JPH03249595A - Nuclear fuel pellet - Google Patents

Nuclear fuel pellet

Info

Publication number
JPH03249595A
JPH03249595A JP2048240A JP4824090A JPH03249595A JP H03249595 A JPH03249595 A JP H03249595A JP 2048240 A JP2048240 A JP 2048240A JP 4824090 A JP4824090 A JP 4824090A JP H03249595 A JPH03249595 A JP H03249595A
Authority
JP
Japan
Prior art keywords
pores
pellet
powder
nuclear fuel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2048240A
Other languages
Japanese (ja)
Other versions
JP2737350B2 (en
Inventor
Tadao Yato
八登 唯夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2048240A priority Critical patent/JP2737350B2/en
Publication of JPH03249595A publication Critical patent/JPH03249595A/en
Application granted granted Critical
Publication of JP2737350B2 publication Critical patent/JP2737350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To decrease the amt. of the released gaseous FP during combustion by specifying the crystal grain size of a structure to >=20mum and a combustion density to 94 to 97% TD and increasing the pores dispersed in the crystal grains to the quantity larger than the quantity of the pores existing at the grain bound ary. CONSTITUTION:This nuclear fuel pellet is formed by molding raw material powder essentially composed of UO2 and sintering the molding and is formed to >=20mum crystal grain size of the structure and 94 to 97% TD sintering density. The pellet is formed with the pores dispersed in the crystal grains in the quan tity larger than the quantity of the pores existing at the grain boundary. The gaseous FP generated in the pellet is accumulated into the independent pores in the crystal grains in this way on progression of combustion. In addition, the gas is less released through the grain boundaries and, therefore, the gaseous FP holding power higher than the gaseous FP holding power of the conventional pellets having about the same porosity is obtd. and the amt. of the FP to be released during the combustion is decreased.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、照射時における核分裂生成ガスの保持力に優
れた核燃料ペレットに関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to nuclear fuel pellets that have excellent retention of fission product gas during irradiation.

「従来の技術」 最近、原子炉燃料をより長期間使用する、いわゆる高燃
焼度化計画が検討されているが、その実現に際しては、
核燃料が発生する核分裂生成ガス(FPガス)を核燃料
ペレットの外にできるだけ放出しないようにすることが
肝要である。
"Conventional technology" Recently, a so-called high burnup plan for using nuclear reactor fuel for a longer period of time is being considered, but in order to realize it,
It is important to prevent fission product gas (FP gas) generated by nuclear fuel from being released outside the nuclear fuel pellet as much as possible.

FPガスがペレット外に放出される機構は一般に次のよ
うに考えられている。まず、ペレットの結晶粒内でFP
ガスが発生し、このガスが結晶粒内あるいは結晶粒界で
気泡を形成する。このうち、粒界において生成した気泡
かある程度の量に達すると、ついには粒界に沿ってトン
ネルが形成され、このトンネルを通って粒界に存在する
FPガスがペレット外に放出される。
The mechanism by which FP gas is released outside the pellet is generally considered as follows. First, FP within the crystal grains of the pellet
Gas is generated, and this gas forms bubbles within the grains or at the grain boundaries. When the number of bubbles generated at the grain boundaries reaches a certain level, tunnels are finally formed along the grain boundaries, and the FP gas present at the grain boundaries is released to the outside of the pellet through this tunnel.

このことから、FPガスの発生そのものを抑えることは
できないとしても、焼結体ペレット中の結晶粒径を大き
くし、結晶粒内で生成したFPガスの粒界への到達距離
を長くすることにより、ペレット内にガスを閉じ込めて
、結果的にFPガスの放出量が低減できると考えられる
。このため高燃焼度用核燃料として、結晶粒径の大きい
ペレットを使用する考えが一般的になりつつある。最適
な結晶粒径については未だ明らかでないが、本出願者が
行なった燃焼度およびFPガス放出率等の検討によれば
、20μm以上が好適であると考えられる。
From this, even if it is not possible to suppress the generation of FP gas itself, it is possible to increase the grain size in the sintered pellets and increase the distance that the FP gas generated within the grains reaches the grain boundaries. , it is thought that the gas is confined within the pellet, and as a result, the amount of FP gas released can be reduced. For this reason, the idea of using pellets with large crystal grain sizes as nuclear fuel for high burnup is becoming popular. Although the optimum crystal grain size is not yet clear, according to studies conducted by the present applicant on burnup, FP gas release rate, etc., it is thought that 20 μm or more is suitable.

従来行なわれている大粒径ペレットの製造方法としては
、原料のUO,粉末に二才ヒア(Nbto5)等を添加
する方法や、圧粉成形体をCOを等の酸化性雰囲気中で
焼結する方法、原料として結晶粒成長速度の大きい高活
性UOI粉末を用いる方法等か既に提案されている。
Conventional methods for producing large-sized pellets include adding Nisai Hia (Nbto5) to the raw material UO and powder, and sintering the compacted powder in an oxidizing atmosphere such as CO. A method using highly active UOI powder with a high crystal grain growth rate as a raw material has already been proposed.

しかし、添加物を使用する方法では、核燃料ペレットの
融点等の物性に対する影響が必ずしも明らかではなく、
また、酸化性雰囲気中で焼結する方法では製造方法が非
常に繁雑でコストがかかる等の問題を有する。このため
、高活性UO2粉末を原料としてペレットを形成する方
法が最も問題が少ない。この観点から、本出願人らは先
に、特願昭61.−142506号、特願昭61−19
0079号、特願昭63−127934号、特願昭63
−1.27935号および米国特許出願第139447
号において、高活性UO,粉末を用いた大粒径ペレット
の製造方法を提案してきた。
However, with methods that use additives, the effect on physical properties such as the melting point of nuclear fuel pellets is not always clear;
Further, the method of sintering in an oxidizing atmosphere has problems such as a very complicated manufacturing method and high cost. For this reason, the method of forming pellets using highly active UO2 powder as a raw material has the least problems. From this point of view, the present applicants first filed a patent application filed in 1983. -142506, patent application 1986-19
No. 0079, Japanese Patent Application No. 127934/1983, Japanese Patent Application No. 1983
-1.27935 and U.S. Patent Application No. 139447
In this issue, we proposed a method for producing large-sized pellets using highly active UO powder.

ところが、このような高活性U Oを粉末を原料として
核燃料ペレットを製造すると、結晶粒径か大きくなると
ともに、副次的な効果として焼結密度が所望値よりも高
くなることが確認された。結晶密度は、製品ペレットの
規格によって94〜97%TDと定められており、この
規格を越えては不都合が生しる。
However, it has been confirmed that when nuclear fuel pellets are produced using such highly active U2O powder as a raw material, the crystal grain size becomes large and, as a side effect, the sintered density becomes higher than the desired value. The crystal density is set at 94% to 97% TD according to the standards for product pellets, and if it exceeds this standard, problems will occur.

そこで、高活性粉末を用いた場合に焼結密度か高くなり
すぎることを防ぐために、本出願人は特願昭63−33
0340号において、ンユウ酸アンモニウム等のボアフ
ォーマ−を原料粉末に添加し、核燃料ペレットの組織中
に気孔を発生させて、大粒径化に伴う焼結密度の上昇を
相殺する方法を提案した。
Therefore, in order to prevent the sintered density from becoming too high when using highly active powder, the applicant filed a patent application in
In No. 0340, a method was proposed in which a bore former such as ammonium oxalate was added to the raw material powder to generate pores in the structure of the nuclear fuel pellet, thereby offsetting the increase in sintered density due to the increase in particle size.

「発明が解決しようとする課題J ところで、前述したFPガス放出機構から判断して、こ
の種の気孔は結晶粒界に存在するよりも、結晶粒内に独
立して存在する方か望ましいと考えられる。すなわち、
結晶粒内の独立気孔はFPガスを有効に閉じ込める機能
を持つが、粒界にある気孔はトンネルの役目を果たし、
逆にFPカス放出を促進することになるからである。
``Problem to be Solved by the InventionJ'' By the way, judging from the FP gas release mechanism described above, it is thought that it is preferable for this type of pore to exist independently within the grain rather than at the grain boundary. In other words,
The independent pores within the grains have the function of effectively confining the FP gas, but the pores at the grain boundaries act as tunnels.
This is because, on the contrary, it will promote the release of FP dregs.

この観点から、前述のボアフォーマ−を添加する方法で
得られた大粒径ペレットの結晶組織を見ると、気孔は粒
内と粒界に均等に存在するか、または結晶粒界に集まっ
て存在し、その分、FPガス保持力が低く抑えられてい
る可能性があることが判明した。
From this point of view, when looking at the crystal structure of large-grain pellets obtained by the method of adding a bore former mentioned above, pores exist evenly within the grains and at the grain boundaries, or they exist in clusters at the grain boundaries. It was found that the FP gas retention force may be kept low accordingly.

一方、本発明者らはその後の実験により、新たなボアフ
ォーマ−としてU s Os粉末か使用可能であること
を突き止めた。U s Os粉末をUO,粉末に添加し
て成形および焼結を行なうと、U、Os粒子の部分には
、UO,粉末との焼結時の収縮率の違いから気孔が生じ
、焼結密度を低下することができる。
On the other hand, through subsequent experiments, the present inventors discovered that U s Os powder could be used as a new bore former. When U s Os powder is added to UO powder and subjected to molding and sintering, pores are generated in the U and Os particles due to the difference in shrinkage rate during sintering with UO powder, which increases the sintered density. can be lowered.

ところが、さらに検討を進めた結果、U s Os粉末
の添加量をある一定範囲にした場合には、従来のボアフ
ォーマ−の場合と異なり、気孔が結晶粒内に多く分散す
るという新規な現象を発見した。
However, as a result of further investigation, we discovered a new phenomenon in which when the amount of U s Os powder added was within a certain range, unlike in the case of conventional bore formers, more pores were dispersed within the crystal grains. did.

本発明は、上記知見に基づいてなされたもので、同じ焼
結密度であっても、より高いFPガス保持力が得られる
核燃料ペレットの提供を課題とする。
The present invention was made based on the above findings, and an object of the present invention is to provide nuclear fuel pellets that can obtain higher FP gas retention power even with the same sintering density.

「課題を解決するための手段」 以下、本発明に係わる核燃料ペレットを具体的に説明す
る。
"Means for Solving the Problems" Hereinafter, the nuclear fuel pellets according to the present invention will be specifically explained.

本発明の核燃料ペレットは、U Otを主組成物とした
原料粉末を成形し焼結してなるものであって、組織の結
晶粒径が20μm以上、望ましくは30−100μx、
焼結密度は94〜97%TDとされ、結晶粒内に分散し
ている気孔が結晶粒界に存在する気孔よりも多いことを
特徴とする。
The nuclear fuel pellet of the present invention is formed by molding and sintering raw material powder whose main composition is U Ot, and the crystal grain size of the structure is 20 μm or more, preferably 30-100 μx,
The sintered density is 94 to 97% TD, and is characterized in that there are more pores dispersed within the crystal grains than pores present at the grain boundaries.

結晶粒径が20μ肩未満では、結晶粒内に生したFPガ
スが粒界に到達する距離が短くなるうえ、粒界の分布密
度が高まるために粒界に接触する気孔の割合が増加し、
これらの相乗効果により十分なFPガスの保持力が得ら
れなくなる。また結晶粒径が100μlより犬であると
、ペレットの機械的強度が低下するおそれを有する。さ
らに焼結密度が94%TD未満あるいは97%TDより
犬では、いずれも製品ペレットの規格を満たすことがで
きない。
When the grain size is less than 20 μm, the distance for the FP gas generated within the grains to reach the grain boundaries is shortened, and the distribution density of the grain boundaries increases, so the proportion of pores in contact with the grain boundaries increases.
Due to these synergistic effects, sufficient FP gas retention force cannot be obtained. Moreover, if the crystal grain size is larger than 100 μl, the mechanical strength of the pellet may be reduced. Further, if the sintered density is less than 94% TD or more than 97% TD, the product pellet cannot meet the specifications.

気孔の平均径は5〜100μl、特に10〜50μ肩で
あることが望ましく、5μ肩未満では照射中の気孔の消
滅によりペレットか収縮すると(う問題を生じ、100
μXより犬ではペレット表面の開気孔率が増大するとい
う問題を生しる。
The average diameter of the pores is desirably 5 to 100 μl, especially 10 to 50 μl; if the diameter is less than 5 μl, the pellet may shrink due to disappearance of pores during irradiation, causing a problem of 100 μl or less.
Compared to μX, dogs have a problem in that the open porosity of the pellet surface increases.

上記構成からなる核燃料ペレットでは、結晶粒内に分散
している気孔が結晶粒界に存在する気孔よりも多いため
、燃焼の進行につれペレット内で発生するFPガスが結
晶粒内の独立気孔に蓄えられ、しかも粒界を通じてガス
が放出されることが少ないから、同程度の気孔率を有す
る従来のベレートよりもFPガスの放出量を大幅に低減
することができる。
In nuclear fuel pellets with the above structure, there are more pores dispersed within the crystal grains than pores existing at the grain boundaries, so as combustion progresses, FP gas generated within the pellet is stored in independent pores within the crystal grains. Moreover, since gas is less likely to be released through grain boundaries, the amount of FP gas released can be significantly reduced compared to conventional berate having a similar porosity.

次に、このような核燃料ペレットの製造方法の一例を説
明する。
Next, an example of a method for producing such nuclear fuel pellets will be described.

この方法では、比表面積が3x’/9以上、好ましくは
5〜15x’/9の高活性U O’を粉末を原料粉末の
主組成物として使用する。3x”/9未満ではペレット
の結晶粒径を十分大きくできず、FPガスの保持性が低
下する。また、15x”/yより大では粒径が前述した
上限値以上になるおそれがある。なお、ここでいう比表
面積は、BET法により測定される値と定義する。
In this method, a powder of highly active UO' having a specific surface area of 3x'/9 or more, preferably 5 to 15x'/9 is used as the main composition of the raw material powder. If it is less than 3x''/y, the crystal grain size of the pellet cannot be made sufficiently large, and the retention of FP gas will deteriorate.If it is larger than 15x''/y, the grain size may exceed the above-mentioned upper limit. Note that the specific surface area herein is defined as a value measured by the BET method.

このような高活性U Oを粉末は、ADt、i法やAU
G法において、沈殿条件のコントロールを行なうことに
より容易に製造できる。その技術についての詳細は、前
述した各出願で本出願人が既に開示している。なお、高
活性UO,粉末は、通常の不活性なUO,粉末に高度の
粉砕処理を行なって比表面積を増大させる方法や、不活
性UO,粉末に酸化還元処理等を行なって高活性化する
方法でも得ることが可能である。
Such highly active UO powders can be used in ADt, i-method or AU
In Method G, it can be easily produced by controlling the precipitation conditions. The details of the technology have already been disclosed by the present applicant in each of the above-mentioned applications. In addition, highly active UO and powder can be obtained by highly pulverizing ordinary inert UO and powder to increase the specific surface area, or by performing oxidation-reduction treatment on inert UO and powder to make it highly active. It is also possible to obtain it by

次に、このような高活性UO,粉末に、10〜20wt
%のU、08粉末を添加する。添加量が20wt%を越
えると結晶粒径が小さくなり、粒界の分布密度が大きく
なるため、粒界に存在する気孔の割合が顕著に大きくな
り、PPガス保持力が相対的に減少する。また、10w
t%未満ではペレットの焼結密度が97%TDを越えて
しまう。
Next, add 10 to 20 wt to such highly active UO powder.
Add % U,08 powder. When the amount added exceeds 20 wt%, the crystal grain size becomes small and the distribution density of grain boundaries becomes large, so the proportion of pores existing at grain boundaries increases significantly, and the PP gas retention force decreases relatively. Also, 10w
If it is less than t%, the sintered density of the pellet will exceed 97% TD.

U 30 s粉末の粒径は気孔の平均径と関係があり、
望ましくはその平均粒径が5〜100μに程度とされる
。5μm未満では前記の気孔平均径の下限値よりも小さ
くなり、また100μ贋より犬では上限値を越える。
The particle size of U30s powder is related to the average diameter of pores,
Desirably, the average particle size is about 5 to 100 microns. If it is less than 5 μm, it will be smaller than the lower limit of the above-mentioned average pore diameter, and if it is 100 μm, it will exceed the upper limit for dogs.

次いで、この混合粉末をプレス型で成形した後、水素気
流中あるいは加湿した水素気流中で焼結して核燃料ペレ
ットを得る。その条件は従来と同様でよい。焼結後には
U30.の部分がU Otよりも収縮率が小さいために
気孔を形成し、この気孔が結晶粒内に存在することにな
る。
Next, this mixed powder is molded with a press mold, and then sintered in a hydrogen stream or a humidified hydrogen stream to obtain nuclear fuel pellets. The conditions may be the same as before. After sintering, U30. Since the shrinkage rate of the portion is smaller than that of U Ot, pores are formed, and these pores are present within the crystal grains.

気孔が組織中に均一に分散する理由は未だ明らかではな
いが、次のような推測が可能である。すなわち、U3O
8粉末とマトリックスとなるU Ox粉末とが親和性が
高いために、特にU30.粉末の添加量が20wt%以
下の場合には、焼結時に粒界が気孔を通り越して比較的
自由に移動し、互いに無関係に分散する。しかし、U 
s Os粉末の添加量が20wt%より大きくなると、
気孔の分布密度が大きくなり、粒界の移動を阻止する力
が無視できなくなって、気孔と接触した状態で粒界の移
動が停まる確率が大きくなるために、粒界に残る気孔の
割合が増加すると考えられる。
The reason why pores are uniformly distributed throughout the tissue is not yet clear, but the following speculations can be made. That is, U3O
Since the U30.8 powder has a high affinity with the UOx powder that forms the matrix, the U30.8 powder has a high affinity with the U30. When the amount of powder added is 20 wt% or less, grain boundaries move relatively freely past pores during sintering and are dispersed independently of each other. However, U
When the amount of s Os powder added is greater than 20 wt%,
As the distribution density of pores increases, the force that prevents grain boundary movement can no longer be ignored, and the probability that grain boundary movement stops in contact with pores increases, so the proportion of pores remaining at grain boundaries increases. This is expected to increase.

「実施例」 次に、実施例を挙げて本発明の効果を実証する。"Example" Next, examples will be given to demonstrate the effects of the present invention.

U O、F 、を水に溶解して作製したUO,P、溶液
とアンモニア水を反応させてADUを生成させ、このA
DUを濾過および乾燥ののち焙焼・還元して、比表面積
が約10x’/9の高活性UO,粉末を作製した。
UO,P, prepared by dissolving UO,F, in water, is reacted with ammonia water to produce ADU.
After filtration and drying, DU was roasted and reduced to produce a highly active UO powder with a specific surface area of about 10x'/9.

この粉末に、U3O8粉末およびンユウ酸アンモニウム
をボアフォーマ−として添加し、均一に混合して3種の
原料粉末を作製した。U3O,粉末としては粒径力’1
0μxのものを使用した。そしてこれら原料粉末を3t
/cm″で成形し、各圧粉体を水素気流中において17
50°Cで4時間焼結した。
To this powder, U3O8 powder and ammonium oxalate were added as a bore former and mixed uniformly to produce three types of raw material powders. U3O, as a powder, particle size force '1
0 μx was used. And 3 tons of these raw material powders
/cm'', and each green compact was molded at 17 cm in a hydrogen stream.
Sintering was performed at 50°C for 4 hours.

こうして得られた3種の核燃料ペレットを切断し、研摩
およびエツチングの後、光学顕微鏡で組織写真を撮影し
た。第1図はU 30 s粉末を20wt%添加した核
燃料ペレットの組織写真を模写したものに、第2図はU
 s Oa粉末を30wt%添加した例、第3又はシュ
ウ酸アンモニウム本1v)啜沃崩した例である。
The three types of nuclear fuel pellets thus obtained were cut, polished and etched, and then photographs of their structures were taken using an optical microscope. Figure 1 is a reproduction of a photograph of the structure of a nuclear fuel pellet containing 20 wt% of U 30 s powder, and Figure 2 is a reproduction of a nuclear fuel pellet containing 20 wt% of U 30 s powder.
This is an example in which 30 wt% of s Oa powder was added, and an example in which 30% or ammonium oxalate was added.

シュウ酸アンモニウムを添加したペレットでは、結晶粒
径が49μlであったが、気孔が主に結晶粒界と粒内に
均等に存在している。それに対し、U306粉末を20
wt%添加した例では、結晶粒径が48μlで、大部分
の気孔が結晶粒内に存在している。しかし、U 30 
a粉末の添加量が30wt%に増えると、結晶粒径が2
5μlに縮小し、粒界にある気孔の割合が顕著に大きく
なった。
In the pellet to which ammonium oxalate was added, the crystal grain size was 49 μl, but pores were evenly distributed mainly at the grain boundaries and inside the grains. On the other hand, 20% of U306 powder
In the example where wt% was added, the crystal grain size was 48 μl, and most of the pores were present within the crystal grains. However, U 30
When the amount of a powder added increases to 30wt%, the grain size increases to 2
It was reduced to 5 μl, and the proportion of pores at the grain boundaries was significantly increased.

「発明の効果」 以上説明したように、本発明に係わる核燃料ペレットに
よれば、結晶粒内に分散している気孔が結晶粒界に存在
する気孔よりも多いため、燃焼の進行につれペレット内
で発生するFPガスが結晶粒内の独立気孔に蓄えられ、
しかも粒界を通じてガスが放出されることが少ないから
、同程度の気孔率を有する従来のペレットよりもFPガ
スの保持力を高め、燃焼中のFPガス放出量を低減する
ことが可能である。
"Effects of the Invention" As explained above, according to the nuclear fuel pellet of the present invention, there are more pores dispersed within the grains than pores present at the grain boundaries, so as combustion progresses, the number of pores inside the pellet increases. The generated FP gas is stored in independent pores within the crystal grains,
Moreover, since gas is less likely to be released through grain boundaries, it is possible to increase the holding power of FP gas and reduce the amount of FP gas released during combustion compared to conventional pellets having a similar porosity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係わる核燃料ペレットの組織
拡大図、第2図および第3図はそれぞれ比較例の核燃料
ペレットの組織拡大図である。
FIG. 1 is an enlarged view of the structure of a nuclear fuel pellet according to an example of the present invention, and FIGS. 2 and 3 are enlarged views of the structure of nuclear fuel pellets of comparative examples, respectively.

Claims (1)

【特許請求の範囲】[Claims] 核燃料物質の粉末を成形し焼結してなる核燃料ペレット
であって、組織の結晶粒径が20μm以上、焼結密度が
94〜97%TDで、かつ結晶粒内に分散している気孔
が結晶粒界に存在する気孔よりも多いことを特徴とする
核燃料ペレット。
A nuclear fuel pellet made by molding and sintering nuclear fuel material powder, which has a crystal grain size of 20 μm or more, a sintered density of 94 to 97% TD, and has pores dispersed within the crystal grains. A nuclear fuel pellet characterized by more pores than grain boundaries.
JP2048240A 1990-02-28 1990-02-28 Nuclear fuel pellets Expired - Lifetime JP2737350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2048240A JP2737350B2 (en) 1990-02-28 1990-02-28 Nuclear fuel pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2048240A JP2737350B2 (en) 1990-02-28 1990-02-28 Nuclear fuel pellets

Publications (2)

Publication Number Publication Date
JPH03249595A true JPH03249595A (en) 1991-11-07
JP2737350B2 JP2737350B2 (en) 1998-04-08

Family

ID=12797921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2048240A Expired - Lifetime JP2737350B2 (en) 1990-02-28 1990-02-28 Nuclear fuel pellets

Country Status (1)

Country Link
JP (1) JP2737350B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002519677A (en) * 1998-06-26 2002-07-02 ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー Nuclear fuel pellets

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA034523B1 (en) * 2013-11-26 2020-02-17 Открытое Акционерное Общество "Акмэ-Инжиниринг" Method of production of a nuclear fuel pellet with enhanced thermal conductivity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002519677A (en) * 1998-06-26 2002-07-02 ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー Nuclear fuel pellets
JP4700806B2 (en) * 1998-06-26 2011-06-15 ウェスティングハウス・エレクトリック・カンパニー,リミテッド・ライアビリティー・カンパニー Nuclear fuel pellets

Also Published As

Publication number Publication date
JP2737350B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
JP3106113B2 (en) Recycling method for pellet scrap of oxide nuclear fuel
JP2012088317A (en) Solid solution concentration adjustment method for crystal grain boundary and periphery of crystal grain boundary of heterogeneous additive element, and method of manufacturing nuclear fuel sintered body having large crystal grain using the same
JP2689557B2 (en) UO ▲ Bottom 2 ▼ Pellet manufacturing method
US9653188B2 (en) Fabrication method of burnable absorber nuclear fuel pellets and burnable absorber nuclear fuel pellets fabricated by the same
JPH03249595A (en) Nuclear fuel pellet
JP4099529B2 (en) Nuclear fuel pellet and manufacturing method thereof
EP2082402B1 (en) High burn-up nuclear fuel pellets
JP2004309453A (en) Nuclear fuel sinter containing tungsten metal mesh and its manufacturing method
JPH039296A (en) Production of nuclear fuel pellet
KR100609217B1 (en) Nuclear fuel body including tungsten network and method of manufacturing the same
JP2588947B2 (en) Manufacturing method of oxide nuclear fuel sintered body
JP2655908B2 (en) Method for producing nuclear fuel pellet containing gatolinium oxide having large crystal grain size
JP2701049B2 (en) Method for producing oxide nuclear fuel body by air sintering
JP3051388B1 (en) Manufacturing method of nuclear fuel sintered body
JPH03249596A (en) Production of nuclear fuel pellet
KR100424331B1 (en) Property control technique of the mixed oxide fuel pellet by the addition method of M3O8 scrap powder and the sintering process
JP3862901B2 (en) Method for producing nuclear fuel pellets
JP2701043B2 (en) Method for producing oxide nuclear fuel body having double microstructure
JPS62225993A (en) Manufacture of ceramic nuclear fuel sintered body
JP2620234B2 (en) Method for producing nuclear fuel pellets
JPH03170898A (en) Preparation of nuclear fuel ceramic
JP2786345B2 (en) Method for producing nuclear fuel pellet and nuclear fuel pellet
JPS63252291A (en) Manufacture of nuclear-fuel sintered body
JPH0761820A (en) Production of nuclear fuel pellet
JPH03243890A (en) Nuclear fuel pellet