JPH03243890A - Nuclear fuel pellet - Google Patents

Nuclear fuel pellet

Info

Publication number
JPH03243890A
JPH03243890A JP2041829A JP4182990A JPH03243890A JP H03243890 A JPH03243890 A JP H03243890A JP 2041829 A JP2041829 A JP 2041829A JP 4182990 A JP4182990 A JP 4182990A JP H03243890 A JPH03243890 A JP H03243890A
Authority
JP
Japan
Prior art keywords
grain size
nuclear fuel
crystal grain
pellet
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2041829A
Other languages
Japanese (ja)
Inventor
Tadao Yato
八登 唯夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2041829A priority Critical patent/JPH03243890A/en
Publication of JPH03243890A publication Critical patent/JPH03243890A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To decrease the release rate of a fission product gas (FP gas) by specifying the crystal grain size in the diametral central part of the nuclear fuel pellet formed by integral sintering of a nuclear fuel material to >=20mum and the crystal grain size of an outer peripheral part to <=10mum. CONSTITUTION:The nuclear fuel pellet is formed by mixing one kind or plural kinds, etc., of nuclear fuel material powder of an oxide system, such as UO2 and other uranium oxide and subjecting the mixture to integral compaction molding and sintering. The diametral central part 1 of the raw material compsn. of this pellet is made into the structure (>=20mum grain size) relatively large in crystal grain size and the outer peripheral part 2 is made into the structure (<=10mum grain size) small in crystal grain size. The diametral thickness of the outer peripheral part 2 is specified to about 1 to 10% of the diameter of the pellet. The release rate of the FP gas is decreased in this way without increasing the interaction with a cladding pipe at the time of irradiation.

Description

【発明の詳細な説明】 「産業上の利用分野j 本発明は、核分裂生成ガスの保持力に優れた核燃料ペレ
ットに係わり、特に、照射時の被覆管との相互作用を低
減するための改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to nuclear fuel pellets with excellent retention of fission product gases, and particularly relates to improvements to reduce interaction with cladding tubes during irradiation. .

「従来の技術」 最近、原子炉燃料をより長期間使用する、いわゆる高燃
焼度化計画が検討されているが、その実現に際しては、
核燃料が発生する核分裂生成ガス(FPガス)を核燃料
ペレットの外にできるだけ放出しないようにすることが
肝要である。
"Conventional technology" Recently, a so-called high burnup plan for using nuclear reactor fuel for a longer period of time is being considered, but in order to realize it,
It is important to prevent fission product gas (FP gas) generated by nuclear fuel from being released outside the nuclear fuel pellet as much as possible.

FPガスがペレット外に放出される機構は一般に次のよ
うに考えられている。まず、ペレットの結晶粒内でFP
ガスが発生し、このガスが結晶粒内あるいは結晶粒界で
気泡を形成する。このうち、粒界において生成した気泡
がある程度の量に達すると、ついには粒界に沿ってトン
ネルが形成され、このトンネルを通って粒界に存在する
FPガスがペレット外に放出される。
The mechanism by which FP gas is released outside the pellet is generally considered as follows. First, FP within the crystal grains of the pellet
Gas is generated, and this gas forms bubbles within the grains or at the grain boundaries. When the number of bubbles generated at the grain boundaries reaches a certain level, tunnels are finally formed along the grain boundaries, and the FP gas present at the grain boundaries is released to the outside of the pellet through this tunnel.

このことから、FPガスの発生そのものを抑えることは
できないとしても、焼結体ペレット中の結晶粒径を大き
くし、結晶粒内で生成したFPガスの粒界への到達距離
を長くすることにより、ペレット内にガスを閉じ込めて
、結果的にFPガスの放出量が低減できると考えられる
。このため高燃焼度用核燃料として、結晶粒径の大きい
ペレットを使用する考えが一般的になりつつある。最適
な結晶粒径については未だ明らかでないが、本出願者が
行なった燃焼度お上びFPガス放出率等の検討によれば
、2011y以上が好適であると考えられる。
From this, even if it is not possible to suppress the generation of FP gas itself, it is possible to increase the grain size in the sintered pellets and increase the distance that the FP gas generated within the grains reaches the grain boundaries. , it is thought that the gas is confined within the pellet, and as a result, the amount of FP gas released can be reduced. For this reason, the idea of using pellets with large crystal grain sizes as nuclear fuel for high burnup is becoming popular. The optimum crystal grain size is not yet clear, but according to studies conducted by the applicant of burnup, FP gas release rate, etc., it is thought that 2011y or more is suitable.

「発明が解決すべき課題」 ところで、この種の大粒径ペレットにおいては、以下の
ような新たむ問題の生しる可能性を有することが本発明
者らの検討から明らかになった。
"Problems to be Solved by the Invention" By the way, studies by the present inventors have revealed that this type of large particle size pellets has the possibility of new problems as described below.

すなわち、核燃料ペレットはジルカロイ等の被覆管に封
入して燃料棒として使用されるが、これSペレットは燃
焼度が大きくなると気体および固体FPの内部蓄積によ
って次第に体積が増しくスエリングという)、ペレット
と被覆管の接触面に応力が生しる。この相互作用をPe
1let CladdingInteraction(
P CIと略す)と呼ぶが、このPCIは、ペレットと
被覆管の間に予め高精度で形成されている僅かな間隙、
ならびに被覆管内でのペレットのクリープ変形によって
一部緩和されるようになっている。
In other words, nuclear fuel pellets are enclosed in a cladding tube made of Zircaloy or the like and used as fuel rods, but as the burnup increases, the volume of S pellets gradually increases due to the internal accumulation of gas and solid FP (swelling). Stress is generated on the contact surface of the cladding tube. We define this interaction as Pe
1let CladdingInteraction(
(abbreviated as PCI), this PCI is a small gap that is formed in advance with high precision between the pellet and the cladding tube.
In addition, it is partially alleviated by creep deformation of the pellet within the cladding tube.

ところが、本発明者らの実験によると、結晶粒径が20
μm以上の核燃料ペレットでは、通常の小粒径ペレット
に比してクリープ速度か小さいことが判明した。このf
二め、クリープ変形によりPCIを緩和する作用に乏し
く、小粒径ベレ・ソトに比してPCIが増加する可能性
を有するのである。
However, according to the inventors' experiments, the crystal grain size was 20
It was found that nuclear fuel pellets larger than μm have a lower creep rate than ordinary small-sized pellets. This f
Second, it has a poor effect of alleviating PCI due to creep deformation, and has the possibility of increasing PCI compared to small grain size bere/soto.

本発明は上記事情に鑑みてなされたしのて、PCIを増
大することなしに、FPガス放出率を低減することので
きる核燃料ペレットの提供を課題としている。
The present invention was made in view of the above circumstances, and an object of the present invention is to provide nuclear fuel pellets that can reduce the FP gas release rate without increasing PCI.

「課題を解決する手段」 以下、本発明に係わる核燃料ペレットを具体的に説明す
る。
"Means for Solving the Problems" Hereinafter, the nuclear fuel pellets according to the present invention will be specifically explained.

第1図および第2図は本発明に係わる核燃料ペレットの
一例を示す。この核燃料ペレットは、UO2やその他の
酸化ウラン、酸化プルトニウム等の酸化物系核燃料物質
粉末の一種あるいは複数種を混合し、必要に応じてボア
フォーマ−や酸化ガドリニウム等の中性子減速剤等を添
加して一体に圧粉成形および焼結したもので、原料組成
を調整することにより、径方向中央部lは結晶粒径が相
対的に大きい組織とされる一方、外周部2は結晶粒径が
相対的に小さい組織とされている。
1 and 2 show an example of nuclear fuel pellets according to the present invention. These nuclear fuel pellets are made by mixing one or more kinds of oxide-based nuclear fuel material powders such as UO2 and other uranium oxides and plutonium oxides, and adding neutron moderators such as bore formers and gadolinium oxides as necessary. By adjusting the raw material composition, the radial center part l has a relatively large crystal grain size, while the outer peripheral part 2 has a relatively large crystal grain size. It is considered a small organization.

中央部1の結晶粒径は20μm以上、好ましくは30〜
100μnとされる。20μm未満では燃焼時にFPガ
スを保持する効果が小さくなり、従来品に対してのメリ
ットを失う。また100μ麗より大では結晶粒径が大き
すぎてペレットの機械的強度低下を招くおそれがある。
The crystal grain size of the central part 1 is 20 μm or more, preferably 30 μm or more
It is assumed to be 100 μn. If the thickness is less than 20 μm, the effect of retaining FP gas during combustion becomes small, and the advantages over conventional products are lost. On the other hand, if the grain size is larger than 100 μm, the crystal grain size is too large, which may lead to a decrease in the mechanical strength of the pellet.

外周部2の結晶粒径は10μm以下、好ましくは5〜8
μ夏にされている。IOμM以上であるとクリープ速度
が小さく、前述したPCIの問題が解決できない。また
5μ度未満の粒径の組織を形成することは通常の方法で
は困難である。
The crystal grain size of the outer peripheral part 2 is 10 μm or less, preferably 5 to 8 μm.
μ has been in the summer. If it is IO μM or more, the creep rate is low and the above-mentioned PCI problem cannot be solved. Furthermore, it is difficult to form a structure with a grain size of less than 5 μm using normal methods.

外周部2の径方向厚さTは、ペレットの直径りの1−1
0%程度、望ましくは2〜5%とされている。1%未満
では十分なりリープ変形量を確保することが困難で、ま
た10%より大では中央部lの体積占有率が低下してF
Pガス保持効果が低下する。
The radial thickness T of the outer peripheral part 2 is 1-1 of the diameter of the pellet.
It is approximately 0%, preferably 2 to 5%. If it is less than 1%, it is difficult to secure enough leap deformation, and if it is more than 10%, the volume occupancy of the central part l decreases and F
P gas retention effect decreases.

次に、上記のような核燃料ペレットの製造方法の一例を
説明する。この例では、比表面積の大きい高活性なUO
,粉末を用いてペレットの中央部Iを形成するとともに
、比表面積の小さい比較的不活性なU O2粉末を用い
て外周部2を形成する。
Next, an example of a method for manufacturing nuclear fuel pellets as described above will be explained. In this example, highly active UO with a large specific surface area
, the central part I of the pellet is formed using powder, and the outer peripheral part 2 is formed using relatively inert U2O2 powder having a small specific surface area.

活性度の大きいUO2粉末としては、比表面積が3m”
7g以上、好ましくは5〜15z”/yのものを使用す
る。一方、活性度の小さい粉末としては、比表面積が3
1/9以下、好ましくは1〜2x27gのものを使用す
る。このような2種類の活性度の粉末は、UO,粉末の
製造条件を調整することにより容易に製造できる。この
製造技術に関しては、本出願人らは既に特願昭61−1
42506号、特願昭61−190079号、特願昭6
3−127934号、特願昭63−127935号およ
び米国特許出願第139447号において開示している
As a highly active UO2 powder, the specific surface area is 3m”
Use powder with a specific surface area of 7 g or more, preferably 5 to 15 z"/y. On the other hand, powder with a specific surface area of 3
Use 1/9 or less, preferably 1 to 2 x 27 g. Powders having two types of activity can be easily produced by adjusting the UO and powder production conditions. Regarding this manufacturing technology, the applicants have already filed a patent application in 1986-1.
No. 42506, Japanese Patent Application No. 1988-190079, Japanese Patent Application No. 1983
No. 3-127934, Japanese Patent Application No. 63-127935, and US Patent Application No. 139447.

なお、活性度の大きいUO,粉末は、原料粉末を粉砕処
理して比表面積を増大させる方法や、原料粉末に酸化還
元処理等を行なう方法でも得ることができる。さらに、
従来行なわれている大粒径組織の形成方法としては、U
Ot原料粉末にニオビア(N bt O5)等を添加す
る方法もある。ただし、このように添加物を使用する方
法では燃料の融点等に対する影響が必ずしも明らかでな
いため、活仕度の異なる2種のUO2粉末を原料として
ベレットを形成する方法が最も問題が少ないといえる。
Incidentally, UO and powder with high activity can also be obtained by pulverizing the raw material powder to increase the specific surface area, or by subjecting the raw material powder to an oxidation-reduction treatment. moreover,
The conventional method for forming a large grain structure is U.
There is also a method of adding niobia (N bt O5) or the like to the Ot raw material powder. However, since the effects of such methods of using additives on the melting point of the fuel are not necessarily clear, the method of forming pellets using two types of UO2 powders with different activation levels as raw materials can be said to have the least problems.

次に、プレス型の径方向中央部に活性度の大きいU○2
粉末を、外周側に活性度の小さい粉末をそれぞれ充填し
、1〜6t/cm2の成形圧で一体成形する。そして得
られた圧粉体を、水素あるいは加湿した水素気流中で1
600〜1800℃で焼結する。すると、圧粉体の中央
部(1)を構成する高活性粉末は、焼結性に優れて結晶
粒成長速度が大きいため結晶粒径の大きい組織となる一
方、圧粉体の外周部(2)を構成する活性度の小さい粉
末は結晶粒成長速度が小さく、結晶粒径の小さい組織と
なる。
Next, U○2 with high activity is placed in the radial center of the press die.
The powders are each filled with a powder having a low activity on the outer peripheral side and integrally molded at a molding pressure of 1 to 6 t/cm2. Then, the obtained green compact was placed in hydrogen or a humidified hydrogen stream for 1 hour.
Sinter at 600-1800°C. Then, the highly active powder constituting the central part (1) of the compact has excellent sinterability and a high crystal grain growth rate, resulting in a structure with a large crystal grain size. ) has a low crystal grain growth rate and has a structure with a small crystal grain size.

なお、本発明のベレットは上側に限らず、第3図に示す
ようにペレットの一端部も結晶粒径の小さい組織として
、ペレット同士の当接面におけるクリープ速度を増した
り、あるいは粉末充填の方法を変更することにより大粒
径組織と小粒径組織との境界を無段階あるいは多段階に
粒径変化させてもよい。
Note that the pellet of the present invention is not limited to the upper side, but also has a structure with a small crystal grain size at one end of the pellet, as shown in Fig. 3, to increase the creep speed at the contact surface between the pellets, or to improve the powder filling method. By changing the grain size, the boundary between the large grain size structure and the small grain size structure may be changed steplessly or in multiple steps.

1実施例」 次に、本発明の実施例を挙げて効果を実証する。1 Example” Next, examples of the present invention will be given to demonstrate the effects.

まず、UO2F2を水に溶解して作製したUO2F2溶
液とアンモニア水を反応させてADUを生成し、このA
DUを濾過および乾燥した後、焙焼・還元してUO2粉
末に変換した。その過程でADU沈澱の生成条件を調整
することにより、活性度の大きいUO7粉末と活性度の
小さいUO2粉末をそれぞれ作製した。高活性粉末の比
表面積は約10i”/9、低活性粉末の比表面積は約2
がであった。
First, a UO2F2 solution prepared by dissolving UO2F2 in water is reacted with ammonia water to generate ADU.
After DU was filtered and dried, it was roasted and reduced to convert into UO2 powder. By adjusting the ADU precipitate generation conditions in the process, UO7 powder with high activity and UO2 powder with low activity were respectively produced. The specific surface area of highly active powder is approximately 10i”/9, and the specific surface area of low active powder is approximately 2
It was.

次に、プレス型内の径方向中央部に高活性粉末を円柱形
に充填する一方、外周部には低活性粉末を円筒形に充填
した。プレス型の内径は10mm、深さは13■、低活
性粉末層の径方向厚さは1mmとした。これを3t/c
m2で一体成形し、水素気流中で1750℃で4時間焼
結を行ない、IOπnφ×8mmのベレットを得fこ。
Next, the radially central portion of the press mold was filled with highly active powder in a cylindrical shape, while the outer peripheral portion was filled with low active powder in a cylindrical shape. The press mold had an inner diameter of 10 mm, a depth of 13 mm, and a radial thickness of the low-activity powder layer of 1 mm. This is 3t/c
The pellet was molded into one piece with a diameter of m2 and sintered at 1750°C for 4 hours in a hydrogen stream to obtain a pellet of IOπnφ×8mm.

このペレットの断面を切断した後、研摩およびエツチン
グして光学顕微鏡で組織を観察したところ、中央部の結
晶粒径は50μm、外周部の結晶粒径は8μmたった。
After cutting a cross section of this pellet, it was polished and etched, and its structure was observed with an optical microscope, and the crystal grain size at the center was 50 μm, and the crystal grain size at the outer periphery was 8 μm.

また、前記の低活性粉末および高活性粉末をそれぞれ単
独で用いて均一組織のペレットを2種作成し、これ占ペ
レットに対して荷重250&gf、1500℃でクリー
プ試験を行なった。その結果、小粒径ペレットのクリー
プ速度は2 X 10−3hr−’、大粒径ペレットで
はlXl0−’hr−’だった。
Furthermore, two types of pellets with a uniform structure were prepared using each of the low-activity powder and the high-activity powder individually, and a creep test was conducted on the pellets at a load of 250gf and 1500°C. As a result, the creep rate of the small-sized pellets was 2×10−3 hr−′, and the creep rate of the large pellets was 1×10−′hr−′.

「発明の効果」 以上説明したように、本発明に係わる核燃料ペレットは
、径方向中央部がFPガスの保持性に優れた結晶粒径が
大きい組織で構成される一方、外周部はクリープ速度の
相対的に大きい結晶粒径が小さい組織で構成されている
ので、照射時における被覆管との相互作用を増大するこ
となしに、FPガス放出率を低減することが可能である
"Effects of the Invention" As explained above, the nuclear fuel pellet according to the present invention has a structure in which the radial center part has a large crystal grain size that is excellent in retaining FP gas, while the outer peripheral part has a structure with a large crystal grain size that is excellent in retaining FP gas. Since the relatively large grain size is composed of a small structure, it is possible to reduce the FP gas release rate without increasing the interaction with the cladding tube during irradiation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明に係わる核燃料ペレットの
一例を示す平面図および縦断面図、第3図はその変形例
を示す縦断面図である。 ■・・結晶粒径が大きい中央部、 2・結晶粒径か小さい外周部。
1 and 2 are a plan view and a vertical cross-sectional view showing an example of a nuclear fuel pellet according to the present invention, and FIG. 3 is a vertical cross-sectional view showing a modification thereof. ■...Central area with large crystal grain size, 2.Outer area with small crystal grain size.

Claims (1)

【特許請求の範囲】[Claims]  核燃料物質を一体焼結してなる円柱状の核燃料ペレッ
トであって、径方向中央部の結晶粒径が20μm以上、
外周部の結晶粒径が10μm以下とされていることを特
徴とする核燃料ペレット。
A cylindrical nuclear fuel pellet formed by integrally sintering nuclear fuel material, with a crystal grain size of 20 μm or more in the radial center,
A nuclear fuel pellet characterized by having a crystal grain size of 10 μm or less in the outer periphery.
JP2041829A 1990-02-22 1990-02-22 Nuclear fuel pellet Pending JPH03243890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2041829A JPH03243890A (en) 1990-02-22 1990-02-22 Nuclear fuel pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2041829A JPH03243890A (en) 1990-02-22 1990-02-22 Nuclear fuel pellet

Publications (1)

Publication Number Publication Date
JPH03243890A true JPH03243890A (en) 1991-10-30

Family

ID=12619163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2041829A Pending JPH03243890A (en) 1990-02-22 1990-02-22 Nuclear fuel pellet

Country Status (1)

Country Link
JP (1) JPH03243890A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1909294A1 (en) * 2006-10-03 2008-04-09 The European Atomic Energy Community (EURATOM), represented by the European Commission High burn-up nuclear fuel pellets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1909294A1 (en) * 2006-10-03 2008-04-09 The European Atomic Energy Community (EURATOM), represented by the European Commission High burn-up nuclear fuel pellets
WO2008040768A1 (en) * 2006-10-03 2008-04-10 The European Atomic Energy Community (Euratom), Represented By The European Commission High burn-up nuclear fuel pellets

Similar Documents

Publication Publication Date Title
RU2601866C2 (en) Nuclear fuel and method of fabricating same
EP3437107B1 (en) Fully ceramic microencapsulated fuel fabricated with burnable poison as sintering aid
US20050195933A1 (en) Fuel pellet for a nuclear reactor and method for producing the fuel pellet
JP2013520642A (en) Nuclear fuel, nuclear fuel element, nuclear fuel assembly, and nuclear fuel manufacturing method
RU2352004C2 (en) METHOD OF OBTAINING OF NUCLEAR FUEL TABLETS ON BASIS OF IMMIXED OXIDE (U, Pu)O2 OR (U, Th)O2
CN111933310B (en) High-thermal-conductivity uranium dioxide single crystal composite fuel pellet and preparation method thereof
KR20180121788A (en) SiC and graphite matrix TRISO-containing process for rapid treatment of pebble fuel
US5978431A (en) Nuclear fuel pellets
JP4700806B2 (en) Nuclear fuel pellets
KR20190098008A (en) Nuclear fuel pellet having enhanced thermal conductivity and method for manufacturing the same
JPH07191176A (en) Fast neutron atomic reactor wherein at least one kind of coolant is integrated into atomic reactor aggregate
JPH03243890A (en) Nuclear fuel pellet
RU2467411C1 (en) Nanostructured nuclear fuel pellet (versions) and nuclear reactor fuel element (versions)
JP2556876B2 (en) Fuel element and fuel assembly
JPH03249596A (en) Production of nuclear fuel pellet
JPH0694869A (en) Nuclear fuel pellet and its manufacture
JP2737350B2 (en) Nuclear fuel pellets
US20240021332A1 (en) Overmolded fuel pellets and methods of manufacture thereof
JP2701049B2 (en) Method for producing oxide nuclear fuel body by air sintering
KR101474153B1 (en) Fission products capture Uranium dioxide nuclear fuel containing metal microcell and method of manufacturing the same
JP2907694B2 (en) Method for producing nuclear fuel pellets
JPH01253694A (en) Manufacture of nuclear fuel pellet
JPH039296A (en) Production of nuclear fuel pellet
JPH0761820A (en) Production of nuclear fuel pellet
JPH02296189A (en) Nuclear fuel pellet and manufacture thereof