JP2505119B2 - Manufacturing method of nuclear fuel pellets - Google Patents

Manufacturing method of nuclear fuel pellets

Info

Publication number
JP2505119B2
JP2505119B2 JP3075800A JP7580091A JP2505119B2 JP 2505119 B2 JP2505119 B2 JP 2505119B2 JP 3075800 A JP3075800 A JP 3075800A JP 7580091 A JP7580091 A JP 7580091A JP 2505119 B2 JP2505119 B2 JP 2505119B2
Authority
JP
Japan
Prior art keywords
pressure
nuclear fuel
sintering
molding
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3075800A
Other languages
Japanese (ja)
Other versions
JPH04285891A (en
Inventor
和俊 渡海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP3075800A priority Critical patent/JP2505119B2/en
Publication of JPH04285891A publication Critical patent/JPH04285891A/en
Application granted granted Critical
Publication of JP2505119B2 publication Critical patent/JP2505119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は原子力用セラミックス燃
料の製造方法に係り、詳しくは大粒径でかつ熱衝撃に対
し安定な核燃料ペレットの製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a nuclear ceramic fuel, and more particularly to a method for producing a nuclear fuel pellet having a large particle size and stable against thermal shock.

【0002】[0002]

【従来の技術】高燃焼度用ウラン酸化物ペレットは、高
燃焼時におけるFP(核分裂生成物)ガス発生量の低
減、及びPCMI(ペレットと被覆管の機械的相互作
用)特性が良好なこと、即ちPCMIを軽減できること
が求められ、前者に対しては結晶粒径を大きくするこ
と、後者に対しては軟らかいペレット又は耐熱衝撃性の
高いペレットとすることが試みられている。
2. Description of the Related Art Uranium oxide pellets for high burnup have low FP (fission product) gas generation amount during high combustion and good PCMI (mechanical interaction between pellet and cladding), That is, it is required to reduce PCMI, and it has been attempted to increase the crystal grain size for the former and to make the pellet softer or have high thermal shock resistance for the latter.

【0003】ところで従来、かかるペレットの製造に際
し、軟らかいペレットを得ることを目的として、ウラン
酸化物燃料に種々の添加物を添加する製造法の開発が進
められ、特開昭55-27941号公報、特開昭55-27942号公
報、特公昭54-8837 号公報、特公昭63-16716号公報およ
び特開昭63-73189号公報などに幾つかが開示されてい
る。
By the way, conventionally, in the production of such pellets, the development of a production method in which various additives are added to uranium oxide fuel has been advanced for the purpose of obtaining soft pellets, and JP-A-55-27941 discloses the method. Some of them are disclosed in JP-A-55-27942, JP-B-54-8837, JP-B-63-16716 and JP-A-63-73189.

【0004】即ち、特開昭55-27941号公報ではUO2
少なくとも1種の容易に固溶せず、粒界に析出する特性
のある添加物を加えることが、また特開昭55-27942号公
報ではUO2 にAl2 3 ,BeO,CaO,MgO,
SiO2 ,Na2 O,P2 5 から2種以上を0.2 〜5
%添加することが、更に特公昭54-8837 号公報ではUO
2 に核分裂生成物不動用添加材としてケイ酸アルミ、ケ
イ酸カルシウム、ケイ酸マグネシウム、SiO2 −Al
2 3 −MgO,SiO2 −Al2 3 −CaO, チタ
ン酸アルミ, チタン酸ケイ素,CaO−SiO2 −チタ
ン酸塩等を加えることが示されている。
That is, in JP-A-55-27941, UO2To
At least one type that does not easily form a solid solution and precipitates at grain boundaries
It is also possible to add certain additives, as disclosed in JP-A-55-27942.
UO2 To Al2O3, BeO, CaO, MgO,
SiO2, Na2O, P2O FiveFrom 2 to more than 0.2-5
%, The UO in Japanese Patent Publication No. 54-8837
2Aluminum silicate as an additive for immobilization of fission products,
Calcium iodide, magnesium silicate, SiO2-Al
2O3-MgO, SiO2-Al2O3-CaO, Chita
Aluminum oxide, silicon titanate, CaO-SiO2-Cita
It has been shown to add phosphates and the like.

【0005】また、特公昭63-16716号公報ならびに特開
昭63-73189号公報では軟らかくかつ大粒径のペレットを
得る目的で上記UO2 にAl2 3 ,BeO,CaO,
MgO,SiO2 ,Na2 O,P2 5 から2種以上の
外、更にNb2 5 , TiO2 を添加することが述べら
れている。
Further, in JP-B-63-16716 and JP-A-63-73189, Al 2 O 3 , BeO, CaO, UO 2 is added to UO 2 for the purpose of obtaining a pellet having a soft and large particle size.
It is described that two or more kinds of MgO, SiO 2 , Na 2 O and P 2 O 5 are added, and Nb 2 O 5 and TiO 2 are further added.

【0006】他方、前記、PCMIを軽減する軟らかい
ペレットを製造する方法としては特開昭62-98292号公報
にて本願発明出願人により、ウラン酸化物の粉末を圧縮
造粒し、次いでこの粒を粉砕し、篩別した後、その後に
圧縮成型を行い、のち焼結せしめる製法において、上記
成型圧を最初の造粒圧の2割〜6割程度とし、造粒後の
粒度を 100μm 〜600 μmのものが少なくとも40重量%
とし、かつ還元雰囲気下、1700℃〜1800℃にて3時間以
上焼結せしめる燃料ペレットの製造法が提案されてい
る。このペレットは耐熱衝撃性能が高く、通常製法のペ
レットが燃料棒内で小さな破片となり、PCMIの原因
となるのに対し、ほとんど割れを生ぜず、PCMIの原
因となりにくい特性を有している。
On the other hand, as a method for producing soft pellets for reducing PCMI, a uranium oxide powder is compression-granulated by the applicant of the present invention in Japanese Patent Application Laid-Open No. 62-98292. After crushing, sieving, and then compression molding, and then sintering, the molding pressure is about 20 to 60% of the initial granulation pressure, and the particle size after granulation is 100 μm to 600 μm. At least 40% by weight
In addition, a method for producing fuel pellets has been proposed in which sintering is performed at 1700 ° C. to 1800 ° C. for 3 hours or more under a reducing atmosphere. This pellet has a high thermal shock resistance, and has a characteristic that it hardly causes cracks and hardly causes PCMI, while the pellet produced by the usual method causes small fragments in the fuel rod and causes PCMI.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
如き添加物添加の方法においてNb2 5 , TiO2
を添加したものは、粒径が大きくかつPCMI特性も良
好となるが、Nb2 5 , TiO2 等の添加によりFP
の拡散速度が大きくなるため残存するため粒径のわりに
はFP保持性の改善はあまり望むことができない難があ
り、また、中性子経済上、物性の変化上もよくなく、更
にSiO2,Al2 3 等の粒界析出特性のあるものと
上記Nb2 5 , TiO2 等の粒径増大効果のある添加
物を組み合わせる方法においては、多少の改善は見られ
るにしても、やはり同様の欠点がみられる。
However, when Nb 2 O 5 , TiO 2 or the like is added in the above-mentioned additive addition method, the particle size is large and the PCMI characteristic is good, but Nb 2 O FP by addition of 5 , TiO 2 etc.
There is in spite of the grain size for the remaining the diffusion speed increases can not hope much improvement in FP retention flame, also on the neutron economy, not good even on a change in physical properties, further SiO 2, Al 2 In the method of combining a grain boundary precipitation property such as O 3 with an additive having a grain size increasing effect such as Nb 2 O 5 , TiO 2 or the like, although some improvement can be seen, the same drawback is still present. Can be seen.

【0008】一方、ペレット製造に際し、高温長時間焼
結を行うことは、粒径は大きくなるが硬くなり、PCM
I特性を低下させる結果を招来する。他方、前記燃料ペ
レットを最初の圧縮造粒とその後の圧縮成型とによる2
段圧縮成型による製造方法においては、急激な温度変化
によるペレットの破壊を防止し、即ち耐熱衝撃性が高く
なりPCMI特性を向上させて燃料破損を防止しうる反
面、ペレットの粒径が小さくFPガスが多量に放出され
るという問題点を有している。そこで、本発明者は上述
の如き実状に対処し、その改善を図るべく、上記2段圧
縮成型を基本としてこれに添加物添加の方法を組み合わ
せ、更にその処理の方法を加味することにより、結晶粒
径を大ならしめると共に耐熱衝撃性が高く軟らかいペレ
ットの製造を可能にし、FP特性ならびにPCMI特性
の双方をあわせて具備せしめ、より一層向上せしめるこ
とを目的とするものである。
On the other hand, when pellets are manufactured, sintering at high temperature for a long time increases the grain size but hardens the PCM.
This will result in deterioration of the I characteristic. On the other hand, the fuel pellets are subjected to the first compression granulation and the subsequent compression molding.
In the production method by step compression molding, pellet destruction due to abrupt temperature change can be prevented, that is, thermal shock resistance can be improved and PCMI characteristics can be improved to prevent fuel damage, but pellet size is small and FP gas However, there is a problem that a large amount is released. Therefore, the present inventor copes with the above-mentioned situation and, in order to improve it, based on the above-mentioned two-stage compression molding, a method of adding an additive is combined with this, and the method of the treatment is further added to obtain a crystal. It is an object of the present invention to increase the particle size and to enable the production of soft pellets having high thermal shock resistance and to have both FP characteristics and PCMI characteristics, and further improve.

【0009】[0009]

【課題を解決するための手段】即ち、上記目的に適合す
る本発明の特徴は、ウラン酸化物の粉末を圧力Pで圧
縮造粒し、次いでこの造粒された細粒を粉砕,篩別した
後、圧力Pで2回目の圧縮成型を行い、のち焼結して
セラミックス核燃料ペレットを製造する方法を用い、前
記ウラン酸化物の粉末の中に、Nb,TiO
MgO,CaO,SiO,Alもしくは焼結中
にこれらの酸化物に変化するような化合物を単独または
組み合わせて添加し、最初の造粒圧Pとその後の成型
圧Pとの関係をP=0.2P〜0.6P、造粒
後の粒度を100μm〜600μmのものが少なくとも
40重量%として、成型体を成型した後、還元雰囲気中
1600℃〜1800℃にて3時間以上焼結せしめるこ
とにある。また請求項2記載の発明は上記の製造法にお
いて、還元雰囲気中1600℃〜1800℃の焼結に先
立ち、900℃以上の温度領域にて体積率0.01〜1
0%の水蒸気を添加せしめて加湿還元雰囲気とすること
により結晶粒径をより大きくすることを特徴とする。更
に、請求項3記載の発明は上記方法における焼結条件を
一部変えたものであり、成型体を形成した後、CO
CO雰囲気等の酸素の存在が許容される条件で酸素濃度
を0.01ppm〜400ppmに設定し、1400〜
1800℃にて1時間以上加熱後、O/U調整の為10
00℃以上の還元条件中又は加湿還元条件中にて1時間
以上加熱することを特徴とする。次に、請求項4に記載
の発明はウラン酸化物のより具体的態様を加味したU
の添加の態様に係り、ウラン酸化物としてO/U<
2.25のUO粉末に該粉末の平均O/Uが2.25
〜2.40となるようUを添加して混合した粉末
を用い、成型体を成型した後、1100〜1400℃で
酸素濃度0.1ppm〜100ppmの雰囲気中にて3
0分〜4時間加熱後、更に1000〜1400℃の還元
条件中又は加湿還元条件中にて加熱することを特徴とす
るものである。
That is, the feature of the present invention which meets the above-mentioned object is that a powder of uranium oxide is compressed and granulated at a pressure P 1 and then the granulated fine particles are crushed and sieved. After that, a second compression molding is performed at a pressure P 2 and then sintering is performed to produce a ceramic nuclear fuel pellet. In the uranium oxide powder, Nb 2 O 5 , TiO 2 ,
MgO, CaO, SiO 2 , Al 2 O 3 or compounds that change into these oxides during sintering are added alone or in combination, and the initial granulation pressure P 1 and the subsequent molding pressure P 2 are The relationship is P 2 = 0.2P 1 to 0.6P 1 and the particle size after granulation is 100 μm to 600 μm at least 40% by weight, and after molding the molded body, the temperature is 1600 ° C. to 1800 ° C. in a reducing atmosphere. It is to sinter for 3 hours or more. The invention according to claim 2 is characterized in that, in the above-mentioned manufacturing method, the sintering is performed at 1600 ° C to 1800 ° C in a reducing atmosphere.
Standing, volume ratio 0.01 to 1 in the temperature range of 900 ℃ or more
It is characterized in that the crystal grain size is further increased by adding 0% of steam to create a humidified reducing atmosphere. Furthermore, the invention according to claim 3 is one in which the sintering conditions in the above method are partially changed, and after forming a molded body, CO 2 /
The oxygen concentration is set to 0.01 ppm to 400 ppm under the condition that the presence of oxygen such as CO atmosphere is allowed, and 1400 to 400 ppm is set.
After heating at 1800 ° C for 1 hour or more, 10 for O / U adjustment
It is characterized in that heating is performed for 1 hour or more under a reducing condition of 00 ° C. or higher or a humidifying reducing condition. Next, the invention according to claim 4 is U 3 which takes a more specific embodiment of uranium oxide into consideration.
Regarding the mode of addition of O 8 , O / U <as uranium oxide
A UO 2 powder of 2.25 has an average O / U of 2.25.
Using a powder obtained by adding U 3 O 8 to obtain a mixture of ˜2.40 and molding the mixture into a molded body, the molded body is molded at 1100 to 1400 ° C. in an atmosphere with an oxygen concentration of 0.1 ppm to 100 ppm.
After heating for 0 minutes to 4 hours, heating is further performed under reducing conditions of 1000 to 1400 ° C. or humidifying reducing conditions.

【0010】[0010]

【作用】上記の方法により核燃料ペレットを製造すると
きには、大粒径でかつ軟らかく、更に耐熱衝撃性が向上
した燃料ペレットを得ることができ、該ペレットのFP
特性ならびにPCMI特性を格段に向上させることが可
能となる。
When the nuclear fuel pellets are manufactured by the above method, it is possible to obtain fuel pellets having a large particle size and softness, and further improved thermal shock resistance.
It is possible to significantly improve the characteristics and the PCMI characteristics.

【0011】また、請求項2の方法においては、上記作
用に加えてペレットの更なる大粒径化を図ることがで
き、請求項3の方法においては、やはり大粒径ペレット
を効率的に得ると共に酸素濃度をコントロールし得て焼
結の促進を図ることができる。更に請求項4の方法にお
いては、U3 8 の添加量により前記に加え燃料ペレッ
トの密度・粒径をコントロールすることができる。
Further, in the method of claim 2, in addition to the above-mentioned action, it is possible to further increase the particle size of the pellet, and in the method of claim 3, the large particle size pellet can be obtained efficiently. At the same time, the oxygen concentration can be controlled to promote the sintering. Furthermore, in the method of the fourth aspect, the density and particle size of the fuel pellets can be controlled in addition to the above by the amount of U 3 O 8 added.

【0012】[0012]

【実施例】以下、更に本発明の詳細と共に、その具体的
な実施例を説明する。先ず、本発明方法は前述のように
2段圧縮成型による方法が用いられる。即ち、ウラン酸
化物を原料としてセラミック核燃料ペレットを製造する
にあたり、上記ウラン酸化物粉末を圧力P1 で圧縮造粒
し、次いで該造粒された細粒を紛砕、篩別した後、圧力
2 で2回目の圧縮成型を行い、のち焼結しセラミック
核燃料ペレットとする方法を基本とする。この場合、1
回目の圧縮圧力P1 と2回目の圧縮圧力P2 の関係をP
2 =0.2 P1 〜0.6 P1 とし造粒後の粒度を 100μm 〜
600 μm のものが少なくとも40重量%とすることが肝要
である。
The present invention will be described in detail below with reference to the details of the present invention. First, the method of the present invention uses the method of two-stage compression molding as described above. That is, in producing a ceramic nuclear fuel pellet using uranium oxide as a raw material, the uranium oxide powder is compression granulated at a pressure P 1 , and then the granulated fine particles are pulverized and sieved, and then the pressure P 2 in a second time of compression molding, basic and directed to a method of the later sintered ceramic nuclear fuel pellets. In this case, 1
P is the relationship between the second compression pressure P 1 and the second compression pressure P 2.
2 = 0.2 P 1 to 0.6 P 1 and the particle size after granulation is 100 μm
It is important that the size of 600 μm is at least 40% by weight.

【0013】また、焼結としては成型体を成型後、該成
型体を還元雰囲気下、1600〜1800℃で3時間以上、加熱
焼結することが好適である。しかして、本発明は上記の
如き2段圧縮成型による方法を用いて核燃料ペレットを
製造するに際し、更に大粒径ペレットを得るための方法
が加えられる。この大粒径ペレットを得る方法は基本的
には本出願人がさきに提案した方法(特願平1−285536
号) であるが、具体的に云えば原料となるウラン酸化物
の粉末中にNb2 5 ,TiO2 ,MgO,CaO,S
iO2 ,Al2 3 の各化合物から選ばれた単独又は2
種以上組み合わせた化合物を添加し、又はNb,Tiな
どの化合物であって焼結中に上記酸化化合物に変化する
ような化合物を添加して前記加熱焼結を行うことであ
る。なお、水素を含む還元雰囲気中に水蒸気(H2O)
を添加すると、 2H2 O=O2 +2H2 の平衡状態が形成され、酸素の存在が許されるので、酸
素供給のため、昇温時にこうした水蒸気を添加する加湿
還元雰囲気とすることも望ましく、焼結時の900℃以上
の温度域にて体積率0.01〜10%の水蒸気を添加する。ま
た、上記大粒径ペレットを得るために前記方法において
成型体を成型後、CO2 /CO雰囲気のように酸素の存
在が許される条件で酸素濃度0.01ppm〜400 ppmに
て1400℃〜1800℃で1時間以上、加熱後、O/U調整の
ため1000℃以上の還元条件中にて1時間以上加熱するこ
とも焼結促進をはかる上で効果的である。更にU3 8
の添加量により密度、粒径が適宜コントロール可能であ
るという知見にもとづいてウラン酸化物にU3 8 を添
加することも好適であり、この場合には例えばウラン酸
化物としてO/U<2.25のUO2 粉末に該粉末の平均O
/Uが2.25〜2.40となるようにU3 8 を添加混合した
粉末を用い、前記方法を用いて成型した後、1100℃〜14
00℃で酸素濃度0.1 ppm〜100 ppmの雰囲気中にて
30分〜4時間加熱し、更に1000〜1400℃の還元条件中に
て加熱焼結が行われる。
Further, as the sintering, it is preferable that after molding the molded body, the molded body is heated and sintered at 1600 to 1800 ° C. for 3 hours or more in a reducing atmosphere. Therefore, in the present invention, when producing nuclear fuel pellets by using the above-described two-stage compression molding method, a method for obtaining larger particle diameter pellets is added. The method for obtaining the large-sized pellets is basically the method previously proposed by the applicant (Japanese Patent Application No. 1-285536).
No.), but specifically speaking, Nb 2 O 5 , TiO 2 , MgO, CaO, S is added to the powder of uranium oxide as a raw material.
A single compound selected from the compounds of iO 2 and Al 2 O 3 or 2
The above heating and sintering is performed by adding a compound in which one or more kinds are combined, or by adding a compound such as Nb or Ti that changes into the above-mentioned oxide compound during sintering. It should be noted that water vapor (H 2 O) is added to the reducing atmosphere containing hydrogen.
Addition of oxygen, an equilibrium state of 2H 2 O = O 2 + 2H 2 is formed, and the presence of oxygen is allowed. Add 0.01 to 10% by volume of water vapor in the temperature range of 900 ℃ or more at the time of setting. In addition, in order to obtain the above-mentioned large-sized pellets, after molding the molded body in the above-mentioned method, it is 1400 ° C. to 1800 ° C. at an oxygen concentration of 0.01 ppm to 400 ppm under conditions where the presence of oxygen is allowed such as a CO 2 / CO atmosphere. After heating for 1 hour or more, heating for 1 hour or more in a reducing condition of 1000 ° C. or more for O / U adjustment is also effective in promoting sintering. Further U 3 O 8
It is also preferable to add U 3 O 8 to the uranium oxide based on the finding that the density and particle size can be appropriately controlled by the addition amount of, in this case, for example, O / U <2.25 as the uranium oxide. To the UO 2 powder of
After using the powder obtained by adding and mixing U 3 O 8 so that / U becomes 2.25 to 2.40, and molding at 1100 ° C. to 14
In an atmosphere with oxygen concentration of 0.1 ppm to 100 ppm at 00 ° C
It is heated for 30 minutes to 4 hours, and further heated and sintered under reducing conditions of 1000 to 1400 ° C.

【0014】次に本発明方法の具体的実施例を揚げる。 実施例1 比表面積が 2.6m2 /g の二酸化ウラン(UO2 )粉末
の中にAl2 3 およびSiO2 を各500ppm添加し、先
ず4t/cm2 〜7t/cm2 の加圧プレスで一次成型
を行った。次にこれを粉砕し、篩別して粒度を1つは12
5 〜 250μm 、他の1つは 125μm 以下が30%、125 〜
600 μm が45%、600 〜1000μm が25%とした。次いで
上記粒度をもつ細粒に対し、前記一次成型圧の20〜60%
に設定した設定圧で二次成型を行い成型体を成型した
後、水素を含む還元雰囲気中1750℃にて4時間焼結した
ところ、共に焼結密度90〜96%T,D、液浸密度96〜98
%T,Dでしかもインターセプト法による平均結晶粒径
30〜40μm の大粒径ペレットを得ることができた。この
金相写真を図1に示す。
Next, specific examples of the method of the present invention will be described. In pressure press of Example 1 specific surface area of 2.6 m 2 / g of uranium dioxide (UO 2) Al 2 O 3 and SiO 2 were added each 500ppm in the powder, first, 4t / cm 2 ~7t / cm 2 Primary molding was performed. This is then crushed and sieved to a particle size of 12
5 ~ 250μm, the other one is 125μm or less 30%, 125 ~
The thickness of 600 μm was 45%, and that of 600 to 1000 μm was 25%. 20-60% of the primary molding pressure for fine particles with the above particle size
After the secondary molding was performed at the set pressure set to, the molded body was molded and then sintered at 1750 ° C for 4 hours in a reducing atmosphere containing hydrogen. 96-98
% T and D and average grain size by intercept method
Large particle size pellets of 30-40 μm could be obtained. This metallurgical photograph is shown in FIG.

【0015】次に上記と同じく1750℃×4時間であるが
900 ℃以上の温度領域において体積率0.3 %の水蒸気を
添加した。これは40℃〜70℃の温湯から出る水蒸気にア
ルゴン等のキャリヤーガスを通し、本体雰囲気ガスに合
流させて行った。これによって得られた燃料ペレットは
前記水蒸気無添加の場合に比し粒径はほぼ同じだが微小
粒の減少が見られ、より平均した粒径であった。この粒
径の様子を図2に示す。また、更に上記方法により成型
体を形成した後、100ppmのO2 を添加したCO2 雰囲気
条件下にて1750℃で4時間加熱した後、O/U調整の為
に1100℃の還元条件中にて2時間加熱して焼結を行っ
た。これにより前記同様の大粒径のペレットが得られ
た。そして、上記の各々ペレットについてΔT =800 ℃
〜2000℃の熱衝撃試験を行ったところ、何れのものも通
常のペレットに比較し良好な耐熱衝撃性が認められた。
Next, similarly to the above, at 1750 ° C. for 4 hours,
Water vapor with a volume ratio of 0.3% was added in the temperature range above 900 ° C. This was carried out by passing a carrier gas such as argon through water vapor emitted from hot water at 40 ° C to 70 ° C and joining it with the main atmosphere gas. The fuel pellets thus obtained had almost the same particle size as in the case of no addition of water vapor, but a decrease in fine particles was observed, and the particle size was more average. The state of this particle size is shown in FIG. Further, after forming a molded body by the above method, after heating at 1750 ° C. for 4 hours under a CO 2 atmosphere in which 100 ppm of O 2 is added, it is subjected to a reducing condition of 1100 ° C. for O / U adjustment. And heated for 2 hours for sintering. As a result, pellets having the same large particle size as described above were obtained. And for each of the above pellets ΔT = 800 ℃
When subjected to a thermal shock test at up to 2000 ° C, good thermal shock resistance was recognized for all of them as compared with ordinary pellets.

【0016】実施例2 実施例1に記載した成型,焼結,還元の各工程に従い、
ウラン酸化物により核燃料ペレットを製造するにあた
り、ウラン酸化物としてU3 8 35%を添加した原料粉
を用いた。すなわち、O/U=2.12の原料粉に400 ℃で
焙焼したU3 8 をx=35%添加し、1100℃×3.5 Hr
の微酸化雰囲気(酸素濃度100ppm)で焼結を行った後、
1100℃還元雰囲気で加熱し、O/U=2.00、焼結密度9
5.3%T.DのUO2 焼結体を得た。そして、上記の焼
結体について粒径を観察したところ、50〜100 μの平均
結晶粒径を有する焼結体であった。この金相写真を図3
に、又粒径の様子を図4に示す。また、この各焼結体ペ
レットについて実施例1同様熱衝撃試験を行った結果、
通常のペレットに比し良好な耐熱衝撃性を有していた。
Example 2 Following the steps of molding, sintering, and reduction described in Example 1,
In producing nuclear fuel pellets from uranium oxide, raw material powder added with U 3 O 8 35% as uranium oxide was used. That is, x = 35% of U 3 O 8 roasted at 400 ° C. was added to the raw material powder of O / U = 2.12, and 1100 ° C. × 3.5 Hr
After sintering in the slightly oxidizing atmosphere (oxygen concentration 100 ppm),
Heated at 1100 ℃ in reducing atmosphere, O / U = 2.00, sintered density 9
5.3% T.I. A UO 2 sintered body of D was obtained. When the grain size of the above-mentioned sintered body was observed, it was a sintered body having an average crystal grain size of 50 to 100 μm. This money picture is shown in Figure 3.
Fig. 4 shows the particle size. In addition, as a result of performing a thermal shock test on each of the sintered pellets as in Example 1,
It had better thermal shock resistance than ordinary pellets.

【0017】[0017]

【発明の効果】本発明は以上のようにウラン酸化物粉末
中にNb2 5 ,TiO2 ,SiO2 ,Al2 3 など
の酸化物やあるいは焼結時にこれら酸化物に変化するよ
うな化合物を添加した粉末又は、原料UO2 粉末に適量
のU3 8 粉を加えた粉末を原料粉末としてこれを2段
圧縮成型法によって成型し、焼結,還元を行い焼結体ペ
レットを製造する方法であり、核燃料ペレット、特に高
燃焼度UO2 ペレットに要求されるような従来ペレット
の結晶粒径の3〜10倍あるいはそれ以上の結晶粒径をも
つ大粒径セラミックス燃料を得ることが可能となり、F
P保持性の改善に顕著な効果を有すると共に通常のペレ
ットに比較し耐熱衝撃性を良好ならしめてPCMI現象
による破損防止に頗る好適な効果を有する。なお、請求
項2記載の方法は上記方法による核燃料ペレットにおい
て微小粒を減少させ、粒径を平均化させる上に有効であ
り、また請求項3記載の発明は酸素濃度をコントロール
し焼結促進をはかる上に有効である。更に請求項4に記
載の発明はU3 8 の添加により密度、粒径をコントロ
ールすることができ、大粒径でかつ耐熱衝撃性良好な核
燃料ペレットを製造する上に頗る実効を有する。
INDUSTRIAL APPLICABILITY As described above, according to the present invention, an oxide such as Nb 2 O 5 , TiO 2 , SiO 2 , Al 2 O 3 or the like in the uranium oxide powder, or any of these oxides that change into these oxides at the time of sintering. A powder containing a compound or a powder obtained by adding an appropriate amount of U 3 O 8 powder to a raw material UO 2 powder is used as a raw material powder, and this is molded by a two-stage compression molding method, sintered and reduced to produce a sintered body pellet. And a large particle size ceramic fuel having a crystal grain size 3 to 10 times or more than that of conventional pellets required for nuclear fuel pellets, especially high burnup UO 2 pellets. Enabled, F
It has a remarkable effect on the improvement of the P-holding property, and has a favorable effect that it has better thermal shock resistance than ordinary pellets and prevents damage due to the PCMI phenomenon. The method according to claim 2 is effective in reducing fine particles in the nuclear fuel pellets produced by the above method and averaging the particle diameters. The invention according to claim 3 controls the oxygen concentration to promote sintering. It is effective in measuring. Furthermore, the invention according to claim 4 can control the density and particle size by adding U 3 O 8 , and is effective in producing a nuclear fuel pellet having a large particle size and good thermal shock resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1において、水素を含む還元雰囲気中17
50℃にて4時間加熱したものの金属組織を示す50倍の顕
微鏡写真である。
FIG. 1 is a schematic diagram of Example 1 in a reducing atmosphere containing hydrogen.
It is a 50 times microscope photograph which shows the metallographic structure of what was heated at 50 degreeC for 4 hours.

【図2】図1に示す試料のエッチング後の金属組織を示
す200 倍の顕微鏡写真である。
FIG. 2 is a 200 × photomicrograph showing the metallographic structure of the sample shown in FIG. 1 after etching.

【図3】実施例2における金属組織を示す50倍の顕微鏡
写真である。
FIG. 3 is a 50 × photomicrograph showing the metal structure of Example 2.

【図4】図3に示す試料のエッチング後の金属組織を示
す顕微鏡写真である。
FIG. 4 is a micrograph showing a metal structure of the sample shown in FIG. 3 after etching.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ウラン酸化物の粉末を圧力P1 で圧縮造
粒し、次いでこの造粒された細粒を粉砕,篩別した後、
圧力P2 で2回目の圧縮成型を行い、のち焼結してセラ
ミックス核燃料ペレットを製造する方法において、前記
ウラン酸化物の粉末の中に、Nb2 5 ,TiO2 ,M
gO,CaO,SiO2 ,Al2 3もしくは焼結中に
これらの酸化物に変化するような化合物を単独または組
み合わせて添加し、最初の造粒圧P1 とその後の成型圧
2 との関係をP2 =0.2 P1 〜0.6 P1 、造粒後の粒
度を 100μm 〜 600μm のものが少なくとも40重量%と
して、成型体を成型した後、還元雰囲気中1600℃〜1800
℃にて3時間以上焼結せしめることを特徴とする核燃料
ペレットの製造法。
1. A uranium oxide powder is compression-granulated at a pressure P 1 , and then the granulated fine particles are crushed and sieved.
In a method for producing a ceramic nuclear fuel pellet by performing a second compression molding at a pressure P 2 and then sintering, Nb 2 O 5 , TiO 2 , M is added to the uranium oxide powder.
gO, CaO, SiO 2 , Al 2 O 3 or a compound that changes into these oxides during sintering is added alone or in combination, and the initial granulation pressure P 1 and the subsequent molding pressure P 2 The relationship is P 2 = 0.2 P 1 to 0.6 P 1 and the particle size after granulation is 100 μm to 600 μm at least 40% by weight. After molding the molded body, it is 1600 ° C. to 1800 in a reducing atmosphere.
A method for producing nuclear fuel pellets, which comprises sintering at ℃ for 3 hours or more.
【請求項2】 請求項1に記載の製造法において、還元
雰囲気中1600℃〜1800℃の焼結に先立ち、90
0℃以上の温度領域にて体積率0.01〜10%の水蒸
気を添加し加湿還元雰囲気とすることを特徴とする核燃
料ペレットの製造法。
2. The method according to claim 1, wherein the reduction is performed.
Before sintering at 1600 ° C to 1800 ° C in the atmosphere, 90
A method for producing a nuclear fuel pellet, comprising adding steam having a volume ratio of 0.01 to 10% in a temperature range of 0 ° C. or higher to create a humidified reducing atmosphere.
【請求項3】 ウラン酸化物の粉末を圧力P1 で圧縮造
粒し、次いでこの造粒された細粒を粉砕,篩別した後、
圧力P2 で2回目の圧縮成型を行い、のち焼結してセラ
ミックス核燃料ペレットを製造する方法において、前記
ウラン酸化物の粉末の中に、Nb2 5 ,TiO2 ,M
gO,CaO,SiO2 ,Al2 3もしくは焼結中に
これらの酸化物に変化するような化合物を単独または組
み合わせて添加し、最初の造粒圧P1 とその後の成型圧
2 との関係をP2 =0.2 P1 〜0.6 P1 、造粒後の粒
度を 100μm 〜 600μm のものが少なくとも40重量%と
して、成型体を成型した後、CO2 /CO雰囲気等の酸
素の存在が許容される条件で酸素濃度を0.01ppm〜40
0 ppmに設定し、1400〜1800℃にて1時間以上加熱
後、O/U調整の為1000℃以上の還元条件中又は加湿還
元条件中にて加熱することを特徴とする核燃料ペレット
の製造法。
3. Uranium oxide powder is compression granulated at a pressure P 1 , and then the granulated fine particles are crushed and sieved,
In a method for producing a ceramic nuclear fuel pellet by performing a second compression molding at a pressure P 2 and then sintering, Nb 2 O 5 , TiO 2 , M is added to the uranium oxide powder.
gO, CaO, SiO 2 , Al 2 O 3 or a compound that changes into these oxides during sintering is added alone or in combination, and the initial granulation pressure P 1 and the subsequent molding pressure P 2 The relationship is P 2 = 0.2 P 1 to 0.6 P 1 , and the particle size after granulation is 100 μm to 600 μm at least 40% by weight, and the presence of oxygen such as CO 2 / CO atmosphere is allowed after molding the molded body. Oxygen concentration of 0.01ppm to 40
A method for producing nuclear fuel pellets, which is characterized in that it is set to 0 ppm and heated at 1400 to 1800 ° C for 1 hour or more, and then heated under reducing conditions of 1000 ° C or more or humidification reducing conditions for O / U adjustment. .
【請求項4】 ウラン酸化物の粉末を圧力P1 で圧縮造
粒し、次いでこの造粒された細粒を粉砕,篩別した後、
圧力P2 で2回目の圧縮成型を行い、のち焼結してセラ
ミックス核燃料ペレットを製造する方法において、ウラ
ン酸化物として、O/U<2.25のUO2 粉末に該粉末の
平均O/Uが2.25〜2.40となるようU3 8 を添加混合
した粉末を用い、最初の造粒圧P1 とその後の成型圧P
2 との関係をP2 =0.2 P1 〜0.6 P1 、造粒後の粒度
を 100μm 〜 600μm のものが少なくとも40重量%とし
て、成型体を成型した後、1100〜1400℃で酸素濃度0.1
ppm〜100ppmの雰囲気中にて30分〜4時間加熱
後、更に1000〜1400℃の還元条件中又は加湿還元条件中
にて加熱することを特徴とする核燃料ペレットの製造
法。
4. Uranium oxide powder is compression granulated at a pressure P 1 , and then the granulated fine particles are crushed and sieved,
In a method for producing a ceramic nuclear fuel pellet by performing a second compression molding under a pressure P 2 and then sintering the same, a UO 2 powder having O / U <2.25 as uranium oxide has an average O / U of 2.25. Using a powder to which U 3 O 8 was added and mixed so as to be about 2.40, the first granulation pressure P 1 and the subsequent molding pressure P 1
The relationship between the 2 P 2 = 0.2 P 1 ~0.6 P 1, the particle size after granulation as at least 40 wt.% That of 100 [mu] m ~ 600 .mu.m, after molding the molded body, the oxygen concentration of 0 at 1100 to 1400 ° C.. 1
A method for producing nuclear fuel pellets, which comprises heating for 30 minutes to 4 hours in an atmosphere of ppm to 100 ppm and then heating under a reducing condition of 1000 to 1400 ° C. or a humidifying reducing condition.
JP3075800A 1991-03-14 1991-03-14 Manufacturing method of nuclear fuel pellets Expired - Lifetime JP2505119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3075800A JP2505119B2 (en) 1991-03-14 1991-03-14 Manufacturing method of nuclear fuel pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3075800A JP2505119B2 (en) 1991-03-14 1991-03-14 Manufacturing method of nuclear fuel pellets

Publications (2)

Publication Number Publication Date
JPH04285891A JPH04285891A (en) 1992-10-09
JP2505119B2 true JP2505119B2 (en) 1996-06-05

Family

ID=13586639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3075800A Expired - Lifetime JP2505119B2 (en) 1991-03-14 1991-03-14 Manufacturing method of nuclear fuel pellets

Country Status (1)

Country Link
JP (1) JP2505119B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU88668A1 (en) * 1995-10-05 1997-04-05 Euratom Modified nuclear fuel to delay the development of the RIM effect
KR100521638B1 (en) * 2002-10-02 2005-10-13 한국원자력연구소 Uranium dioxide fuel containing SiO2-CaO-Cr2O3 and thereof method
RU2661492C1 (en) * 2017-05-12 2018-07-17 Акционерное общество "Ведущий научно-исследовательский институт химической технологии" Method of the pelleted ceramic nuclear fuel manufacturing

Also Published As

Publication number Publication date
JPH04285891A (en) 1992-10-09

Similar Documents

Publication Publication Date Title
JP3106113B2 (en) Recycling method for pellet scrap of oxide nuclear fuel
JP2008145435A (en) Manufacturing method of nuclear fuel sintered body
US20090252279A1 (en) Fuel Pellet for a Nuclear Reactor and Method for Producing Fuel Pellet
JPS62232595A (en) Nuclear fuel sintered body and manufacture thereof
JP3188685B2 (en) Method for producing sintered uranium dioxide having large crystal grains
JPS5892987A (en) Production of nuclear fuel sintered body with oxide
JP2505119B2 (en) Manufacturing method of nuclear fuel pellets
US4264540A (en) Production of nuclear fuel pellets
KR100521638B1 (en) Uranium dioxide fuel containing SiO2-CaO-Cr2O3 and thereof method
JPH09127290A (en) Sintering method for nuclear fuel pellet
JP2790548B2 (en) Manufacturing method of nuclear fuel sintered body
JP2588947B2 (en) Manufacturing method of oxide nuclear fuel sintered body
JP3012671B2 (en) Method for producing nuclear fuel pellets
JP4614540B2 (en) Method for producing an oxide-based nuclear fuel element and material adapted to be sintered to an oxide-based nuclear fuel element
JPH02242195A (en) Manufacture of nuclear fuel pellet
JPH09127279A (en) Nuclear fuel pellet and production thereof
JPH0731267B2 (en) Manufacturing method of nuclear fuel pellets
JP4135976B2 (en) Modified nuclear fuel for delaying RIM effect
JPH0634054B2 (en) (Mg, U) O (2) Manufacturing method for fuel pellets
JP2786345B2 (en) Method for producing nuclear fuel pellet and nuclear fuel pellet
JPH06281774A (en) Manufacture of nuclear fuel pellet
JPH03170898A (en) Preparation of nuclear fuel ceramic
JPH0862363A (en) Manufacture of mox pellet
JPS63212890A (en) Manufacture of (ca, u)o2 group fuel pallet
JPH0820534B2 (en) Manufacturing method of (Mg, U) O2 pellets

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960116