JPS62225993A - Manufacture of ceramic nuclear fuel sintered body - Google Patents
Manufacture of ceramic nuclear fuel sintered bodyInfo
- Publication number
- JPS62225993A JPS62225993A JP61067281A JP6728186A JPS62225993A JP S62225993 A JPS62225993 A JP S62225993A JP 61067281 A JP61067281 A JP 61067281A JP 6728186 A JP6728186 A JP 6728186A JP S62225993 A JPS62225993 A JP S62225993A
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- nuclear fuel
- sintering
- manufacture
- ceramic nuclear
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000003758 nuclear fuel Substances 0.000 title claims description 7
- 239000000919 ceramic Substances 0.000 title claims description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 16
- 239000007789 gas Substances 0.000 claims description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- FCTBKIHDJGHPPO-UHFFFAOYSA-N uranium dioxide Inorganic materials O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 claims description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 3
- 238000000465 moulding Methods 0.000 claims description 3
- OOAWCECZEHPMBX-UHFFFAOYSA-N oxygen(2-);uranium(4+) Chemical compound [O-2].[O-2].[U+4] OOAWCECZEHPMBX-UHFFFAOYSA-N 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 2
- 238000005245 sintering Methods 0.000 description 12
- 239000008188 pellet Substances 0.000 description 10
- 238000000227 grinding Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 230000003746 surface roughness Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- WZECUPJJEIXUKY-UHFFFAOYSA-N [O-2].[O-2].[O-2].[U+6] Chemical compound [O-2].[O-2].[O-2].[U+6] WZECUPJJEIXUKY-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical group [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 2
- SHZGCJCMOBCMKK-KGJVWPDLSA-N beta-L-fucose Chemical compound C[C@@H]1O[C@H](O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-KGJVWPDLSA-N 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 238000009770 conventional sintering Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- -1 etc. Chemical compound 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910001938 gadolinium oxide Inorganic materials 0.000 description 1
- 229940075613 gadolinium oxide Drugs 0.000 description 1
- CMIHHWBVHJVIGI-UHFFFAOYSA-N gadolinium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[Gd+3].[Gd+3] CMIHHWBVHJVIGI-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- ZCUFMDLYAMJYST-UHFFFAOYSA-N thorium dioxide Chemical compound O=[Th]=O ZCUFMDLYAMJYST-UHFFFAOYSA-N 0.000 description 1
- 229910003452 thorium oxide Inorganic materials 0.000 description 1
- 229910000439 uranium oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Ceramic Products (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は核燃料に関し、特に、品質の向上と製造コスト
の低減化の双方が図られたセラミック核燃料焼結体の製
造法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to nuclear fuel, and in particular to a method for manufacturing a ceramic nuclear fuel sintered body that achieves both improved quality and reduced manufacturing costs.
現在、軽水炉燃料で使用されているウラン酸化物の焼結
体は、原料粉末を成形後H2を主成分とする還元雰囲気
で焼結することにより製造される。Sintered bodies of uranium oxide, which are currently used in light water reactor fuels, are manufactured by molding raw material powder and then sintering it in a reducing atmosphere containing H2 as a main component.
また通常、焼結後、所定の寸法に研削されて使用に供さ
れる。After sintering, the material is usually ground to a predetermined size before use.
しかしながら、上記従来の方法で製造するには、170
0℃以上のaS度で長時間焼結しなければならず、その
ため電気および雰囲気ガスの消費量は美大なものどなる
。また、焼結体の研削を行うと、焼結体表面に微細な傷
が発生し、焼結直後の状態より表面あらさば大きくなる
という問題がある。更に、研削時に潤滑剤として水を使
用する場合は、付着した水分の除去のための付加的工程
が必要となる。However, in order to manufacture using the above conventional method, 170
Sintering must be carried out for a long time at a temperature of 0° C. or higher, and therefore the consumption of electricity and atmospheric gas is enormous. Further, when the sintered body is ground, fine scratches are generated on the surface of the sintered body, and the surface roughness becomes larger than that immediately after sintering. Furthermore, if water is used as a lubricant during grinding, an additional step is required to remove adhering moisture.
本発明は、上述した点に鑑みてなされたものであり、省
エネルギー、製造コストの低減化、製造工程の簡略化な
らびに品質の向上が図られたセラミック核燃料焼結体の
製造法を提供することを目的とする。The present invention has been made in view of the above points, and aims to provide a method for manufacturing a ceramic nuclear fuel sintered body that saves energy, reduces manufacturing costs, simplifies the manufacturing process, and improves quality. purpose.
このような目的を達成するため、本発明のセラミック核
燃料焼結体の@造法は、二酸化ウランを含有する原料粉
末を成形したのち、この成形体を二酸化炭素ガス雰囲気
中で焼結し、次いでこの焼結体を必要に応じて研削した
のち、水素ガス雰囲気中で加熱することにより還元する
こと、を特徴とするものである。In order to achieve such an object, the method for producing a ceramic nuclear fuel sintered body of the present invention involves molding a raw material powder containing uranium dioxide, sintering this molded body in a carbon dioxide gas atmosphere, and then This sintered body is characterized by being ground as necessary and then being reduced by heating in a hydrogen gas atmosphere.
以下、本発明をさらに詳細に説明り−る。以下の記載に
おいて、口を表わず「%」は、特に断わらない限り重量
基準である。The present invention will be explained in more detail below. In the following description, "%" is based on weight unless otherwise specified.
本発明で用いられる核燃料原料粉末としては、二酸化ウ
ランその他の酸化ウラン、酸化プルトニウム、酸化トリ
ウム等の1種または2種以上に、さらに中性子吸収物質
として酸化ガドリニウムを加えた混合物が用いられる。The nuclear fuel raw material powder used in the present invention is a mixture of one or more of uranium dioxide, other uranium oxides, plutonium oxide, thorium oxide, etc., and gadolinium oxide as a neutron absorbing substance.
また、適宜、バインダーも添加され得る。A binder may also be added as appropriate.
粉末の粒径は、混合前において、約10〜1500μm
程度の範囲が好ましい。The particle size of the powder is approximately 10 to 1500 μm before mixing.
A range of degrees is preferred.
上記原料粉末を、常法に従って成形したのち、CO2ガ
ス雰囲気中で焼結する。CO2ガス中での焼結は、UO
2の焼結を11逸するウラン原子の拡散速度が速くなる
点で有利であり、ざらにCO2ガスは安価であり、製造
コス]・の低減化の点でも有利である。このCO2ガス
雰囲気中においては、1200℃以下の比較的低い焼結
渇麿であっても理論密度の95%以上の焼結体を得るこ
とができる。通常、焼結温度は、1000〜1400℃
が好ましく、さらに好ましくは、1100〜1200℃
の範囲である。この温度範囲においては、十分な焼結体
密度が得られるとともに、原料粉末に添加したボアフォ
ーマ−、バインダーを完全に除去することができる。ま
た、C02ガスには、空気が少量含有されてもよい。The raw material powder is molded according to a conventional method and then sintered in a CO2 gas atmosphere. Sintering in CO2 gas results in UO
This is advantageous in that the diffusion rate of uranium atoms that miss the sintering of 2 is increased, and CO2 gas is inexpensive, and it is also advantageous in terms of reducing manufacturing costs. In this CO2 gas atmosphere, a sintered body having a theoretical density of 95% or more can be obtained even at a relatively low sintering temperature of 1200° C. or less. Usually, the sintering temperature is 1000-1400℃
is preferable, more preferably 1100 to 1200°C
is within the range of In this temperature range, sufficient density of the sintered body can be obtained, and the bore former and binder added to the raw material powder can be completely removed. Further, the C02 gas may contain a small amount of air.
また、焼結時間は、通常、約1時間以下で足り、これは
従来の焼結時間に比べて約174である。Also, the sintering time is usually about 1 hour or less, which is about 174 hours compared to conventional sintering times.
上記焼結後のペレットの酸素原子とウラン原子の化合比
(0/lJ比)は、2.0以上であるのでこれを還元し
てO/U比を約2.0にする必要があるが、この還元処
理に先立って、ペレットを必要に応じて研削して所定寸
法に仕上げる。この場合、還元工程時にペレットが膨張
することを見込んで研削することが好ましい。Since the combination ratio (0/lJ ratio) of oxygen atoms and uranium atoms in the pellet after sintering is 2.0 or more, it is necessary to reduce this to make the O/U ratio about 2.0. , Prior to this reduction treatment, the pellets are ground to a predetermined size, if necessary. In this case, it is preferable to grind the pellets in anticipation of expansion of the pellets during the reduction step.
次いで、ペレットを水素ガス雰囲気中で加熱して還元し
、O/U比を約2.0にする。このときの加熱温度は、
1000〜1800℃、さらに好ましくは1650〜1
750℃である。この還元時の熱処理によって、研削時
に生じたペレット表面の微細な傷は、表面拡散や表面エ
ネルギーの低下という過程を経て消失する。また、前記
研削工程において水を使用する場合にあっては、上記還
元処理工程はペレットに付着した水分の乾燥工程の意義
をもあわせ有している。The pellets are then heated in a hydrogen gas atmosphere to reduce the O/U ratio to about 2.0. The heating temperature at this time is
1000-1800℃, more preferably 1650-1
The temperature is 750°C. Due to this heat treatment during reduction, fine scratches on the pellet surface caused during grinding disappear through the process of surface diffusion and reduction of surface energy. Furthermore, in the case where water is used in the grinding process, the reduction treatment process also has the significance of a drying process for moisture adhering to the pellets.
上記還元処理工程における加熱保持時間は約0.5〜1
時間で足りる。The heating retention time in the above reduction treatment step is approximately 0.5 to 1
Time is enough.
上記還元処理によりペレット表面がなめらかになり、ペ
レットと被覆管との間の熱伝導特性が向上する。通常、
研削直後のペレットの表面あらさは、0.6〜0.7μ
RaPi!度であるが、上記還元処理を施すことにより
、表面あらさは0.4〜0.5μRaまで向上させるこ
とができる。The above-mentioned reduction treatment makes the pellet surface smooth and improves the heat conduction characteristics between the pellet and the cladding tube. usually,
The surface roughness of the pellets immediately after grinding is 0.6 to 0.7μ.
RaPi! However, by performing the above reduction treatment, the surface roughness can be improved to 0.4 to 0.5 μRa.
エネルギー消費、製造コストの点に着目すると、本発明
者の試算によれば、エネルギーコストを約30%削減す
ることができ、また、CO2ガスを使用するのでガス料
金を約10%削減することができる。Focusing on energy consumption and manufacturing costs, the inventor estimates that energy costs can be reduced by about 30%, and since CO2 gas is used, gas charges can be reduced by about 10%. can.
さらに、製造効率に着目すると、焼結時間を従来法の約
1/4まで短縮することができるので、還元処理工程の
付加を考慮しても、約2倍の効率向上を期待することが
できる。Furthermore, if we focus on manufacturing efficiency, the sintering time can be reduced to about 1/4 of the conventional method, so even if we take into account the addition of the reduction process, we can expect an approximately double efficiency improvement. .
UO2粉末を2ton/dで成形I、
99.99%純度のCO2に500PPmの空気を混合
した雰囲気中で、1150℃1時間焼結を行った。その
時のO/U比は2.13であった。UO2 powder was molded at 2 tons/day, and sintered at 1150° C. for 1 hour in an atmosphere containing 99.99% pure CO2 mixed with 500 PPm of air. The O/U ratio at that time was 2.13.
その後研削を行い、1700℃のH2中で還元を行った
。この時の焼結密度は95.3%内であった。研削後0
.7μRaあった表面粗さは0.5μRaまで減少し、
また、直径は還元後20μ膨張した。Thereafter, it was ground and reduced in H2 at 1700°C. The sintered density at this time was within 95.3%. 0 after grinding
.. The surface roughness from 7μRa decreased to 0.5μRa,
Furthermore, the diameter expanded by 20 μm after reduction.
Claims (1)
成形体を二酸化炭素ガス雰囲気中で焼結し、次いでこの
焼結体を必要に応じて研削したのち、水素ガス雰囲気中
で加熱することにより還元することを特徴とする、セラ
ミック核燃料焼結体の製造法。After molding the raw material powder containing uranium dioxide, this molded body is sintered in a carbon dioxide gas atmosphere, then this sintered body is ground as necessary, and then reduced by heating in a hydrogen gas atmosphere. A method for producing a ceramic nuclear fuel sintered body, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61067281A JPS62225993A (en) | 1986-03-27 | 1986-03-27 | Manufacture of ceramic nuclear fuel sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61067281A JPS62225993A (en) | 1986-03-27 | 1986-03-27 | Manufacture of ceramic nuclear fuel sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62225993A true JPS62225993A (en) | 1987-10-03 |
JPH0316634B2 JPH0316634B2 (en) | 1991-03-06 |
Family
ID=13340430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61067281A Granted JPS62225993A (en) | 1986-03-27 | 1986-03-27 | Manufacture of ceramic nuclear fuel sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62225993A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0690454A1 (en) * | 1994-06-28 | 1996-01-03 | General Electric Company | Method for fabricating mixed oxide fuel |
US5978431A (en) * | 1995-08-03 | 1999-11-02 | British Nuclear Fuels | Nuclear fuel pellets |
US6130096A (en) * | 1995-06-06 | 2000-10-10 | British Nuclear Fuels Plc | Chemical complexes |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101651849B1 (en) * | 2015-11-17 | 2016-08-30 | 장극관 | Seismic retrofitting technique of framed structure by elasto-plastic steel damper |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5587089A (en) * | 1978-12-20 | 1980-07-01 | Kraftwerk Union Ag | Method and device for making nuclear fuel body of oxide compound |
-
1986
- 1986-03-27 JP JP61067281A patent/JPS62225993A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5587089A (en) * | 1978-12-20 | 1980-07-01 | Kraftwerk Union Ag | Method and device for making nuclear fuel body of oxide compound |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0690454A1 (en) * | 1994-06-28 | 1996-01-03 | General Electric Company | Method for fabricating mixed oxide fuel |
EP0915481A1 (en) * | 1994-06-28 | 1999-05-12 | General Electric Company | Method for fabricating mixed oxide fuel |
US5932930A (en) * | 1994-06-28 | 1999-08-03 | General Electric Company | Method for fabricating mixed oxide fuel |
US6130096A (en) * | 1995-06-06 | 2000-10-10 | British Nuclear Fuels Plc | Chemical complexes |
US5978431A (en) * | 1995-08-03 | 1999-11-02 | British Nuclear Fuels | Nuclear fuel pellets |
Also Published As
Publication number | Publication date |
---|---|
JPH0316634B2 (en) | 1991-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3106113B2 (en) | Recycling method for pellet scrap of oxide nuclear fuel | |
JPS62232595A (en) | Nuclear fuel sintered body and manufacture thereof | |
US4512939A (en) | Method for manufacturing oxidic sintered nuclear fuel bodies | |
JP2603382B2 (en) | Nuclear fuel pellet and method for producing the same | |
JPS62225993A (en) | Manufacture of ceramic nuclear fuel sintered body | |
US3375306A (en) | Method of producing dense,sintered bodies of uo2 or uo2-puo2 mixtures | |
US3759786A (en) | Sintered nuclear fuel containing molybdenum coated gadolinium oxide microspheres | |
JP2588947B2 (en) | Manufacturing method of oxide nuclear fuel sintered body | |
CA1100302A (en) | High performance nuclear fuel element | |
US4885147A (en) | Process for preparing a large-grained UO2 fuel | |
JP3012671B2 (en) | Method for producing nuclear fuel pellets | |
JP3172732B2 (en) | Manufacturing method of ceramic pellets for nuclear fuel | |
US3254030A (en) | Plutonium enriched uranium fuel for nuclear reactors | |
JP4135976B2 (en) | Modified nuclear fuel for delaying RIM effect | |
JP3051388B1 (en) | Manufacturing method of nuclear fuel sintered body | |
JPH0761820A (en) | Production of nuclear fuel pellet | |
US3657137A (en) | Nuclear fuel comprising uranium dioxide in a porous ceramic oxide matrix | |
US3518065A (en) | Process for preparing stoichiometric uranium dioxide | |
JP2860615B2 (en) | Fuel assembly for plutonium firing | |
US5320786A (en) | Zone sintering of ceramic fuels | |
JPH09127280A (en) | Production of nuclear fuel particle | |
KR920000286B1 (en) | Manufacture of oxide group nuclear fuel sintered body | |
JPH0755975A (en) | Producing nuclear fuel pellet | |
JPH0371674B2 (en) | ||
JPS61278789A (en) | Manufacture of oxide nuclear fuel material sintered body |