JP3076058B2 - Nuclear fuel pellet and method for producing the same - Google Patents
Nuclear fuel pellet and method for producing the sameInfo
- Publication number
- JP3076058B2 JP3076058B2 JP02297082A JP29708290A JP3076058B2 JP 3076058 B2 JP3076058 B2 JP 3076058B2 JP 02297082 A JP02297082 A JP 02297082A JP 29708290 A JP29708290 A JP 29708290A JP 3076058 B2 JP3076058 B2 JP 3076058B2
- Authority
- JP
- Japan
- Prior art keywords
- nuclear fuel
- thermal conductivity
- beryllium oxide
- conductive material
- high thermal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Compositions Of Oxide Ceramics (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は軽水炉に装荷される核燃料ペレットに係わ
り、特に高熱伝導率を有する核燃料ペレットおよびその
製造方法に関する。Description: TECHNICAL FIELD The present invention relates to nuclear fuel pellets loaded in a light water reactor, and more particularly to a nuclear fuel pellet having high thermal conductivity and a method for producing the same.
[従来の技術] 現在、軽水炉では経済性の向上のために、燃料の高燃
焼度化および高出力化が計画されている。この際、燃料
棒の設計上問題となる主な現象は、以下のものである。[Prior Art] At present, high burnup and high output of fuel are planned in light water reactors in order to improve economy. At this time, the main phenomena that cause problems in the design of the fuel rod are as follows.
(1)燃料棒中心温度の上昇 (2)燃料棒内の核分裂生成ガス放出量の増加 (3)燃料ペレットと被覆管との相互作用 これらの項目のうち、特に(1)の燃料棒中心温度の
上昇は、他の燃料挙動にも強く影響を及ぼし、問題とな
る。(1) Increase in fuel rod center temperature (2) Increase in fission gas release in fuel rod (3) Interaction between fuel pellet and cladding tube Among these items, in particular, (1) Fuel rod center temperature The rise in fuel has a strong effect on other fuel behaviors and is problematic.
従来の核燃料棒を第3図に示す概念図を用いて説明す
る。同図に示すように、従来の核燃料棒6は、主に核燃
料ペレット1、核燃料ペレットを収納する被覆管2、上
部端栓3、下部端栓4、プレナムスプリング5等から構
成されている。ここで、核燃料ペレット1は、ウラン酸
化物、あるいは混合酸化物ならびに核的毒物として酸化
ガドリニウムを添加した酸化物ペレットである。A conventional nuclear fuel rod will be described with reference to a conceptual diagram shown in FIG. As shown in FIG. 1, the conventional nuclear fuel rod 6 mainly includes a nuclear fuel pellet 1, a cladding tube 2 for storing the nuclear fuel pellet, an upper end plug 3, a lower end plug 4, a plenum spring 5, and the like. Here, the nuclear fuel pellet 1 is an oxide pellet to which uranium oxide or a mixed oxide and gadolinium oxide as a nuclear poison are added.
ところで、ウラン酸化物および混合酸化物の熱伝導率
は低く、また酸化ガドリニウムを添加することにより更
に熱伝導率が低下するので、燃料棒の出力を高くする
と、燃料棒中心温度が上昇するほか、その結果として核
分裂生成ガスの放出量が増大するなどの影響がある。By the way, since the thermal conductivity of uranium oxide and mixed oxide is low, and the thermal conductivity further decreases by adding gadolinium oxide, when the output of the fuel rod is increased, the center temperature of the fuel rod increases, As a result, there are effects such as an increase in the amount of released fission gas.
従来、核燃料ペレットの機械的強度を高めるために、
核燃料ペレットを構成するセラミック中に高強度の繊維
状物質を均一に分散させたものが知られている(特開昭
53−16198号公報参照)。この場合、高強度の繊維状物
質として、金属繊維や酸化ベリリウム繊維およびウィス
カーを用いることが示されているので、核燃料ペレット
の熱伝導率がこれらの添加により改善されることが考え
られる。しかし、このように離散的に高熱伝導物質が存
在する場合には、核燃料ペレット熱伝導率向上効果は小
さく、上記したような出力増加に伴う問題点を解決する
ことは期待できない。Conventionally, to increase the mechanical strength of nuclear fuel pellets,
It is known that a high-strength fibrous substance is uniformly dispersed in a ceramic constituting a nuclear fuel pellet (Japanese Patent Laid-Open No.
53-16198). In this case, since the use of a metal fiber, a beryllium oxide fiber, and a whisker as the high-strength fibrous substance is indicated, it is considered that the thermal conductivity of the nuclear fuel pellet is improved by the addition thereof. However, when the high thermal conductive material is discretely present as described above, the effect of improving the thermal conductivity of the nuclear fuel pellet is small, and it is not expected to solve the above-described problem associated with the increase in output.
また、High Temperature−High pressuresの第13巻、
(649頁〜660頁)には、酸化ウラニウムの結晶をモリブ
デン金属の析出でコーティングして熱伝導率を向上させ
た例が示されている。しかし、通常の工業的方法で本文
献に示されるような核燃料ペレットを製作することはき
わめて困難である。Also, Volume 13 of High Temperature-High pressures,
(Pp. 649-660) shows an example in which uranium oxide crystals are coated with molybdenum metal to improve the thermal conductivity. However, it is extremely difficult to produce nuclear fuel pellets as disclosed in this document by ordinary industrial methods.
[発明が解決しようとする課題] 本発明は、上記情況に対処してなされたもので、核燃
料棒の中心温度を低下させ、核分裂生成ガスの放出量を
低減させるために、熱伝導率を向上させた核燃料ペレッ
トおよびその製造方法を提供することを目的とするもの
である。[Problems to be Solved by the Invention] The present invention has been made in view of the above circumstances, and has been made to improve the thermal conductivity in order to lower the center temperature of a nuclear fuel rod and reduce the amount of fission gas emission. It is an object of the present invention to provide a nuclear fuel pellet and a method for producing the same.
[課題を解決するための手段] 本発明は、ウラン酸化物あるいは混合酸化物等の結晶
粒界に熱伝導率が高い相を連続的に析出させることによ
り、上記目的を達成するものである。[Means for Solving the Problems] The present invention achieves the above object by continuously depositing a phase having a high thermal conductivity at a crystal grain boundary such as uranium oxide or a mixed oxide.
すなわち、本発明は、核燃料物質を含む焼結体よりな
る核燃料ペレットにおいて、その結晶粒界にこの結晶母
材よりも熱伝導率の高い高熱伝導物質の析出相が連続的
に存在し、該高熱伝導物質が酸化ベリリウム、または酸
化ベリリウムをチタン,ガドリニウム,カルシウム,バ
リウム,マグネシウム,ストロンチウム,ランタン,イ
ットリウム,イッテルビウム,ケイ素,アルミニウム,
サマリウム,タングステン,ジルコニウム,リチウム,
モリブデン,ウラン,トリウムおよびこれらの酸化物の
うちの少なくとも1つと混合したものであることを特徴
とする核燃料ペレットに関し、さらにその製造方法とし
て、核分裂性物質に、それより熱伝導率が高くかつ焼結
温度またはそれ以下において少なくとも一部が液体とな
る上記高熱伝導物質を添加して焼結することを特徴とす
る核燃料ペレットの製造方法に関する。That is, in the present invention, in a nuclear fuel pellet made of a sintered body containing a nuclear fuel material, a precipitation phase of a high thermal conductive material having a higher thermal conductivity than the crystal base material is continuously present at a crystal grain boundary, The conductive material is beryllium oxide, or beryllium oxide is titanium, gadolinium, calcium, barium, magnesium, strontium, lanthanum, yttrium, ytterbium, silicon, aluminum,
Samarium, tungsten, zirconium, lithium,
The present invention relates to nuclear fuel pellets characterized by being mixed with at least one of molybdenum, uranium, thorium and oxides thereof. The present invention relates to a method for producing nuclear fuel pellets, which comprises sintering by adding the above-mentioned high thermal conductive material which is at least partially liquid at a sintering temperature or lower.
[作 用] 本発明の核燃料ペレットでは、結晶粒界にこの結晶母
材よりも熱伝導率の高い高熱伝導物質の析出相が連続相
として存在するので、ペレット内の熱の伝達がこの連続
析出相を介して行なわれ、その結果核燃料ペレットの平
均熱伝導率が向上して核燃料棒内の温度分布が従来のも
のに比べて小さくなる。[Operation] In the nuclear fuel pellet of the present invention, since a precipitated phase of a high thermal conductive material having a higher thermal conductivity than the crystal base material exists as a continuous phase at the crystal grain boundary, heat transfer in the pellet is caused by the continuous precipitation. This is done through the phases, so that the average thermal conductivity of the nuclear fuel pellets is improved and the temperature distribution in the nuclear fuel rods is smaller than in the prior art.
この核燃料ペレットの製造において、焼結温度または
それ以下において少なくとも一部が液体となる上記の高
熱伝導物質を核分裂性物質に添加して焼結すれば、焼結
時に高熱伝導物質は溶融して液体となり、ウラン酸化物
あるいは混合酸化物の結晶粒界に入って冷却後連続的な
粒界層として析出する。In the production of this nuclear fuel pellet, if the above-mentioned high thermal conductive material, which is at least partially liquid at the sintering temperature or lower, is added to the fissile material and sintered, the high thermal conductive material melts during sintering and becomes liquid And enters the crystal grain boundaries of the uranium oxide or mixed oxide and precipitates as a continuous grain boundary layer after cooling.
[実施例] 以下、本発明の実施例を図面を参照して説明する。[Example] Hereinafter, an example of the present invention will be described with reference to the drawings.
第1図は本発明の一実施例である核燃料ペレットの拡
大模式図である。この図に示すように、核分裂性物質7
の結晶粒界にはこの結晶母材よりも高い伝導率を有する
物質相8が連続的に析出している。FIG. 1 is an enlarged schematic view of a nuclear fuel pellet according to one embodiment of the present invention. As shown in this figure, fissile material 7
A material phase 8 having a higher conductivity than that of the crystal base material is continuously precipitated at the crystal grain boundary.
次に、本発明の核燃料ペレットおよびその製造方法の
例を示す。Next, examples of the nuclear fuel pellet of the present invention and a method for producing the same will be described.
実施例 1 酸化ウラニウム(UO2)粉末に酸化ベリリウム(BeO)
粉末を、酸化ウラニウム粉末+酸化ベリリウム粉末の全
量に対し1.5重量%以下(体積分率で約5%以下)添加
して混合し、これを約2.5〜3.0t/cm2の圧力で圧粉成型
して約50〜55%TDの成型体とし、還元性雰囲気下で2100
℃(共融点)以上の温度で焼結して平均結晶粒径が約11
0〜160μmのペレットを作った。焼結中にこれらの少な
くとも一部が液体となって結晶粒界の少なくとも半分を
覆う。この結晶粒界覆面率が増加するにつれてペレット
の熱伝導率は単調に増加する。Example 1 Beryllium oxide (BeO) was added to uranium oxide (UO 2 ) powder.
Powder, (about 5% or less at a volume fraction) the total amount 1.5 wt% or less with respect to the uranium oxide powder + beryllium oxide powder were added and mixed, this green compact at about 2.5~3.0t / cm 2 of pressure Into a molded body of about 50-55% TD, and 2100
Sintered at a temperature of ℃ (eutectic point) or higher and average grain size is about 11
0-160 μm pellets were made. During sintering, at least some of them become liquid and cover at least half of the grain boundaries. As the grain boundary coverage increases, the thermal conductivity of the pellet monotonically increases.
次に、酸化ベリリウムの添加濃度を変化させた場合の
ペレットの相対熱伝導率を調べた。結果を第2図に示
す。Next, the relative thermal conductivity of the pellet when the concentration of beryllium oxide was changed was examined. The results are shown in FIG.
実施例 2 酸化ベリリウム粉末と酸化ケイ素粉末とを混合し、こ
れを酸化ウラニウム粉末と混合して約2.5〜3.0t/cm2の
圧力で圧粉成型した後、共融点(約1670℃)以上である
約1700℃において還元性雰囲気下で焼結した。Example 2 Beryllium oxide powder and silicon oxide powder were mixed, mixed with uranium oxide powder, compacted at a pressure of about 2.5 to 3.0 t / cm 2 , and then pressed at a temperature above the eutectic point (about 1670 ° C.). It was sintered at a certain temperature of about 1700 ° C. in a reducing atmosphere.
上記において、酸化ベリリウム粉末と酸化ケイ素粉末
の添加割合は、酸化ウラニウムを加えた全量に対し、重
量分率で以下のとおりである。In the above description, the addition ratio of beryllium oxide powder and silicon oxide powder is as follows by weight fraction with respect to the total amount of uranium oxide added.
酸化ベリリウム粉末 酸化ケイ素粉末 0.9% 0.1% 0.9% 0.3% 実施例 3 酸化ベリリウム粉末と酸化アルミニウム粉末とを混合
し、これを酸化ウラニウム粉末と混合して約2.5〜3.0t/
cm2の圧力で圧粉成型した後、共融点(約1840℃)以上
である約1900℃あるいは約2000℃において還元性雰囲気
下で焼結した。1900℃で燃焼したペレットの熱伝導率は
UO2の約1.08倍,2000℃で燃焼したペレットの熱伝導率は
UO2の約1.12倍となった(1000Kにおいて)。Beryllium oxide powder Silicon oxide powder 0.9% 0.1% 0.9% 0.3% Example 3 Beryllium oxide powder and aluminum oxide powder were mixed, and this was mixed with uranium oxide powder to about 2.5 to 3.0 t /
After compacting with a pressure of cm 2 , sintering was performed at about 1900 ° C. or about 2000 ° C., which is higher than the eutectic point (about 1840 ° C.), in a reducing atmosphere. The thermal conductivity of pellets burned at 1900 ° C is
The thermal conductivity of pellets burned at 2000 ° C, about 1.08 times that of UO 2
It was about 1.12 times UO 2 (at 1000K).
上記において、酸化ベリリウム粉末と酸化アルミニウ
ム粉末の添加割合は、酸化ウラニウムを加えた全量に対
し、重量分率で以下のとおりである。In the above description, the addition ratio of beryllium oxide powder and aluminum oxide powder is as follows by weight fraction with respect to the total amount of uranium oxide added.
酸化ベリリウム粉末 酸化アルミニウム粉末 0.9% 0.1% 0.9% 0.3% また、平均結晶粒径は、酸化ベリリウム粉末0.9%,
酸化アルミニウム粉末0.1%の場合、 1900℃焼結…約 60μm 2000℃焼結…約110μm 酸化ベリリウム粉末0.9%,酸化アルミニウム粉末0.3
%の場合 1900℃焼結…約 90μm 2000℃焼結…約140μm であった。Beryllium oxide powder Aluminum oxide powder 0.9% 0.1% 0.9% 0.3% The average crystal grain size was beryllium oxide powder 0.9%,
In the case of 0.1% aluminum oxide powder, 1900 ° C sintering: about 60μm 2000 ° C sintering: about 110μm Beryllium oxide powder 0.9%, aluminum oxide powder 0.3
In the case of%, sintering at 1900 ° C .: about 90 μm Sintering at 2000 ° C .: about 140 μm.
実施例 4 酸化ベリリウム粉末と酸化チタニウム粉末と酸化ガド
リニウム粉末を混合し、たものを酸化ウラニウム粉末と
混合し、圧粉成型した後、共融点(約1500℃)以上であ
る約1700℃で弱酸性雰囲気下で焼結した。平均結晶粒径
は約30μmで、得られたペレットの熱伝導率はUO2−Gd2
O3の約1.11〜1.13倍となった。Example 4 Beryllium oxide powder, titanium oxide powder, and gadolinium oxide powder were mixed, and the mixture was mixed with uranium oxide powder, compacted, and then slightly acidic at about 1700 ° C., which is higher than the eutectic point (about 1500 ° C.). Sintered in an atmosphere. The average crystal grain size is about 30 μm, and the thermal conductivity of the obtained pellet is UO 2 −Gd 2
Was about 1.11 to 1.13 times that of O 3.
添加割合は、重量分率で以下のとおりである。 The addition ratio is as follows by weight fraction.
酸化ベリリウム 酸化チタニウム 酸化ガドリニウム 1.5% 0.5% 10% 1.5% 1.0% 10% 上記各実施例では、いずれも焼結中に添加物質の一部
が液体となり、結晶粒界の少なくとも半分はこの液体と
なった高熱伝導物質で覆われる。この結晶粒界覆面率の
増加に伴いペレットの熱伝導率は単調に増加する。いず
れの場合も、同一密度のペレットの熱伝導率は添加物の
添加量増加に伴い単調に増加する。また、微量の添加
(例えば重量分率で0.3%の酸化ベリリウムを添加した
場合)でも高密度化が生じ、これによる熱伝導率の増加
もみられた。成型体の理論密度に対する相対密度は約50
%TDである。また、得られた燃焼体の相対密度は約95〜
99.7%TDであった。Beryllium oxide Titanium oxide Gadolinium oxide 1.5% 0.5% 10% 1.5% 1.0% 10% In each of the above embodiments, a part of the added material becomes liquid during sintering, and at least half of the grain boundaries become this liquid. Covered with high thermal conductive material. The thermal conductivity of the pellet monotonically increases with the increase of the grain boundary coverage. In each case, the thermal conductivity of the pellets having the same density monotonously increases with an increase in the amount of the additive. In addition, even when a small amount is added (for example, when 0.3% by weight of beryllium oxide is added), the density is increased, and the thermal conductivity is also increased. The density relative to the theoretical density of the molded body is about 50
% TD. In addition, the relative density of the obtained combustion body is about 95 to
99.7% TD.
また、上記実施例以外にも、高熱伝導率を有し焼結温
度付近またはそれ以下で一部または全部が融解する物質
を用いることにより、上記と同様の効果を有するペレッ
トが得られる。具体的には、酸化ベリリウムに、バリウ
ム,カルシウム,マグネシウム,ストロンチウム,アル
ミニウム,ランタン,イットリウム,イッテルビウム,
ケイ素,チタン,ウラン,ジルコニウム,タングステ
ン,リチウム,モリブデン,サマリウム,トリウム,ガ
ドリニウムおよびその酸化物の少なくとも一つを加えた
ものが挙げられる。In addition to the above examples, a pellet having the same effect as described above can be obtained by using a substance having a high thermal conductivity and partially or entirely melting near or below the sintering temperature. Specifically, barium, calcium, magnesium, strontium, aluminum, lanthanum, yttrium, ytterbium,
Examples include silicon, titanium, uranium, zirconium, tungsten, lithium, molybdenum, samarium, thorium, gadolinium, and at least one of oxides thereof.
[発明の効果] 以上説明したように、本発明によれば、核燃料ペレッ
トの熱伝導率を向上させることができるので、核燃料要
素においてその中心温度を低下させ、核分裂生成ガスの
放出量を低減させることができる。[Effects of the Invention] As described above, according to the present invention, since the thermal conductivity of nuclear fuel pellets can be improved, the center temperature of a nuclear fuel element is reduced, and the amount of released fission gas is reduced. be able to.
第1図は本発明の核燃料ペレットの拡大模式図、第2図
は本発明の実施例におけるペレットの酸化ベリリウム添
加濃度と相対熱伝導率の関係を示す図、第3図は従来の
核燃料要素の断面図である。 1……核燃料ペレット 2……被覆管 3……上部端栓 4……下部端栓 5……プレナムスプリング 6……燃料棒 7……核分裂性物質 8……高熱伝導率粒界析出相FIG. 1 is an enlarged schematic diagram of a nuclear fuel pellet of the present invention, FIG. 2 is a diagram showing the relationship between the concentration of beryllium oxide added to the pellet and the relative thermal conductivity in the embodiment of the present invention, and FIG. It is sectional drawing. DESCRIPTION OF SYMBOLS 1 ... Nuclear fuel pellet 2 ... Clad tube 3 ... Upper end plug 4 ... Lower end plug 5 ... Plenum spring 6 ... Fuel rod 7 ... Fissile substance 8 ... High thermal conductivity grain boundary precipitation phase
フロントページの続き (56)参考文献 特開 平3−102292(JP,A) (58)調査した分野(Int.Cl.7,DB名) G21C 3/62 JICSTファイル(JOIS)Continuation of the front page (56) References JP-A-3-102292 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G21C 3/62 JICST file (JOIS)
Claims (2)
レットにおいて、その結晶粒界にこの結晶母材よりも熱
伝導率の高い高熱伝導物質の析出相が連続的に存在し、
該高熱伝導物質が酸化ベリリウム、または酸化ベリリウ
ムをチタン,ガドリニウム,カルシウム,バリウム,マ
グネシウム,ストロンチウム,ランタン,イットリウ
ム,イッテルビウム,ケイ素,アルミニウム,サマリウ
ム,タングステン,ジルコニウム,リチウム,モリブデ
ン,ウラン,トリウムおよびこれらの酸化物のうちの少
なくとも1つと混合したものであることを特徴とする核
燃料ペレット。In a nuclear fuel pellet made of a sintered body containing a nuclear fuel material, a precipitate phase of a high thermal conductive material having a higher thermal conductivity than the crystal base material is continuously present at a crystal grain boundary,
The high thermal conductive material is beryllium oxide, or beryllium oxide is titanium, gadolinium, calcium, barium, magnesium, strontium, lanthanum, yttrium, ytterbium, silicon, aluminum, samarium, tungsten, zirconium, lithium, molybdenum, uranium, thorium and the like. Nuclear fuel pellets mixed with at least one of oxides.
かつ焼結温度またはそれ以下において少なくとも一部が
液体となる高熱伝導物質を添加して焼結し、該高熱伝導
物質が酸化ベリリウム、または酸化ベリリウムをチタ
ン,ガドリニウム,カルシウム,バリウム,マグネシウ
ム,ストロンチウム,ランタン,イットリウム,イッテ
ルビウム,ケイ素,アルミニウム,サマリウム,タング
ステン,ジルコニウム,リチウム,モリブデン,ウラ
ン,トリウムおよびこれらの酸化物のうちの少なくとも
1つと混合したものであることを特徴とする核燃料ペレ
ットの製造方法。2. A fissile material is sintered by adding a high thermal conductive material having a higher thermal conductivity and at least partly liquid at or below the sintering temperature, wherein the high thermal conductive material is beryllium oxide. Or beryllium oxide is converted to at least one of titanium, gadolinium, calcium, barium, magnesium, strontium, lanthanum, yttrium, ytterbium, silicon, aluminum, samarium, tungsten, zirconium, lithium, molybdenum, uranium, thorium and oxides thereof. A method for producing nuclear fuel pellets, characterized in that they are mixed with each other.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US07/674,170 US5180527A (en) | 1990-04-03 | 1991-03-25 | Nuclear fuel pellets |
EP91104770A EP0450469B2 (en) | 1990-04-03 | 1991-03-26 | Nuclear fuel pellets and method of manufacturing the same |
DE69110721T DE69110721T3 (en) | 1990-04-03 | 1991-03-26 | Nuclear fuel pellets and process for their manufacture. |
US07/895,665 US5255299A (en) | 1990-04-03 | 1992-06-09 | Method of manufacturing nuclear fuel pellets |
US07/932,590 US5429775A (en) | 1990-04-03 | 1992-08-20 | Nuclear fuel pellets and method of manufacturing the same |
US08/070,214 US5362426A (en) | 1990-04-03 | 1993-06-02 | Nuclear fuel pellets and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8757990 | 1990-04-03 | ||
JP2-87579 | 1990-04-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH041594A JPH041594A (en) | 1992-01-07 |
JP3076058B2 true JP3076058B2 (en) | 2000-08-14 |
Family
ID=13918915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02297082A Expired - Fee Related JP3076058B2 (en) | 1990-04-03 | 1990-11-05 | Nuclear fuel pellet and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3076058B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101652729B1 (en) * | 2015-04-09 | 2016-09-01 | 한국원자력연구원 | Preparation method of nuclear fuel pellet with thermal conductive metal network, and the nuclear fuel pellet thereby |
WO2021137350A1 (en) * | 2019-12-30 | 2021-07-08 | 한전원자력연료 주식회사 | Oxide nuclear fuel pellets having fine precipitates dispersed in circumferential direction, and preparation method thereof |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015080626A1 (en) * | 2013-11-26 | 2015-06-04 | Открытое Акционерное Общество "Акмэ-Инжиниринг" | Nuclear fuel pellet having enhanced thermal conductivity, and preparation method thereof |
US10102929B2 (en) * | 2014-05-26 | 2018-10-16 | Korea Atomic Energy Research Institute | Method of preparing nuclear fuel pellet including thermal conductive metal and nuclear fuel pellet prepared thereby |
US11145425B2 (en) * | 2018-01-30 | 2021-10-12 | Westinghouse Electric Company Llc | Grain boundary enhanced UN and U3Si2 pellets with improved oxidation resistance |
-
1990
- 1990-11-05 JP JP02297082A patent/JP3076058B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101652729B1 (en) * | 2015-04-09 | 2016-09-01 | 한국원자력연구원 | Preparation method of nuclear fuel pellet with thermal conductive metal network, and the nuclear fuel pellet thereby |
WO2021137350A1 (en) * | 2019-12-30 | 2021-07-08 | 한전원자력연료 주식회사 | Oxide nuclear fuel pellets having fine precipitates dispersed in circumferential direction, and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH041594A (en) | 1992-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2735243C2 (en) | Completely ceramic microencapsulated fuel, made with burnable absorber as a sintering intensifier | |
US4671927A (en) | Nuclear fuel rod containing a hybrid gadolinium oxide, boron carbide burnable absorber | |
KR101733832B1 (en) | Nuclear fuel, nuclear fuel element, nuclear fuel assembly and a method manufacturing nuclear fuel | |
JPH0774834B2 (en) | Nuclear fuel composition | |
US3320176A (en) | Method of producing ceramic nuclear fuel material having incorporated therein burnable poison | |
Nelson et al. | Other power reactor fuels | |
JP3076058B2 (en) | Nuclear fuel pellet and method for producing the same | |
US9653188B2 (en) | Fabrication method of burnable absorber nuclear fuel pellets and burnable absorber nuclear fuel pellets fabricated by the same | |
JPH1026684A (en) | Production of nuclear fuel pellet | |
US5255299A (en) | Method of manufacturing nuclear fuel pellets | |
US4077838A (en) | Pyrolytic carbon-coated nuclear fuel | |
WO1995011509A1 (en) | Nuclear fuel cycle | |
CA1100302A (en) | High performance nuclear fuel element | |
US3661709A (en) | Nonswelling uranium nitride fuel | |
JP4135976B2 (en) | Modified nuclear fuel for delaying RIM effect | |
US5464571A (en) | Once-through nuclear reactor fuel compounds | |
Radford et al. | Ammonia as a sintering aid for UO/sub 2 | |
JPS62168091A (en) | Nuclear reactor | |
JPS6319034B2 (en) | ||
JP2860615B2 (en) | Fuel assembly for plutonium firing | |
US3238140A (en) | Uranium nitride-iron nuclear fuel cermets | |
JP2002181975A (en) | Fuel pellet, its manufacturing method, and its fuel element and fuel assembly | |
JP4080199B2 (en) | Manufacturing method of nuclear fuel pellet, fuel element using the nuclear fuel pellet, and fuel assembly | |
Ploetz | Ceramic materials for nuclear reactor controls and poison | |
JP2655908B2 (en) | Method for producing nuclear fuel pellet containing gatolinium oxide having large crystal grain size |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090609 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090609 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100609 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |