessary that the ratio of ig (IJ, Pu) be maintained at a stoichiometric composition of about 2.0.

このため、前記公報では、焼結温度は1550℃以上、
焼成雰囲気は1000体積ppmと20. 000体積
ppmの間の微量の水蒸気又は二酸化炭素を含む水素と
いう制約を設けており、焼結炉及びヒータの寿命や所要
電力等の観点から製造コスト低減を図る上で検討の余地
があった。
Therefore, in the above publication, the sintering temperature is 1550°C or higher,
The firing atmosphere was 1000 ppm by volume and 20. There is a restriction that hydrogen contains a trace amount of water vapor or carbon dioxide of between 1,000 ppm by volume, and there is room for consideration in reducing manufacturing costs from the viewpoint of the life of the sintering furnace and heater, the required power, etc.

本発明は上記技術水準に鑑み、より広範囲な焼成条件で
経済的に所用の、すなわち、大粒径で不純物が少なく、
化学量論的組成を有するニオブ酸化物添加の酸化物核燃
料ペレットの製造方法を提供しようとするものである。
In view of the above-mentioned state of the art, the present invention has been developed to achieve economical requirements under a wider range of firing conditions, that is, with large grain size and fewer impurities.
It is an object of the present invention to provide a method for producing niobium oxide-added oxide nuclear fuel pellets having a stoichiometric composition.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は (1)  ウランの酸化物またはウランの酸化物とプル
トニウムの酸化物との混合物を原料粉末として成形して
焼結する酸化物核燃料ペレットの製造方法において、焼
結促進剤であるニオブ酸化物を水素または水素と窒素の
混合ガスの気流中で800℃の適当な時間の還元熱処理
を施して、5価のNb20sを4価のNb02の粉末と
し、該Nb02粉末0. 2〜1.0重量%を上記の原
料粉末に添加・混合、成形してグリーン・ペレットとし
、該グリーン・ペレットを水素または水素と窒素の混合
ガスの気流中で800〜1000℃の適当な時間の還元
熱処理を施して、酸素と金属の原子比が約2.0の処理
ペレットとし、更に焼結温度範囲1000〜2000℃
に対応した焼結雰囲気をそれぞれ二酸化炭素と一酸化炭
素の流量比の対数の上限および下限を焼結温度1000
℃の場合2、4〜−0.62、ならびに焼結温度200
0℃の場合−0.25〜−3.2として、二酸化炭素と
一酸化炭素の流量比の対数と焼結温度の絶対温度の逆数
の関係においてほぼ直線で包絡される二酸化炭素と一酸
化炭素の流量比の範囲の気流中で焼結することを特徴と
する高密度、大粒径、化学量論的組成を有し、不純物の
少ない酸化物核燃料ペレットの製造方法。
The present invention provides (1) a method for producing oxide nuclear fuel pellets in which uranium oxide or a mixture of uranium oxide and plutonium oxide is molded and sintered as a raw material powder, in which niobium oxide, which is a sintering accelerator; The product is subjected to reduction heat treatment at 800° C. for an appropriate time in a stream of hydrogen or a mixed gas of hydrogen and nitrogen to convert pentavalent Nb20s to tetravalent Nb02 powder, and convert the Nb02 powder 0. 2 to 1.0% by weight is added to the above raw material powder, mixed and molded to form green pellets, and the green pellets are heated at 800 to 1000°C for an appropriate time in a stream of hydrogen or a mixed gas of hydrogen and nitrogen. A reduction heat treatment of
The upper and lower limits of the logarithm of the flow rate ratio of carbon dioxide and carbon monoxide are respectively set to the sintering atmosphere corresponding to
℃ 2,4 to -0.62, and sintering temperature 200
In the case of 0°C, carbon dioxide and carbon monoxide are approximately linearly enveloped in the relationship between the logarithm of the flow rate ratio of carbon dioxide and carbon monoxide and the reciprocal of the absolute temperature of the sintering temperature, as -0.25 to -3.2 at 0°C. A method for producing oxide nuclear fuel pellets with high density, large particle size, stoichiometric composition, and low impurities, characterized by sintering in an air flow with a flow rate ratio of .

(2)  焼結温度範囲1000〜2000℃に対応し
た焼結雰囲気をそれぞれ二酸化炭素と水素の流量比の対
数の上限および下限を焼結温度1000℃の場合2.3
〜−0.50、ならびに焼結温度2000℃の場合0.
15〜−2.5として、二酸化炭素と水素の流量比の対
数と焼結温度の絶対温度の逆数の関係においてほぼ直線
で包絡される二酸化炭素と水素の流量比の範囲の気流中
で焼結することを特徴とする上記(1)項記載の酸化物
核燃料ペレットの製造方法。
(2) For the sintering atmosphere corresponding to the sintering temperature range of 1000 to 2000°C, the upper and lower limits of the logarithm of the flow rate ratio of carbon dioxide and hydrogen are 2.3 when the sintering temperature is 1000°C.
~-0.50, and 0.0 at a sintering temperature of 2000°C.
15 to -2.5, sintering in an air flow with a flow rate ratio of carbon dioxide and hydrogen that is approximately enveloped by a straight line in the relationship between the logarithm of the flow rate ratio of carbon dioxide and hydrogen and the reciprocal of the absolute temperature of the sintering temperature. The method for producing oxide nuclear fuel pellets as described in item (1) above.

(3)焼結温度範囲1000〜2000℃に対応した焼
結雰囲気をそれぞれ水蒸気と水素の流量比の対数の上限
および下限を焼結温度1000℃の場合2.6〜−0.
42、ならびに焼結゛温度2000℃の場合0.45〜
−2.5として、水蒸気と水素の流量比の対数と焼結温
度の絶対温度の逆数の関係においてほぼ直線で包絡され
る水蒸気と水素の流量比の範囲の気流中で焼結すること
を特徴とする上記(1)項記載の酸化物核燃料ペレット
の製造方法。
(3) The upper and lower limits of the logarithm of the flow rate ratio of steam and hydrogen are 2.6 to -0.
42, and 0.45 to 0.45 at a sintering temperature of 2000°C
-2.5 is characterized by sintering in an air flow within a range of flow rate ratios of water vapor and hydrogen that are almost linearly enveloped in the relationship between the logarithm of the flow rate ratio of water vapor and hydrogen and the reciprocal of the absolute temperature of the sintering temperature. The method for producing oxide nuclear fuel pellets according to item (1) above.

第1図に本発明のニオビア添加酸化物核燃料ペレットの
製造工程を示す。
FIG. 1 shows the manufacturing process of the niobia-added oxide nuclear fuel pellets of the present invention.

原料となる酸化物核燃料粉末は従来から用いられている
異なる粉末特性すなわち成形性ならびに焼結性の異なる
U024X粉末を用いる。
The oxide nuclear fuel powder used as the raw material is U024X powder, which has been used in the past and has different powder characteristics, that is, different formability and sinterability.

一方の原料の焼結促進剤として作用する微量の添加物で
あるニオブ酸化物は一般的に最も高次の酸化物である5
価のNb2O5として人手が容易であるので、このもの
を原料とするが、本発明では5価のNb2O5粉末を水
素ガスまたは水素と窒素の混合ガス(以下安全ガスと言
う)気流中において800℃で適当な時間加熱して還元
熱処理を施し、蒸発性の不純物を低減するとともに4価
のNbO2粉末として焼結促進剤として使用する。
Niobium oxide, which is a trace additive that acts as a sintering accelerator for one of the raw materials, is generally the highest-order oxide5.
Pentavalent Nb2O5 is used as a raw material because it is easy to handle, but in the present invention, pentavalent Nb2O5 powder is heated at 800°C in a flow of hydrogen gas or a mixed gas of hydrogen and nitrogen (hereinafter referred to as safety gas). It is heated for an appropriate period of time to perform a reduction heat treatment to reduce evaporative impurities, and is used as a sintering accelerator as a tetravalent NbO2 powder.

次に、上記のUO2,、粉末に焼結を促進させるに十分
な量である0、2〜1.0重量%のNbO2粉末を添加
し、ボールミル等により機械混合する。
Next, 0.2 to 1.0% by weight of NbO2 powder, which is an amount sufficient to promote sintering, is added to the above UO2 powder and mixed mechanically using a ball mill or the like.

上記の混合粉末を通常の冷間圧縮法により下記の成形条
件で粗成形、造粒、潤滑剤添加、成形して、所望のグリ
ーン・ペレットを作る。
The above-mentioned mixed powder is roughly compacted, granulated, lubricated, and molded using a conventional cold compression method under the following molding conditions to produce desired green pellets.

粗成形条件は約30±10gの上記混合粉を比較的低い
圧力で押して、スラグ状の粗成形体を作る。次に、これ
らの粗成形体を例えば0.1〜0.01 mmの大きさ
の造粒粉に加工する。これらの造粒粉に、成形を容易に
するために潤滑剤として少量の低沸点物質であるステア
リン酸亜鉛やポリビニール・アルコールなどを添加・混
合し、これら少量の潤滑剤を含む混合粉の所定量を金型
のダイスに投入し、比較的高い圧力で上・下のパンチで
押して、一般的には約10a+m直径、10!DID高
さの円柱体のグリーン・ペレットを作製する。
The rough molding conditions are such that approximately 30±10 g of the above mixed powder is pressed under relatively low pressure to form a slug-like rough molded body. Next, these rough compacts are processed into granulated powder having a size of, for example, 0.1 to 0.01 mm. A small amount of low boiling point substances such as zinc stearate and polyvinyl alcohol are added and mixed as a lubricant to these granulated powders to facilitate molding. A fixed amount is put into the die of the mold and pressed with upper and lower punches under relatively high pressure, generally about 10a+m diameter, 10! A cylindrical green pellet of DID height is prepared.

なお、焼結体密度を設計仕様の観点から所定の密度とす
るためには、気孔形成剤として上記の混合粉末に前処理
を施したシュウ酸アンモニウム、酒石酸アンモニウム、
澱粉、ショ糖などを添加、混合すればよい。気孔形成剤
の使用に際しては、気孔形成剤を使用しないでグリーン
・ペレットを製造した場合、一般的な酸化物核燃料焼結
体の密度を95%TD (理論密度)としているが、こ
の密度仕様よりも高密度となり、燃料設計の観点から作
為的に密度を抑制する必要が生じた場合に気孔形成剤を
使用する。気孔成形剤の前処理とは、添加混合に際して
凝集を防ぐために乾燥ならびに篩通過、また焼結体にお
ける気孔の大きさを確保するた約に粉砕などによる整粒
をいう。
In addition, in order to make the sintered body density a predetermined density from the viewpoint of design specifications, ammonium oxalate, ammonium tartrate,
Just add and mix starch, sucrose, etc. When using a pore-forming agent, if green pellets are manufactured without using a pore-forming agent, the density of a general oxide nuclear fuel sintered body is assumed to be 95% TD (theoretical density); Also, pore-forming agents are used when it becomes necessary to artificially suppress the density from the viewpoint of fuel design. Pretreatment of the pore-forming agent refers to drying and passing through a sieve to prevent agglomeration during addition and mixing, and pulverization to ensure the size of pores in the sintered body.

次に、上記の混合粉末のグリーン・ペレットを水素ガス
または安全ガス気流中において800℃で適当な時間加
熱して還元熱処理を施し、微量のNbO2を含有した圓
、の処理ペレットとするとともに蒸発性の不純物を低減
する。
Next, the green pellets of the above mixed powder are heated at 800°C in a hydrogen gas or safety gas stream for an appropriate time to perform a reduction heat treatment to form treated pellets containing a trace amount of NbO2 and evaporate. Reduces impurities.

上記処理後、第2図、第3図および第4図にそれぞれ示
すように微量のNbO2を含有したIJO2の処理ペレ
ットを焼結温度1000〜2000℃に対応したCo、
/CD 、 CO2/H2およびH,0/H,の流量比
を有する焼結雰囲気において適当な時間加熱して焼結す
る。
After the above treatment, as shown in FIGS. 2, 3 and 4, treated pellets of IJO2 containing a trace amount of NbO2 were sintered with Co,
/CD, CO2/H2, and H,0/H, in a sintering atmosphere having a flow rate ratio of 1,0/H, and sintering by heating for an appropriate time.

本発明の製造方法によって得られるニオビア添加酸化物
核燃料ベレットは所定の高密度を有し、化学量論的組成
であり、不純物の含有量も十分少なく、良好な熱的寸法
安定性を有している。また、所望の大きさの結晶粒径と
するためには適当な焼結時間でもって焼結温度と焼結雰
囲気の酸素分圧を確保する上記の混合ガスの流量比の組
合わせで制御できる。
The niobia-doped oxide nuclear fuel pellet obtained by the production method of the present invention has a predetermined high density, a stoichiometric composition, a sufficiently low content of impurities, and good thermal dimensional stability. There is. Further, in order to obtain a desired crystal grain size, it is possible to control the sintering temperature by a combination of the flow rate ratio of the above-mentioned mixed gas that ensures the oxygen partial pressure of the sintering atmosphere with an appropriate sintering time.

〔作用〕[Effect]

第1図に本発明のニオビア添加酸化物核燃料ペレットの
製造工程を示したが、以下に工程の順序に従って本発明
の個々の工程の作用について説明する。
FIG. 1 shows the process for producing niobia-added oxide nuclear fuel pellets of the present invention, and the effects of the individual steps of the present invention will be explained below in accordance with the order of the steps.

■ 5価のNb、05粉末を還元熱処理して4価のNb
O2粉末とすることによって下記の作用が奏せられる。
■ Tetravalent Nb is obtained through reduction heat treatment of pentavalent Nb and 05 powder.
By using O2 powder, the following effects can be achieved.

(a)  本発明の焼結温度範囲ならびに焼結雰囲気の
酸素分圧範囲におけるニオブ酸化物は4価のNbO2で
あることから予め過剰な酸素を遊離させることができる
(a) Since the niobium oxide in the sintering temperature range and oxygen partial pressure range of the sintering atmosphere of the present invention is tetravalent NbO2, excess oxygen can be liberated in advance.

Cb)本発明のグリーン・ペレットの還元熱処理の際に
NbJsと10.、、の場合には両者の還元に伴う寸法
変化によって処理ペレットにクラックを生じたが、Nb
O2とuO□□の場合には還元に伴う寸法変化は102
+Xのみであり、クラックを生じないようにすることが
できる。
Cb) NbJs and 10. , , cracks occurred in the treated pellets due to the dimensional changes accompanying the reduction of both, but in the case of Nb
In the case of O2 and uO□□, the dimensional change due to reduction is 102
+X only, and it is possible to prevent cracks from occurring.

(C)  ニオブ酸化物の粉末に含まれる不純物を低減
することができる。
(C) Impurities contained in niobium oxide powder can be reduced.

なお、水素ガスまたは安全ガス気流中における800℃
で適当な時間の還元熱処理によって5価のNbJs粉末
が4価のNbO7粉末となるのは当該熱処理前後の重量
変化ならびにX線回折試験結果から確認されている。
In addition, 800℃ in hydrogen gas or safety gas flow
It has been confirmed from the weight change before and after the heat treatment and the X-ray diffraction test results that the pentavalent NbJs powder turns into the tetravalent NbO7 powder by the reduction heat treatment for an appropriate time.

(2)  N b 02と圓2+Xからなるグリーン・
ペレットを還元熱処理してNbO2と[102からなる
処理ペレットとすることによって下記の作用が奏せられ
・る。
(2) Green consisting of N b 02 and En2+X
By subjecting the pellets to reduction heat treatment to obtain treated pellets consisting of NbO2 and [102], the following effects can be achieved.

(a)  本発明の焼結温度範囲ならびに焼結雰囲気の
酸素分圧範囲におけるニオビア添加酸化物核燃料ペレッ
トの0/U比は2.00の化学量論的組成を保持するの
で、予め過剰酸素を遊離することができる。
(a) Since the 0/U ratio of the niobia-added oxide nuclear fuel pellets in the sintering temperature range of the present invention and the oxygen partial pressure range of the sintering atmosphere maintains a stoichiometric composition of 2.00, excess oxygen is removed in advance. Can be released.

(b)  ニオビア添加酸化物核燃料のグリーン・ペレ
ットに含まれる不純物を低減する。これは本発明の焼結
温度範囲ならびに焼結雰囲気の酸素分圧範囲において比
較的高い酸素分圧となる混合ガスの流量比を選択した場
合、焼結温度へ到達するまでの昇温過程ならびに焼結過
程の初期段階において閉気孔の形成が早くなるので、処
理ペレットからの不純物の放出の阻害が生じる可能性が
あるため予めグリーン・ペレットに含まれる不純物を焼
結が開始しない温度以下で放出させることができる。
(b) Reduce impurities contained in green pellets of niobia-doped oxide nuclear fuel. This is due to the temperature rise process and sintering process until the sintering temperature is reached when the flow rate ratio of the mixed gas that provides a relatively high oxygen partial pressure in the sintering temperature range and oxygen partial pressure range of the sintering atmosphere of the present invention is selected. Since the formation of closed pores is rapid in the early stage of the sintering process, there is a possibility that the release of impurities from the treated pellets will be inhibited, so the impurities contained in the green pellets are released in advance at a temperature below the temperature at which sintering does not start. be able to.

よって、当該ペレットに含まれる不純物のレベルは許容
値以下となり、また熱的寸法安定性も確保される。
Therefore, the level of impurities contained in the pellets is below the permissible value, and thermal dimensional stability is also ensured.

セラミックである焼結体の閉気孔とは、焼結が終期の段
階に入ると形成され、焼結体内部に互に孤立して閉じ込
められた空隙部をいう。なお、閉気孔の形成が早まる理
由は本発明のニオビア添加酸化物核燃料ペレットの製造
方法における1段焼結の焼結雰囲気の酸素分圧を比較的
高くすることができるので、例えば処理ペレットを昇温
する過程においても焼結は進行し、その結果比較的低い
密度の焼結体において閉気孔の形成が開始するのである
The closed pores of a ceramic sintered body are voids that are formed when sintering enters the final stage and are isolated and confined inside the sintered body. The reason why the formation of closed pores is accelerated is that the oxygen partial pressure in the sintering atmosphere of the first stage sintering in the method for producing niobia-added oxide nuclear fuel pellets of the present invention can be made relatively high. Sintering continues even during the heating process, and as a result, closed pores begin to form in the sintered body of relatively low density.

なお、水素ガスまたは安全ガス気流中における800℃
で適当な時間の還元熱処理によってNbO2とUO3,
、からなるグリーン・ペレットがNbO2と002から
なる処理ペレットとなるのは、還元熱処理前後の重量変
化ならびにX線回折試験結果から確認されている。
In addition, 800℃ in hydrogen gas or safety gas flow
NbO2 and UO3,
It has been confirmed from the weight change before and after the reduction heat treatment and from the X-ray diffraction test results that the green pellets made of .

0.2〜1.0重量%のNbO2とULからなる処理ペ
レットを本発明の焼結温度範囲ならびにこれらの焼結温
度に対応した焼結雰囲気の酸素分圧とするための各混合
ガスの流量比範囲の1段焼結で、所定の高密度、所望の
大きさの結晶粒径を有し、O/11比が2.00の化学
量論的組成の不純物の少ない熱的寸法安定性の良好なニ
オビア添加酸化物核燃料ペレットとなるのは下記の作用
により達成される。
Flow rate of each mixed gas to bring the treated pellets consisting of 0.2 to 1.0% by weight of NbO2 and UL into the sintering temperature range of the present invention and the oxygen partial pressure of the sintering atmosphere corresponding to these sintering temperatures. One-stage sintering in the ratio range allows for a thermally dimensionally stable product with a predetermined high density, a desired grain size, a stoichiometric composition with an O/11 ratio of 2.00, and low impurities. A good niobia-added oxide nuclear fuel pellet is achieved by the following actions.

(a)  ウラン酸化物はO/U比が2.00となる平
衡酸素分圧の温度依存式はS、 AronsonとJ、
Be1le(J、Chem、Phys、29 [1〕1
51〜58 (1958))によって下式で与えられて
いる。
(a) For uranium oxide, the temperature-dependent equation for the equilibrium oxygen partial pressure at which the O/U ratio is 2.00 is given by S, Aronson and J,
Be1le (J, Chem, Phys, 29 [1] 1
51-58 (1958)) is given by the following formula.

LogPo2−1.881−14332/Tkここで、
Po2(atm) :酸素分圧Tk(K):絶対温度 本発明の焼結雰囲気の酸素分圧の上限は、上記の温度に
対応した002.。。の平衡酸素分圧とすることにより
焼結の促進作用が得られた。
LogPo2-1.881-14332/Tk where,
Po2 (atm): Oxygen partial pressure Tk (K): Absolute temperature The upper limit of the oxygen partial pressure in the sintering atmosphere of the present invention is 002. . . The sintering promotion effect was obtained by setting the equilibrium oxygen partial pressure to .

一方、本発明の焼結雰囲気の酸素分圧の下限については
上記の温度に対応した口02.。。の平衡酸素分圧の1
06分の1低下したレベルとしても、十分に焼結の促進
作用があることを確轟忍した。
On the other hand, regarding the lower limit of the oxygen partial pressure in the sintering atmosphere of the present invention, the lower limit of the oxygen partial pressure in the sintering atmosphere is 02. . . 1 of the equilibrium oxygen partial pressure of
It was confirmed that even at a level lowered by 1/06, there is a sufficient effect of promoting sintering.

(b)  ウラン酸化物の0/[1比が2.00となる
平衡酸素分圧を上限とし、またその酸素分圧の106分
の1低下したレベルを下限とするような焼結雰囲気の酸
素分圧を提供する混合ガスは下記の三種類として、焼結
の促進作用を有する焼結雰囲気を形成できる。
(b) Oxygen in the sintering atmosphere such that the upper limit is the equilibrium oxygen partial pressure at which the 0/[1 ratio of uranium oxide is 2.00, and the lower limit is a level that is 1/106th of the oxygen partial pressure. The following three types of mixed gases that provide partial pressure can be used to form a sintering atmosphere that promotes sintering.

(i ) [l’02/CDの混合ガスの場合の平衡酸
素分圧の温度依存式は、J、 P、(:oughlin
 (Ll、 S。
(i) The temperature-dependent equation for the equilibrium oxygen partial pressure in the case of a mixed gas of [l'02/CD is J, P, (:oughlin
(Ll, S.

Mines Bull、No、542 (1954))
によって下式%式% ここで、CO2/Co :両者のガスの流量比(ii 
) Co2/N2の混合ガスの場合の平衡酸素分圧は、
CO2、CO、N20 、 N2.02の平衡を標準生
成自由エネルギーを用いて計算した。
Mines Bull, No. 542 (1954))
According to the following formula % formula % Here, CO2/Co: Flow rate ratio of both gases (ii
) The equilibrium oxygen partial pressure in the case of a mixed gas of Co2/N2 is
The equilibrium of CO2, CO, N20, and N2.02 was calculated using the standard free energy of formation.

上記のCo2/COおよびCo2/H2の流量比は、予
め所定の組成比で供給ボンベに充填するか、またはそれ
ぞれの単体のガス供給ボンベから浮き子式流量計または
マスフローコントローラを用いて流量を制御し、ガス混
合器を介してペレットの処理流れの下流側または上流側
から焼結炉に供給すればよい。
The above flow rate ratios of Co2/CO and Co2/H2 can be determined by filling supply cylinders in advance at predetermined composition ratios, or by controlling the flow rates from each individual gas supply cylinder using a float flowmeter or mass flow controller. However, the pellets may be supplied to the sintering furnace from the downstream or upstream side of the pellet flow through a gas mixer.

(iii )  N20/l12の混合ガスの場合の平
衡酸素分圧の温度依存式は、T、 L、 Markin
ら(J。
(iii) The temperature-dependent equation for the equilibrium oxygen partial pressure in the case of a mixed gas of N20/l12 is T, L, Markin
et al (J.

+norg、nucl、chem、、  30  (1
968)  807 〜817  )によって下式で与
えられる。
+norg, nucl, chem,, 30 (1
968) 807 to 817) is given by the following formula.

LogPo2= −25026/Tk+1.96Log
Tk−0,966+2Log (N20/H2) ここで、N20/H2:両者の流量比 なお、この8.0/H2の混合ガスの焼結の場合、特開
昭62−180292に口承されている核燃料ペレット
の焼結炉の加湿水素雰囲気制御装置を用いることにより
正確に焼結雰囲気の酸素分圧を確保でき、上記と同様に
焼結雰囲気の混合ガスはペレットの処理流れの下流側ま
たは上流側から供給する。
LogPo2=-25026/Tk+1.96Log
Tk-0,966+2Log (N20/H2) Here, N20/H2: Flow rate ratio of both.In the case of sintering of this mixed gas of 8.0/H2, the nuclear fuel as oral tradition in JP-A No. 62-180292 By using a humidified hydrogen atmosphere control device in the pellet sintering furnace, it is possible to accurately ensure the oxygen partial pressure in the sintering atmosphere, and similarly to the above, the mixed gas in the sintering atmosphere is controlled from the downstream or upstream side of the pellet processing flow. supply

また、上記の混合ガスに酸素分圧を考慮して、キャリア
・ガスとしてAr、HeまたはN2ガスを使用してもよ
い。
Further, Ar, He, or N2 gas may be used as a carrier gas in consideration of the oxygen partial pressure in the above-mentioned mixed gas.

第2図、第3図および第4図に本発明のそれぞれ3種類
の混合ガスの流量比の範囲と焼結温度の関係を示した。
FIG. 2, FIG. 3, and FIG. 4 show the relationship between the flow rate ratio range of three types of mixed gases and the sintering temperature, respectively, according to the present invention.

第1表に本発明の焼結温度範囲1000〜2000℃に
おける各温度に対応する焼結雰囲気の酸素分圧の上限な
らびに下限、およびこれらの焼結雰囲気の酸素分圧を提
供する3種類の混合ガスの流量比を示す。
Table 1 shows the upper and lower limits of the oxygen partial pressure in the sintering atmosphere corresponding to each temperature in the sintering temperature range of 1000 to 2000°C of the present invention, and three types of mixtures that provide these oxygen partial pressures in the sintering atmosphere. Indicates the gas flow rate ratio.

(C)  第5図にウラン酸化物のO/U比が2.00
となる平衡酸素分圧と温度の関係と合せて、3種類の混
合ガスがCD2/CD= 1 、 CO2/H2−1お
よび)120/H2= 1の場合の平衡酸素分圧を示す
が、焼結温度における本発明の流量比範囲では焼結の際
の昇温過程および降温過程においても処理ペレットのD
/U比が2. OOのまま確保されるのがわかり、十分
に焼結が進行して取出し後の焼結体ペレットは化学量論
的組成を有しており、この焼結過程において[1/U比
が2.00に確保される作用があることがわかる。
(C) Figure 5 shows that the O/U ratio of uranium oxide is 2.00.
Together with the relationship between equilibrium oxygen partial pressure and temperature, we show the equilibrium oxygen partial pressure when the three types of mixed gases are CD2/CD = 1, CO2/H2-1, and )120/H2 = 1. In the flow ratio range of the present invention at the sintering temperature, the D of the treated pellet is
/U ratio is 2. It can be seen that the sintered pellets are kept as OO, and the sintered pellets after being taken out after sintering has progressed sufficiently have a stoichiometric composition, and during this sintering process, the 1/U ratio is 2. It can be seen that there is an effect that is ensured by 00.

(d)  更に、焼結前の工程において還元熱処理によ
りNbO,粉末、またNbO2と口02とからなる処理
ペレットとしたので、処理ペレット中の不純物ならびに
過剰酸素の含有量は少なく、焼結雰囲気は所定のレベル
に保たれ、これらの作用により焼結雰囲気の形成ならび
に低不純物焼結体の製造が可能であることがわかる。
(d) Furthermore, in the process before sintering, the treated pellets made of NbO, powder, and NbO2 and mouth 02 were made by reducing heat treatment, so the content of impurities and excess oxygen in the treated pellets was small, and the sintering atmosphere was It can be seen that these actions enable the formation of a sintering atmosphere and the production of a low impurity sintered body.

(e)  本発明の焼結温度に対応した酸素分圧範囲の
焼結雰囲気で製造されたニオビア添加酸化物核燃料ペレ
ットは、所定のO/ll比が例えば1.99〜2,02
の範囲内であり、かつ焼結雰囲気の酸素分圧を本発明範
囲の上限まで高めることにより結晶粒の成長が促進され
るのを本発明者らの実験により見出だした。
(e) Niobia-added oxide nuclear fuel pellets produced in a sintering atmosphere with an oxygen partial pressure range corresponding to the sintering temperature of the present invention have a predetermined O/ll ratio of, for example, 1.99 to 2,02
The present inventors have found through experiments that the growth of crystal grains is promoted by increasing the oxygen partial pressure of the sintering atmosphere to the upper limit of the range of the present invention.

そこで、焼結雰囲気の酸素分圧を制御する手段により所
望の大きさの結晶粒径を有するニオビア添加酸化物核燃
料ペレットを比較的低温の焼結温度で製造が可能である
Therefore, by controlling the oxygen partial pressure of the sintering atmosphere, it is possible to produce niobia-added oxide nuclear fuel pellets having a desired crystal grain size at a relatively low sintering temperature.

(f)  約30重量%のPuO2を含む酸化物核燃料
ペレットについてはPLI02とUO3は全率固溶体で
あるこまからその焼結挙動は固溶反応を含むが、1.I
02単体の場合と比較して大きな差異はないので、本発
明のこれらの作用は同業他者によって確認されるであろ
う。
(f) For oxide nuclear fuel pellets containing about 30% by weight PuO2, PLI02 and UO3 are entirely solid solution, so their sintering behavior involves a solid solution reaction, but 1. I
These effects of the present invention will be confirmed by others in the art since there is no significant difference compared to the case of 02 alone.

〔実施例1〕 UO2,,2原料粉末は、通常の粗成形、造粒、潤滑剤
添加、成形圧を4 (Ton/cm2)でグリーン・ペ
レットを作り、約1%体積の水分を含む水素ガス気流中
で1750℃の5時間加熱して焼結した102単体の酸
化物核燃料ペレットは、密度96%TD、結晶粒径8μ
mである。
[Example 1] UO2,,2 raw material powder was made into green pellets by normal rough molding, granulation, addition of lubricant, and molding pressure of 4 (Ton/cm2), and hydrogen containing about 1% volume water was used. Single oxide nuclear fuel pellets of 102 sintered by heating at 1750°C for 5 hours in a gas stream have a density of 96% TD and a crystal grain size of 8μ.
It is m.

この実施例で使用したウラン酸化物の粉末は商業ベース
のものであり、A D U (Ammoniumpi 
uranate)法により転換されたものである。
The uranium oxide powder used in this example was commercially available and was commercially available.
uranate) method.

こ\での粗成形圧力は約1トン/cm2であり、造粒工
程は−13〜+100メツシユ間の造粒粉とし、これら
に0.2重量%のステアリン酸亜鉛を添加・混合し、こ
のステアリン酸亜鉛を含む造粒粉を約7g金型に充填し
て、冷間・圧縮して約10mm直径の円柱状のグリーン
・ペレットを作製した。
The rough molding pressure here is about 1 ton/cm2, and the granulation process produces granulated powder between -13 and +100 mesh, and 0.2% by weight of zinc stearate is added and mixed to this. Approximately 7 g of granulated powder containing zinc stearate was filled into a mold and cold compressed to produce cylindrical green pellets with a diameter of approximately 10 mm.

以下の本発明によって得られたニオビア添加酸化物核燃
料ベレットは、上記のUO□、+2粉末と同一の粉末で
ある。
The following niobia-added oxide nuclear fuel pellet obtained according to the present invention is the same powder as the above-mentioned UO□, +2 powder.

船釣に使用されている高純度のNb2O5粉末を安全ガ
ス気流中において800℃の5時間の還元熱処理を施し
てNbO2粉末を作った。こXで使用した安全ガスは、
水素ガスを1とし、窒素ガスを2とする還元性ガスであ
り、爆発の危険性はないものである。
High-purity Nb2O5 powder used for boat fishing was subjected to reduction heat treatment at 800°C for 5 hours in a safety gas flow to produce NbO2 powder. The safety gas used in this
It is a reducing gas with 1 part hydrogen gas and 2 parts nitrogen gas, and there is no danger of explosion.

上記の1Qb02粉末と[102,,2粉末の両者を秤
量して、約0.3重量%のNbD2添加量となるように
してボール・ミルを用いて機械混合した。
Both the above 1Qb02 powder and [102,,2 powder were weighed and mechanically mixed using a ball mill so that the amount of NbD2 added was approximately 0.3% by weight.

上記で得られた混合粉末を、上記と同様の通常の粗成形
、造粒、潤滑剤添加、成形圧を4(トン/Cm2)でグ
リーン・ペレットを作った。
Green pellets were made from the mixed powder obtained above using the same general rough molding, granulation, addition of lubricant, and molding pressure of 4 (tons/cm2) as described above.

上記で得られたグリーン・ペレットを安全ガス気流中に
おいて800℃の5時間の還元熱処理を施してNbO2
と圓。からなる処理ベレットを作った。
The green pellets obtained above were subjected to reduction heat treatment at 800°C for 5 hours in a safety gas flow to produce NbO2.
and En. A processed beret consisting of was made.

上記のニオビア添加処理ペレットを下記の本発明の焼結
温度範囲でこれらの温度に対応した酸素分圧範囲内であ
るCo2/Coの混合ガスで焼結した場合の焼結体デー
タを示す。
The sintered body data is shown when the above niobia-added pellets are sintered in the following sintering temperature range of the present invention with a Co2/Co mixed gas within the oxygen partial pressure range corresponding to these temperatures.

なお、焼結の加熱条件は1400℃の5時間とした。The heating conditions for sintering were 1400° C. for 5 hours.

〔実施例2〕 上記の実施例1と同じ方法で作ったニオビア添加処理ペ
レットを下記の本発明の酸素分圧範囲内で002とH2
の混合ガスにおいてその流量比を変えて焼結した場合の
焼結体データを示す。
[Example 2] Niobia-added pellets prepared in the same manner as in Example 1 above were treated with 002 and H2 within the oxygen partial pressure range of the present invention as described below.
The data of the sintered body when sintered in a mixed gas with different flow rate ratios is shown.

なお、焼結の加熱条件はl1100tの5時間とした。The heating conditions for sintering were 1100 tons for 5 hours.

〔実施例3〕 上記の実施例1と同じ方法で作ったニオビア添加処理ペ
レットを下記の本発明の焼結温度範囲でこれらの温度に
対応した酸素分圧範囲内であるCo2/Coの流量比−
1で焼結した場合の焼結体データを示す。
[Example 3] Niobia-added pellets made in the same manner as in Example 1 above were heated to a Co2/Co flow rate ratio within the oxygen partial pressure range corresponding to these temperatures in the following sintering temperature range of the present invention. −
The sintered body data when sintered in No. 1 is shown.

〔実施例4〕 上記の実施例1と同じ方法で作ったニオビア添加処理ペ
レットを下記の本発明の焼結温度範囲でこれらの温度に
対応した酸素分圧範囲内であるH、0/H2の混合ガス
で焼結した場合の焼結体データを示す。
[Example 4] Niobia-added pellets prepared in the same manner as in Example 1 above were heated to a temperature of H, 0/H2 within the oxygen partial pressure range corresponding to these temperatures in the following sintering temperature range of the present invention. The data of the sintered body when sintered with mixed gas is shown.

なお、焼結の加熱条件は1750℃の5時間とした。The heating conditions for sintering were 1750° C. for 5 hours.

上記の実施例かられかるように比較的焼結の進行の容易
でないウラン酸化物の粉末を原料とした場合においても
微量のニオブ酸化物の添加と焼結雰囲気の酸素分圧の組
合わせにより比較的低温の焼結温度によってFPガスの
放出を十分低減できる大きさの結晶粒径を有する酸化物
核燃料ペレットの製造が可能である。
As can be seen from the above examples, even when using uranium oxide powder, which is relatively difficult to sinter, as a raw material, the comparison can be made by combining the addition of a small amount of niobium oxide and the oxygen partial pressure of the sintering atmosphere. The relatively low sintering temperature makes it possible to produce oxide nuclear fuel pellets with a grain size large enough to sufficiently reduce the release of FP gas.

〔発明の効果〕〔Effect of the invention〕

(a)  本発明のニオビア添加酸化物核燃料ペレット
の製造における焼結温度を、焼結雰囲気の酸素分圧を所
望のレベルに保つことにより比較的低温でも十分にFP
ガスの放出を低減させる大きさの結晶粒径とするのが可
能である。
(a) By maintaining the sintering temperature in the production of the niobia-added oxide nuclear fuel pellets of the present invention at a desired level with the oxygen partial pressure in the sintering atmosphere, sufficient FP can be achieved even at relatively low temperatures.
It is possible to have a grain size that reduces outgassing.

この焼結温度の低温化は、焼結炉の設備費、運転費なら
びに保守費を低減するので、酸化物核燃料ペレットの成
形・加工費のコスト低減に寄与する。
This lowering of the sintering temperature reduces the equipment cost, operating cost, and maintenance cost of the sintering furnace, and thus contributes to reducing the cost of forming and processing oxide nuclear fuel pellets.

ω)本発明のニオビア添加酸化物核燃料ペレットの製造
における焼結促進剤であるニオブ酸化物を5価のNbJ
sから4価のNbO□へ還元熱処理することにより、微
量のニオビア添加に伴うペレットへの不純物混入を低減
するとともに下流工程であるニオビア添加グリーン・ペ
レットの還元熱処理の際の処理ペレットのクラックの発
生を回避できる。
ω) Niobium oxide, which is a sintering accelerator in the production of niobia-added oxide nuclear fuel pellets of the present invention, is replaced with pentavalent NbJ.
The reduction heat treatment from s to tetravalent NbO□ reduces the contamination of impurities into the pellets due to the addition of a small amount of niobia, and also reduces the occurrence of cracks in the treated pellets during the downstream process of reduction heat treatment of niobia-added green pellets. can be avoided.

(C)  本発明のニオビア添加酸化物核燃料ペレット
の製造におけるNbO2と102.、とからなるニオビ
ア添加グリーン・ペレットを還元熱処理することにより
、焼結の際の過剰酸素の遊離を低減して焼結雰囲気の酸
素分圧を一定に確保できるとともに焼結以前の開気孔が
支配的である処理ペレット段階で潤滑剤等の熱分解によ
って生じる不純物ガス等を速やかに放出するので、熱的
寸法安定性の良好な不純物の少ない酸化物核燃料ペレッ
トの製造が可能である。
(C) NbO2 and 102. By applying reductive heat treatment to niobia-added green pellets consisting of Since impurity gases generated by thermal decomposition of lubricants and the like are promptly released at the target pellet stage, it is possible to produce oxide nuclear fuel pellets with good thermal dimensional stability and low impurity content.

(cl)  本発明のニオビア添加酸化物核燃料ペレッ
トの製造における焼結雰囲気の酸素分圧は焼結温度に対
応して0/U比が2.00となる平衡酸素分圧を上限と
し、かつこれらの酸素分圧を提供するCO□とCD、C
D、とH2またはH2OとH2の混合ガスの気流中では
焼結温度への昇温過程、および焼結温度からの降温過程
においてもO/II比が2,00以上となることはない
ので、所定の0/[1比である2、0Ω〜2.01を有
する酸化物核燃料ペレットの製造が可能である。
(cl) The oxygen partial pressure in the sintering atmosphere in the production of the niobia-added oxide nuclear fuel pellets of the present invention has an upper limit of the equilibrium oxygen partial pressure at which the 0/U ratio is 2.00, corresponding to the sintering temperature, and CO□ and CD, which provide an oxygen partial pressure of
In an air flow of a mixed gas of D, H2 or H2O and H2, the O/II ratio will not exceed 2,00 even in the process of increasing the temperature to the sintering temperature and in the process of decreasing the temperature from the sintering temperature. It is possible to produce oxide nuclear fuel pellets with a predetermined 0/[1 ratio of 2.0Ω to 2.01.

(e)  本発明のニオビア添加酸化物核燃料ペレット
は、FPガスのペレットからの放出を低減するので、原
子炉の負荷追従運転を含む高燃焼度の核燃料の利用を容
易にするので、経済性の向上を可能とする。
(e) The niobia-added oxide nuclear fuel pellets of the present invention reduce the release of FP gas from the pellets, making it easier to use high-burnup nuclear fuel including load following operation of nuclear reactors, thereby improving economic efficiency. Enables improvement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のニオビア添加酸化物核燃料ペレットの
製造方法の工程図。第2図は本発明のニオビア添加酸化
物核燃料ペレットの焼結雰囲気を提供する二酸化炭素と
一酸化炭素の流量比の対数範囲と焼結温度の絶対温度の
逆数の相関図。第3図は本発明のニオビア添加酸化物核
燃料ペレットの焼結雰囲気を提供する二酸化炭素と一酸
化炭素と水素の流量比の対数範囲と焼結温度の絶対温度
の逆数の相関図。第4図は本発明のニオビア添加酸化物
核燃料ペレットの焼結雰囲気を提供する水蒸気と水素の
流量比の対数範囲と焼結温度の絶対温度の逆数の相関図
。 第5図は本発明のニオビア添加酸化物核燃料ペレットの
焼結温度と焼結雰囲気の酸素分圧相当の各種混合ガス流
量比の相関図である。
FIG. 1 is a process diagram of the method for producing niobia-added oxide nuclear fuel pellets of the present invention. FIG. 2 is a correlation diagram between the logarithmic range of the flow rate ratio of carbon dioxide and carbon monoxide that provides a sintering atmosphere for the niobia-added oxide nuclear fuel pellets of the present invention and the reciprocal of the absolute temperature of the sintering temperature. FIG. 3 is a correlation diagram of the logarithmic range of the flow rate ratio of carbon dioxide, carbon monoxide, and hydrogen that provides a sintering atmosphere for the niobia-added oxide nuclear fuel pellets of the present invention and the reciprocal of the absolute temperature of the sintering temperature. FIG. 4 is a correlation diagram between the logarithmic range of the flow rate ratio of water vapor and hydrogen that provides a sintering atmosphere for the niobia-added oxide nuclear fuel pellets of the present invention and the reciprocal of the absolute temperature of the sintering temperature. FIG. 5 is a correlation diagram between the sintering temperature of the niobia-added oxide nuclear fuel pellet of the present invention and the flow rate ratio of various mixed gases corresponding to the oxygen partial pressure of the sintering atmosphere.

Claims (3)

【特許請求の範囲】[Claims] (1)ウランの酸化物またはウランの酸化物とプルトニ
ウムの酸化物との混合物を原料粉末として成形して焼結
する酸化物核燃料ペレットの製造方法において、焼結促
進剤であるニオブ酸化物を水素または水素と窒素の混合
ガスの気流中で800℃の適当な時間の還元熱処理を施
して、5価のNb_2O_5を4価のNbO_2の粉末
とし、該NbO_2粉末0.2〜1.0重量%を上記の
原料粉末に添加・混合、成形してグリーン・ペレットと
し、該グリーン・ペレットを水素または水素と窒素の混
合ガスの気流中で 800〜1000℃の適当な時間の還元熱処理を施して
、酸素と金属の原子比が約2.0の処理ペレットとし、
更に焼結温度範囲1000〜2000℃に対応した焼結
雰囲気をそれぞれ二酸化炭素と一酸化炭素の流量比の対
数の上限および下限を焼結温度1000℃の場合2.4
〜−0.62、ならびに焼結温度2000℃の場合−0
.25〜−3.2として、二酸化炭素と一酸化炭素の流
量比の対数と焼結温度の絶対温度の逆数の関係において
ほぼ直線で包絡される二酸化炭素と一酸化炭素の流量比
の範囲の気流中で焼結することを特徴とする高密度、大
粒径、化学量論的組成を有し、不純物の少ない酸化物核
燃料ペレットの製造方法。
(1) In a method for producing oxide nuclear fuel pellets in which uranium oxide or a mixture of uranium oxide and plutonium oxide is molded and sintered as a raw material powder, niobium oxide, which is a sintering accelerator, is Alternatively, by subjecting pentavalent Nb_2O_5 to powder of tetravalent NbO_2 by subjecting it to reduction heat treatment at 800°C for an appropriate time in a mixed gas flow of hydrogen and nitrogen, 0.2 to 1.0% by weight of the NbO_2 powder is The above raw material powder is added, mixed and molded to form green pellets, and the green pellets are subjected to reduction heat treatment at 800 to 1000°C for an appropriate time in a stream of hydrogen or a mixed gas of hydrogen and nitrogen. and a treated pellet with an atomic ratio of about 2.0,
Furthermore, for the sintering atmosphere corresponding to the sintering temperature range of 1000 to 2000°C, the upper and lower limits of the logarithm of the flow rate ratio of carbon dioxide and carbon monoxide are 2.4 when the sintering temperature is 1000°C.
~-0.62, and -0 at a sintering temperature of 2000°C
.. 25 to -3.2, the air flow in the range of the flow rate ratio of carbon dioxide and carbon monoxide that is almost linearly enveloped in the relationship between the logarithm of the flow rate ratio of carbon dioxide and carbon monoxide and the reciprocal of the absolute temperature of the sintering temperature. A method for producing oxide nuclear fuel pellets having high density, large particle size, stoichiometric composition, and low impurities, characterized by sintering in a medium.
(2)焼結温度範囲1000〜2000℃に対応した焼
結雰囲気をそれぞれ二酸化炭素と水素の流量比の対数の
上限および下限を焼結温度1000℃の場合2.3〜−
0.50、ならびに焼結温度2000℃の場合0.15
〜−2.5として、二酸化炭素と水素の流量比の対数と
焼結温度の絶対温度の逆数の関係においてほぼ直線で包
絡される二酸化炭素と水素の流量比の範囲の気流中で焼
結することを特徴とする上記請求項(1)項記載の酸化
物核燃料ペレットの製造方法。
(2) For the sintering atmosphere corresponding to the sintering temperature range of 1000 to 2000°C, the upper and lower limits of the logarithm of the flow rate ratio of carbon dioxide and hydrogen are 2.3 to - in the case of a sintering temperature of 1000°C.
0.50, and 0.15 at a sintering temperature of 2000°C
-2.5, sintering in an air flow with a flow rate ratio of carbon dioxide and hydrogen that is almost linearly enveloped in the relationship between the logarithm of the flow rate ratio of carbon dioxide and hydrogen and the reciprocal of the absolute temperature of the sintering temperature. The method for producing oxide nuclear fuel pellets according to claim (1) above.
(3)焼結温度範囲1000〜2000℃に対応した焼
結雰囲気をそれぞれ水蒸気と水素の流量比の対数の上限
および下限を焼結温度1000℃の場合2.6〜−0.
42、ならびに焼結温度2000℃の場合0.45〜−
2.5として、水蒸気と水素の流量比の対数と焼結温度
の絶対温度の逆数の関係においてほぼ直線で包絡される
水蒸気と水素の流量比の範囲の気流中で焼結することを
特徴とする上記請求項(1)項記載の酸化物核燃料ペレ
ットの製造方法。
(3) The upper and lower limits of the logarithm of the flow rate ratio of steam and hydrogen are 2.6 to -0.
42, and 0.45 to - at a sintering temperature of 2000°C
2.5 is characterized in that sintering is carried out in an air flow within a range of flow rate ratios of water vapor and hydrogen that are almost linearly enveloped in the relationship between the logarithm of the flow rate ratio of water vapor and hydrogen and the reciprocal of the absolute temperature of the sintering temperature. The method for producing oxide nuclear fuel pellets according to claim (1).
JP2182653A 1990-07-12 1990-07-12 Fabrication of nuclear fuel pellet of oxide with niobia additive Pending JPH0470594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2182653A JPH0470594A (en) 1990-07-12 1990-07-12 Fabrication of nuclear fuel pellet of oxide with niobia additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2182653A JPH0470594A (en) 1990-07-12 1990-07-12 Fabrication of nuclear fuel pellet of oxide with niobia additive

Publications (1)

Publication Number Publication Date
JPH0470594A true JPH0470594A (en) 1992-03-05

Family

ID=16122080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2182653A Pending JPH0470594A (en) 1990-07-12 1990-07-12 Fabrication of nuclear fuel pellet of oxide with niobia additive

Country Status (1)

Country Link
JP (1) JPH0470594A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088317A (en) * 2010-10-20 2012-05-10 Korea Atomic Energy Research Inst Solid solution concentration adjustment method for crystal grain boundary and periphery of crystal grain boundary of heterogeneous additive element, and method of manufacturing nuclear fuel sintered body having large crystal grain using the same
JP2015534087A (en) * 2012-11-08 2015-11-26 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ Oxide nuclear fuel as a regulator of corrosive fission products with at least one redox system added
CN109300560A (en) * 2018-11-01 2019-02-01 中国原子能科学研究院 A kind of mixed oxide pellet sintering atmosphere oxygen gesture control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012088317A (en) * 2010-10-20 2012-05-10 Korea Atomic Energy Research Inst Solid solution concentration adjustment method for crystal grain boundary and periphery of crystal grain boundary of heterogeneous additive element, and method of manufacturing nuclear fuel sintered body having large crystal grain using the same
US9190179B2 (en) 2010-10-20 2015-11-17 Korea Atomic Energy Research Institute Method of controlling solubility of additives at and near grain boundaries, and method of manufacturing sintered nuclear fuel pellet having large grain size using the same
JP2015534087A (en) * 2012-11-08 2015-11-26 コミサリヤ・ア・レネルジ・アトミク・エ・オ・エネルジ・アルテルナテイブ Oxide nuclear fuel as a regulator of corrosive fission products with at least one redox system added
CN109300560A (en) * 2018-11-01 2019-02-01 中国原子能科学研究院 A kind of mixed oxide pellet sintering atmosphere oxygen gesture control device
CN109300560B (en) * 2018-11-01 2024-05-14 中国原子能科学研究院 Mixed oxide pellet sintering atmosphere oxygen potential control device

Similar Documents

Publication Publication Date Title
US6251310B1 (en) Method of manufacturing a nuclear fuel pellet by recycling an irradiated oxide fuel pellet
US5882552A (en) Method for recycling fuel scrap into manufacture of nuclear fuel pellets
US3872022A (en) Sintering uranium oxide in the reaction products of hydrogen-carbon dioxide mixtures
Zimmer et al. SGMP—an advanced method for fabrication of UO2 and mox fuel pellets
JPS6119952B2 (en)
US3927154A (en) Process for preparing sintered uranium dioxide nuclear fuel
US6251309B1 (en) Method of manufacturing large-grained uranium dioxide fuel pellets containing U3O8
US3930787A (en) Sintering furnace with hydrogen carbon dioxide atmosphere
US4438050A (en) Method for the manufacture of very dense oxidic nuclear fuel bodies
US9653188B2 (en) Fabrication method of burnable absorber nuclear fuel pellets and burnable absorber nuclear fuel pellets fabricated by the same
US4264540A (en) Production of nuclear fuel pellets
US3715273A (en) Nuclear fuel element containing sintered uranium dioxide fuel with a fine particulate dispersion of an oxide additive therein,and method of making same
JPH0470594A (en) Fabrication of nuclear fuel pellet of oxide with niobia additive
WO2018124915A1 (en) Nuclear fuel pellet and method for the production thereof
US3270098A (en) Method of making hollow, spherical uo2 particles
US3761546A (en) Method of making uranium dioxide bodies
KR100521638B1 (en) Uranium dioxide fuel containing SiO2-CaO-Cr2O3 and thereof method
JP2790548B2 (en) Manufacturing method of nuclear fuel sintered body
US2952535A (en) Sintering metal oxides
US3230278A (en) Method of manufacture of uranium dioxide having a high density
JP2588947B2 (en) Manufacturing method of oxide nuclear fuel sintered body
US3272600A (en) Method of producing nuclear fuel monocarbides from higher carbides
US3213161A (en) Process for forming a uranium mononitride-uranium dioxide nuclear fuel
JP2701049B2 (en) Method for producing oxide nuclear fuel body by air sintering
US3168371A (en) Process for producing high density urania fuel elements