JPH01253694A - Manufacture of nuclear fuel pellet - Google Patents

Manufacture of nuclear fuel pellet

Info

Publication number
JPH01253694A
JPH01253694A JP63078081A JP7808188A JPH01253694A JP H01253694 A JPH01253694 A JP H01253694A JP 63078081 A JP63078081 A JP 63078081A JP 7808188 A JP7808188 A JP 7808188A JP H01253694 A JPH01253694 A JP H01253694A
Authority
JP
Japan
Prior art keywords
pellets
nuclear fuel
pellet
uranium
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63078081A
Other languages
Japanese (ja)
Inventor
Masaomi Oguma
小熊 正臣
Hiroshi Masuda
宏 増田
Mutsumi Hirai
睦 平井
Isami Tanabe
田辺 勇美
Ryoichi Yuda
良一 油田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Nuclear Fuel Development Co Ltd
Original Assignee
Nippon Nuclear Fuel Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Nuclear Fuel Development Co Ltd filed Critical Nippon Nuclear Fuel Development Co Ltd
Priority to JP63078081A priority Critical patent/JPH01253694A/en
Publication of JPH01253694A publication Critical patent/JPH01253694A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To enhance a prevention effect against a pellet collapse caused by thermal stress at power upsurge of fuel rods, by mixing the same kind as an original one or a different kind of metal nuclear fuel material with a powder of oxidized nuclear fuel material. CONSTITUTION:An UO2 mixed with threads of metallic uranium, for example, is agitated and mixed with a mortar then with a ball mill. This mixed powder is weighed as to be a certain amount, is mounted by compaction and green pellets are produced. These green pellets are sintered in a vacuum atmosphere. The pellets produced in the above process have a structure that has a matrix made of crystalline grains of UO2 1 and porosity holes 2 scattered with metallic fibers of uranium 3 and fine cracks 4 can be observed at the vicinity of the fibers as shown in the figure. This pellets with metallic fibers not only have a very high initial collapse strength but also show an excellent failure resistibility against thermal shock.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明4,1、原子力発電に用いられる核燃和1ペレツ
)への製造方法に関づ−る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention 4.1 relates to a method for producing nuclear fuel pellets used in nuclear power generation.

[従来の技術] 発電炉とじて稼動中の軽水炉あるいは高速炉に用いられ
る核燃料棒を構成する核燃料ベレッ1〜は、一般に第4
図に示す一一うな工程で製作される。すなわち、まず核
燃料物質から成る原料粉末の所定量を秤量し、これをプ
レス、粉砕、バインダー必るいはボアフA−マ添加等の
粉末処理を行なった後、ペレット状に加圧成型する。次
にこの成型体(グリーンペレット)を脱脂工程を経て還
元性必るいは弱酸化性雰囲気中で高温加熱して一定寸法
の高密度焼結体、すなわち燃オ゛ミ1ペレッ1へを得る
[Prior Art] Nuclear fuel rods 1 to 10 constituting nuclear fuel rods used in light water reactors or fast reactors that are in operation as power reactors are generally
It is manufactured through the steps shown in the figure. That is, first, a predetermined amount of raw material powder made of nuclear fuel material is weighed out, and after being subjected to powder processing such as pressing, pulverization, and addition of a binder or a bore atomer, it is press-molded into a pellet shape. Next, this molded body (green pellet) is subjected to a degreasing process and then heated at high temperature in a reducing or slightly oxidizing atmosphere to obtain a high-density sintered body of a certain size, that is, a pellet with combustible particles.

核燃料棒はこれらペレッ(〜を端栓て一端を封じた被覆
管に装填し、更に充1眞ガスやスプリング等の構成(Δ
を充填した後、被覆管の他端を端栓で蜜月して組立てら
れる。
Nuclear fuel rods are made by loading these pellets into a cladding tube sealed at one end with a plug, and then filling it with gas, springs, and other components (Δ
After filling, the other end of the cladding tube is fitted with an end plug and assembled.

核燃料棒製造時は、ペレットと被覆色・どの間に一定の
間隔(ギヤツブ)か設(プられている。これは原子炉稼
動時に高温となるペレットか熱膨張で′被覆管と強い相
互作用(PCI)を起こすのを防ぐためである。このう
な配慮にもかかわら覆、燃利俸稼動中には、ベーン1〜
手径方向に2000°C/cm以上の温度勾配か発生ず
ることかあること、また、出力変動時には局所的に1 
xlob W/cm/hという急激な出力変動を経験す
ることかあること等により、セラミックであるペレット
は静的熱応力破壊あるいは熱衝撃破壊を起こし、割れた
ベレッ1〜破片は外側にせり出して(これをリロケーシ
ョンという)製造時のギ(・ツブを埋め、結果的に強い
PCIを起こすことがある。
When producing nuclear fuel rods, a certain gap (gear) is placed between the pellets and the cladding tube. This is to prevent PCI) from occurring.Despite these considerations, vanes 1 to 1 must be
Temperature gradients of 2000°C/cm or more may occur in the radial direction, and local temperature gradients of 1
xlob W/cm/h Due to the experience of sudden power fluctuations, the ceramic pellets undergo static thermal stress fracture or thermal shock fracture, and the broken pellets protrude outward ( This is called relocation) and fills in gaps during manufacturing, which can result in strong PCI.

ペレッ1−片による不規則で局所的なPCIは、被覆管
に局所的な応力歪みの集中を起こし、被覆管の機械的健
全性の損傷を引ぎ起こすのみならり、この部位にペレッ
トから放出した腐食性核分裂生成ガス(F Pカス)が
化学的に作用すると被覆管の応力腐食破損(S CC)
を誘引する恐れかある。
Irregular and localized PCI caused by pellet fragments not only causes localized stress strain concentrations in the cladding, causing damage to the mechanical integrity of the cladding, but also causes release of pellets at this location. When corrosive fission product gas (FP scum) acts chemically, stress corrosion failure (SCC) of the cladding occurs.
There is a fear that it may attract

また、この様なベレッ1〜の割れによるPCIの問題の
仙にも、燃焼度が高く/よるとベレッ1〜の内部に蓄積
する[Pの量か増加するため、スエリング(FPの蓄積
による体積膨張)に起因するキャップの減少からPCI
が増大するという問題かある。
In addition, due to the PCI problem caused by such cracking of the bellet 1~, the burnup is high/according to the increase in the amount of [P] accumulated inside the bellet 1~, swelling (volume due to accumulation of FP) occurs. PCI from cap reduction due to expansion)
There is a problem with the increase in

さらに高温にへるぺ1ノツ1〜では、結晶粒の成長等の
組織変化か起こることがある3、この様な組織変化【J
:、結晶粒界に滞溜していた「Pカス原子を4吊引する
作用かあるため、ペレットの「Pカス放出率を増大させ
るおそれかおる。「Pガス放出率増大は、被覆管内圧上
昇を招くた(プてむく、ベレツ1−−被覆管ギャップ熱
伝導率を低下させ、ペレットの温度の上昇、熱膨張の増
大、PCIの増加といったサイクル効果を招くことにk
る。
When the temperature is further increased, structural changes such as crystal grain growth may occur.3 Such structural changes [J
: Since it has the effect of pulling the P gas atoms accumulated at the grain boundaries, there is a risk that the P gas release rate of the pellets will increase. (1) The cladding gap reduces the thermal conductivity, leading to cycle effects such as increased pellet temperature, increased thermal expansion, and increased PCI.
Ru.

また、燃焼の進行に伴ない燃料ペレットの07M比は次
第に増加ザるど考えられている。これ(J、−核分裂当
りウラン酸化物必るい(J1プル1〜ニウム酸化物から
y’fi R11L/た2個の酸素原子は中性子照射に
よって影響されない上、これらの酸素原子を全て結合す
るに子分な串の]二F)原子が生成しないためである。
It is also believed that the 07M ratio of fuel pellets will gradually increase as combustion progresses. This (J, - per nuclear fission, uranium oxide is required (J1 pull 1 ~ from nium oxide y'fi R11L/2 oxygen atoms are not affected by neutron irradiation, and the atoms that bond all these oxygen atoms are This is because no skewer]2F) atoms are generated.

過剰な酸素原子は燃料71〜リックス内に固溶し、酸素
ポテンシャルを増加させる。0/M比の増加及び酸素ボ
テンシi・ルの増加は、燃ボN1ペレッj〜の物性、特
性に様々な影響を与える。例えば、O/M比の増加によ
って熱伝導率は減少し、「Pノjス放用率は増加する。
Excess oxygen atoms dissolve in the fuel 71 to increase the oxygen potential. An increase in the O/M ratio and an increase in the oxygen potency have various effects on the physical properties and characteristics of the fuel N1 pellets. For example, as the O/M ratio increases, the thermal conductivity decreases, and the P-nosing rate increases.

以上のように、核燃わ1の高性能化、高庁命化を図れば
図る程、ペレットの割れ、スエリング、07M比、F 
Pカス放出等の問題の解決か重要な課題となってくる。
As mentioned above, the more we try to improve the performance of nuclear fuel 1 and make it more efficient, the more we will be able to reduce pellet cracking, swelling, 07M ratio, F.
Solving problems such as P sludge release will become an important issue.

これらの課題に対する従来の技術としては以下のような
ものが必る。ペレットに対しでは、特開昭52−988
97号や特開昭53−16198号に記載されるにうに
、ベレッ1〜内部にS+C等の繊維状物質を分散さゼ、
熱応力によるペレットの破滅的破損を防止するもの、(
特開昭り 4−2 J 397号や特開昭56−499
88号に記載されるようにペレット外表面に金属膜や樹
脂膜を形成さゼ、リロケーションを抑制り−るもの等が
ある。
Conventional techniques for solving these problems include the following. For pellets, JP-A-52-988
As described in No. 97 and JP-A No. 53-16198, a fibrous material such as S+C is dispersed inside Beret 1.
Something that prevents catastrophic failure of pellets due to thermal stress, (
Japanese Patent Publication No. 4-2 J 397 and Japanese Patent Application Publication No. 56-499
As described in No. 88, there are methods that prevent relocation by forming a metal film or a resin film on the outer surface of the pellet.

また「P)jス放出に関しては、例えばジャーナル・Δ
−ブ・ニュークリアマテリアルス、98 (1981年
)第216頁から第220頁(Journal of 
Nuclear Haterlals、98 )  (
1981) P、216−220)において論じられて
いるように、ペレツ1〜を製造する際、原料核燃料粉末
にNb2O5等の金属酸化物を焼結促進剤としてIJ[
1えることによりペレッ(〜焼結体の結晶粒を粗大化し
、「Pガスの放出率を低減するもの等がおる。
In addition, regarding the release of "P)
- Bu Nuclear Materials, 98 (1981) pp. 216-220 (Journal of
Nuclear Haterals, 98) (
1981) P, 216-220), when producing pellets 1~, IJ[
There are some methods that coarsen the crystal grains of the sintered body and reduce the release rate of P gas.

燃焼に伴なう0/M比の増加や)酸化ポテンシャルの増
加に対しては、特開昭58−1 /I 7678号では
燃IN1棒製造時にGO2/Coの混合カスを充填し、
燃オ′)1棒稼動時に両者のガス平衡により燃1!31
俸内の酸素ポテンシャルを低くする方法か、また特開昭
5L+−151291号では二酸化ウラン−プル1〜ニ
ウム燃利ペレツ1〜にTa、Nb。
To deal with the increase in the 0/M ratio and the increase in the oxidation potential due to combustion, in JP-A No. 58-1/I 7678, a mixture of GO2/Co is filled during the production of the IN1 rod.
When one rod is in operation, the gas balance between the two produces a combustion of 1!31
It is a method of lowering the oxygen potential in the pellet, and in Japanese Patent Application Laid-Open No. 5L+-151291, Ta and Nb are added to uranium dioxide - 1~nium fuel pellets 1~.

CI−、Mo、Wの酸化物を添加し、これらの物質に照
射時に遊離した酸素を結合ざlることにより燃わ1俸内
の酸素ポテンシャルの増加を抑制する方法か提案されて
いる。
A method has been proposed for suppressing the increase in oxygen potential within the combustion chamber by adding oxides of CI-, Mo, and W to bind oxygen liberated during irradiation to these substances.

[発明か解決しようとする課題」 しかしながら、上記した従来技術には以下のJ:うな問
題点かあった。
[Problem to be solved by the invention] However, the above-mentioned prior art had the following problems.

従来技術の第−例として挙げた繊維状物質添加ペレッl
〜では、ペレットの熱応力破壊に対しては効果かあるも
のの、実際には添加する繊維物質か燃料物質の71〜ワ
ツクスとの共存性が良好なこと、高温に耐えること、中
性子経済の点で著しい損失か無い等の条件を)菌たず物
質でなくてはならないため実用化か難しいのが現状でお
る。
Fibrous substance-added pellets cited as a first example of conventional technology
〜 is effective against thermal stress fracture of pellets, but in reality, it is important to have good coexistence with the added fiber material or fuel material 71〜 wax, to withstand high temperatures, and to achieve neutron economy. Currently, it is difficult to put it into practical use because the material must be free of bacteria (such as significant loss or no loss).

従来技術の第二の例とじて述べたペレットを金属膜や樹
脂膜で覆うアイディアでは、上記第一の例で挙げlこ各
条件に加えて、特に被覆管との共存性の問題や製造技術
上の難点、例えばペレット1個当りの核燃料物質の量を
大幅に減少することなく被覆を形成しな(プればなら/
よいという問題がある。さらに、金属被膜おるいは樹脂
被膜は、ペレットの熱膨張−収縮リイクルに充分追従で
きる展延性を高放射線下で長時間維持しな(プればなら
ないという要求かあるため、これもまた実用化に至って
いくfい。
The idea of covering pellets with a metal film or resin film, which was described as the second example of the prior art, has the following problems in addition to the conditions listed in the first example above, especially issues of coexistence with the cladding tube and manufacturing technology. For example, it is difficult to form a coating without significantly reducing the amount of nuclear fuel material per pellet.
There is a problem with good. Furthermore, there is a requirement that metal or resin coatings maintain ductility that can sufficiently follow the thermal expansion/contraction cycle of pellets for long periods of time under high radiation exposure, which is also a requirement for practical use. It will lead to this.

従来技術の第三の例どじで挙げた、結晶粒を粗大化する
いわゆる大粒径ベレッ1〜では、焼結促進剤として異種
物質を燃料物質に添加・混合するためペレットの熱伝導
率や融点か低下する可能性かおること、また異種物質の
燃料71ヘリックス内への固溶は、71〜リツクス結晶
内の結晶欠陥か形成されることを意味しており、F F
)ガス原子の71〜リツクス内の拡散か一般にこれら結
晶欠陥を介して起こることを考えると、焼結促進剤の添
加がFPカス放出の増加を招く恐れがあるという問題を
生じる。
In the third example of the prior art, the so-called large-grain pellets 1~ that coarsen the crystal grains, a different substance is added and mixed with the fuel material as a sintering accelerator, which reduces the thermal conductivity and melting point of the pellet. The possibility of a decrease in F F and the solid solution of foreign substances into the fuel helix 71 means that crystal defects within the helix 71 are formed.
) Considering that the diffusion of gas atoms within the 71 ~ lix generally occurs through these crystal defects, the problem arises that the addition of a sintering accelerator may lead to an increase in FP sludge emission.

従来技術の第四の例として挙げた、燃料棒製造時にCO
2/Coガスを燃斜俸内に充填する方法では、人体に危
険性のあるCOガスを取り扱うこと、d3よびヘリウム
ガスに比l〈熱伝導率の低いCO2/GOカスの使用は
ペレッ1−−被覆管ギヤップ]ンダクタンスの低下を招
く15゛の問題点かある。また、燃料ペレットに丁a、
W等の酸化物を添7JI]する方法は、中性子経済性や
熱的性能の劣化(熱伝導率や融点の低下)等の問題を生
ずる可能性かある。
The fourth example of conventional technology is CO during fuel rod manufacturing.
The method of filling 2/Co gas into the combustion slope requires handling CO gas, which is dangerous to the human body, compared to d3 and helium gas. - Cladding tube gap] There is a problem with 15° which causes a decrease in inductance. In addition, fuel pellets have a
The method of adding an oxide such as W may cause problems such as deterioration of neutron economy and thermal performance (reduction in thermal conductivity and melting point).

本発明の目的は、上記のような問題を生ザることなくベ
レッ1〜の熱衝撃破壊を防止すると同時に、ペレッlへ
の酸素ポテンシャルの増加すなわち07Mの増加を抑制
し、スエリングやF Pガス放出を低減できるような燃
料ベレッ1〜を提供することにある。
The purpose of the present invention is to prevent thermal shock destruction of pellets 1 to 1 without causing the above-mentioned problems, and at the same time, suppress an increase in oxygen potential to pellets 1, that is, an increase in 07M, and prevent swelling and FP gas. An object of the present invention is to provide a fuel bellet 1 which can reduce emissions.

[課題を解決するための手段] 上記目的は、核燃料ペレッ1へを製造J−るとぎに、原
料粉末調製工程、ず4rわちウラン、プルトニウムなど
の核燃料物質の酸化物粉末を調合する工程で、原石酸化
物粉末にその原石酸化物粉末と同種または異種の金属核
燃料物質を混合して製造することによって達成される。
[Means for Solving the Problems] The above purpose is to produce nuclear fuel pellets 1 in a raw material powder preparation step, that is, in a step of blending oxide powder of nuclear fuel materials such as uranium and plutonium. This is achieved by mixing raw ore oxide powder with a metal nuclear fuel material of the same or different type as the ore oxide powder.

ずなわら、本発明は核燃料物質の酸化物粉末を圧粉成型
後焼結する核燃料ペレットの製造法において、核燃料物
質の酸化物の粉末に、その粉末と同種また(j、異種の
金属核燃料物質を混合することを特徴とする核燃料ペレ
ットの製造法に関する。
However, the present invention provides a method for producing nuclear fuel pellets in which oxide powder of a nuclear fuel material is compacted and then sintered. The present invention relates to a method for producing nuclear fuel pellets, which comprises mixing.

上記金属核燃料物質はウィスカー状もしくはワイヤー状
の細線または顆粒状等の形状で用いると効果的でおる。
It is effective to use the metal nuclear fuel material in the form of whiskers, wires, fine wires, granules, or the like.

[作 用] 本発明は核燃料酸化物粉末にそれと同種または異種の金
属核燃料物質を混合したことによって、この金属核燃料
物質が網目状に分散した燃オ′31ベレッ1〜か得られ
る。このペレッI〜は次のような特性を持つ。
[Function] In the present invention, by mixing a nuclear fuel oxide powder with a metal nuclear fuel material of the same type or a different type, a fuel oxide in which the metal nuclear fuel material is dispersed in a network is obtained. This pellet I~ has the following characteristics.

第一に、耐熱衝撃性に優れた待・11を有する。これは
、 (1)ペレッl〜に混入した燃料物質の細線(以下、細
線の場合について説明するが、他の形状をとった場合で
も同様である)かクラックの進行を妨害するので、熱応
力破壊時に余分なエネルギーを必要とすること、 (2)細線入り焼結体は、焼結時の金属細線と酸化物粉
末との熱膨張率の外界により細線の周囲に微細クランク
を含む微細組織を右するため、熱応力で発生したクラッ
クの進行か、細線の周囲の微細クランクによって捕獲さ
れる(この悦象はcrackarrestど呼ばれる)
こと、 さらに (3)酸化物に比べ金属の熱伝導率【J、高いがら、金
属細線入り焼結体は酸化物のみの焼結体に比べ熱伝導率
が向上し、熱衝撃時に発生する熱応力が低くなること 等の理由による。
First, it has a grade 11 which has excellent thermal shock resistance. (1) Thin wires of fuel material mixed into pellets (hereinafter, the case of thin wires will be explained, but the same applies to cases of other shapes), which obstructs the progress of cracks, is caused by thermal stress. (2) A sintered body with fine wires has a fine structure containing fine cranks around the fine wires due to the external field of thermal expansion coefficient between the fine metal wires and the oxide powder during sintering. As a result, cracks that occur due to thermal stress are propagated or captured by minute cranks around the thin wire (this phenomenon is called a crackarrest).
Furthermore, (3) The thermal conductivity of metals [J] is higher than that of oxides, but sintered bodies containing fine metal wires have improved thermal conductivity compared to sintered bodies containing only oxides, and the heat generated during thermal shock is This is due to reasons such as lower stress.

第二に、燃焼の進行に伴なうペレツ1〜の0/M比の増
加か小さい。これは金属物質は酸化物71〜リツクスよ
り酸素ポテンシA?ルが低いので金属物質が酸素ゲッタ
ーとして作用するためでおる。例えば、燃焼に伴い0/
Uが増加し、通常のLJO2ペレツ1〜てUO2,1に
なるような場合、fi N’lペレツ1〜中に約1mo
+e%の金属ウランを添加した金属細線入りベレッ1〜
では、UOl、89またはUO2,。。
Second, the increase in the 0/M ratio of pellets 1 to 1 as combustion progresses is small. Does this mean that metal substances have a higher oxygen potential A than oxides? This is because the metal substance acts as an oxygen getter due to the low oxygen content. For example, 0/
When U increases and becomes UO2,1 in a normal LJO2 pellet, approximately 1 mo in a fi N'l pellet is added.
Beret with fine metal wire added with +e% metallic uranium 1~
So, UOl, 89 or UO2,. .

にウランが混合した二相領域を持つペレツ1〜になり、
この様な場合でもペレツi〜の0/、Mが量論性を越え
ることはない。前)ボしたように、ペレツ1〜のO/M
比の増加は、熱伝導率の減少、FPガス放出率の増加イ
rとを引き起こす要因でおるから、0/M比の増加抑制
は特に「Pカス放出や、ペレットの熱膨張に起因するP
CIの点で燃料性能向上に大きく寄与する。
It becomes Pelletz 1~, which has a two-phase region in which uranium is mixed with
Even in such a case, 0/, M of Perez i~ will not exceed stoichiometry. Previous) O/M of Peretz 1~ as if it were bogus
An increase in the ratio is a factor that causes a decrease in thermal conductivity and an increase in the FP gas release rate, so suppressing the increase in the 0/M ratio is particularly important to reduce
It greatly contributes to improving fuel performance in terms of CI.

第三に、ベレッl〜のスエリングが小さい。これは、細
線入り焼結体では多数の微細クラックをマ(へリックス
中に抱合しているので、結晶粒内から粒界に拡散した[
Pガス原子は近傍のクラックを通路とし−C速やかにペ
レット外に放出され、スエリングの原因どなる粒界気泡
を生成しないことによる。
Thirdly, the swelling of the beret is small. This is due to the fact that in a sintered body with fine wires, many fine cracks are fused into a matrix (helix), which causes the cracks to diffuse from within the crystal grains to the grain boundaries.
This is because the P gas atoms are quickly released from the -C pellet through the nearby cracks, and grain boundary bubbles that cause swelling are not generated.

第四に、核的経済性が高い。これは、核燃1’3+物質
以外の物質を使用しないためである。核燃料物質からな
る金属細線は、酸化物粉末と同様に核的濃縮度は任意に
調整可能である上、細線の添加量、直径、長さを適当に
することによりペレッ(・の密度調整が可能でおる、。
Fourth, nuclear economy is high. This is because materials other than nuclear fuel 1'3+ materials are not used. The nuclear enrichment of fine metal wires made of nuclear fuel material can be adjusted as desired, just like oxide powder, and the density of pellets can be adjusted by adjusting the amount, diameter, and length of the fine wires. By the way.

以上のように、本発明の燃料ペレットは、PCIやFP
ガス放出、あるいはO/M変化に伴う熱的性能の低下等
の、特に高燃焼度簡の燃オ′々1問題を解決する。
As described above, the fuel pellets of the present invention can be used for PCI or FP.
This solves problems such as gas release or deterioration of thermal performance due to O/M changes, especially at high burn-up.

[実施例] 本発明の実施例を軽水炉(+WR>に用いられる二酸化
ウラン(UO2)ペレットを例にとって述べる。
[Example] An example of the present invention will be described using uranium dioxide (UO2) pellets used in a light water reactor (+WR>) as an example.

A tJ C法で製作した高活性度UO2粉末の一定量
 12− 量を秤量し、これに金属ウラン細線の一定量(0,5w
t%)を秤量し混合した。本実施例においては、金属ウ
ラン細線は金属「ノラン棒から旋盤7Jn工により直径
約100μ711、長さ2〜30mmの切りこ状細線を
切り出したが、溶融金属ウランから直接【クイスカー状
の細線を得るなど他の方法で金属ウラン細線を作成して
もよい。なお、金属ウランは活性度が高く空気中で容易
に酸化するため、加工、混合等の取り扱いは不活性雰囲
気で行なうことが必要である。
Weigh out a certain amount of highly active UO2 powder produced by the AtJC method, and add a certain amount of metallic uranium wire (0.5w) to it.
t%) were weighed and mixed. In this example, the metal uranium fine wire was cut from a metal uranium rod by a lathe 7Jn into a notched thin wire with a diameter of about 100 μ711 and a length of 2 to 30 mm. Metallic uranium fine wires may also be created using other methods such as uranium metal.However, since metal uranium has high activity and easily oxidizes in the air, handling such as processing and mixing must be done in an inert atmosphere. .

金属ウラン細線を混入したUO2粉末をメノウ鉢で、次
いでボールミルで攪拌・混合した。攪拌・混合後の金属
ウラン細線の平均長さは約2鯖であった。この混合粉末
の一定量を秤量し、プレスにより約1.5t/cm2の
圧力で汁粉成型しグリーンペレットを製作した。このグ
リーンペレッI〜を真空中で約1100 °C12時間
焼結した。金属ウランの融点は、約1130℃でおるか
ら焼結はそれ以下の低温が望ましい。また、金属ウラン
は還元雰囲気中で水素化物となり昇温中に容易に粉化し
てしまうから、焼結雰囲気は真空か不活性ガス雰囲気が
望ましい。
UO2 powder mixed with metallic uranium wire was stirred and mixed in an agate bowl and then in a ball mill. The average length of the uranium metal wire after stirring and mixing was about 2 mm. A certain amount of this mixed powder was weighed and molded into soup powder using a press at a pressure of about 1.5 t/cm 2 to produce green pellets. The green pellets I~ were sintered in vacuum at about 1100°C for 12 hours. The melting point of metallic uranium is approximately 1130°C, so sintering is preferably performed at a lower temperature. Further, since metallic uranium becomes a hydride in a reducing atmosphere and is easily powdered during temperature rise, the sintering atmosphere is preferably a vacuum or an inert gas atmosphere.

焼結を終了したペレッ1への密度は約94%ゴー1つて
あった。ペレットの気孔率約6%の内、約50%に相当
する約3%は開気孔率で、従来の焼結ベレツ1への開気
孔率かほぼ1%以下であることから、本製造法からなる
金属ウラン細線入りペレツ1〜は開気孔率が高いベレッ
l〜であることかわかる。
The density of pellet 1 after sintering was about 94%. Of the approximately 6% porosity of the pellet, approximately 3%, which is equivalent to approximately 50%, is open porosity, which is approximately 1% or less than the open porosity of conventional sintered pellets 1. It can be seen that the metal uranium fine wire-containing pellets 1~ are pellets 1~ with a high open porosity.

上記の如く製造したペレッ(−を縦割すした面の典型的
な微細組織を模式的に第1図に示ず。図に示したように
UO2の結晶粒1(平均結晶粒径約15、ua+)、気
孔2(平均径約60pa)からなるマトリックスに金属
ウラン細線3か分散しており細線の周囲には微細クラッ
ク4か児られる。
A typical microstructure of the vertically cut surface of the pellet (-) produced as described above is not schematically shown in Figure 1. ua+), pores 2 (average diameter of about 60 pa), uranium metal thin wires 3 are dispersed in the matrix, and fine cracks 4 are formed around the thin wires.

この細線入りベレッ1〜の耐熱衝撃特性を調べるため、
加熱・急冷方式の熱衝撃試験を行なった。
In order to investigate the thermal shock resistance properties of this thin wired beret 1~,
A thermal shock test using a heating/quenching method was conducted.

供試ペレットは、金属ウラン細線入りペレッ1−と比較
用の従来の方法で作成した無添加ベレッ1−の2種類と
した。ペレッl〜を電気炉内−C一定温度、一定時間加
熱した後、水槽の中に落下して熱衝撃−1/l − を加えた。熱衝撃によるペレッ1−の損傷の程度は、試
料ベレッ(〜の熱衝撃前後の破壊強度の変化から評価し
た。第2図にその結果の代表例を示す。従来の製法で製
作したベレッ1〜に対して、本発明の金属線入りペレッ
i〜は、初期の破壊強度(熱衝撃試験前のベレッ1〜の
破壊強度)か高いばかりでなく、△T−〇から△T= 
600°Cに至る全ての熱衝撃温度差範囲で残留強度が
高く、熱衡撃損傷抵抗性に優れていることかわかる。
There were two types of test pellets: pellet 1- containing metal uranium wires and additive-free pellet 1- prepared by a conventional method for comparison. After heating the pellets in an electric furnace at a constant temperature of -C for a certain period of time, the pellets were dropped into a water tank and subjected to a thermal shock of -1/l. The degree of damage to pellet 1- due to thermal shock was evaluated from the change in fracture strength of sample pellet (-) before and after thermal shock. Figure 2 shows a representative example of the results. On the other hand, the metal wire-containing pellet i~ of the present invention not only has a high initial breaking strength (the breaking strength of pellet 1~ before the thermal shock test) but also has a high
It can be seen that the residual strength is high in all thermal shock temperature difference ranges up to 600°C, indicating excellent thermal shock damage resistance.

BWR燃利燃料合、最初の出力上昇時に燃オ゛」ペレッ
1へに生ずる熱衝撃は、温度差で450°Cから550
°Cと予想される。この程度の熱衝撃温度差を受けると
、」ニ記実験で示したように従来の燃オ′1ベレッ(へ
では壊滅的な熱衝撃損傷を受(プるから、破砕したペレ
ット片のりロケーションか発生すると予想されるのに対
し、本発明のペレッ1へては、クラックf、、=11発
牛覆るもののペレッi〜かバラバラに破砕することはな
く、初期ベレッ1へ形状を維持する。
When combining BWR fuel and fuel, the thermal shock that occurs to the fuel pellet 1 during the initial increase in output is from 450°C to 550°C due to the temperature difference.
expected to be °C. When exposed to this degree of thermal shock temperature difference, as shown in the experiment described in Section 2, conventional combustion pellets suffer catastrophic thermal shock damage. In contrast to what is expected to occur, in the pellet 1 of the present invention, the pellet i~ of the pellet covered by cracks f, .

したかって、熱衝撃破壊に起因するペレットのりロケー
ションか抑制され、そのためリロケーションが原因とな
るP○■は大幅に減少する。
Therefore, pellet glue location caused by thermal shock fracture is suppressed, and therefore P○■ caused by relocation is significantly reduced.

次に、本発明のウラン金属細線人りペレットのスエリン
グ特性を調べるため、スエリング模擬実験を行なった。
Next, a swelling simulation experiment was conducted to investigate the swelling characteristics of the uranium metal thin wire pellets of the present invention.

この実験手法は、焼結ペレットをCO2/C(]Fi:
合カス中で7J[]熱し、結晶粒界に気泡を形成させる
ものである。結果の一例を第3図に示す。この結果は、
本発明のウラン金属細線人りペレッi〜か、気体スエリ
ングに対してかなりの低減効果があることを示している
This experimental method uses sintered pellets as CO2/C(]Fi:
The mixture is heated for 7 J[] to form bubbles at grain boundaries. An example of the results is shown in FIG. This result is
This shows that the uranium metal thin wire of the present invention has a considerable reduction effect on gas swelling.

なお、本実施例では軽水炉燃料を対象どじたため、UO
2粉末に金属ウランを混合してペレッ1−を製作したが
、核燃M’l物質としてはプルトニウム。
In addition, in this example, since the light water reactor fuel was targeted, the UO
Pellets 1- were made by mixing metallic uranium with 2 powder, but plutonium was used as the nuclear fuel M'l material.

1〜リウ八等でもよく、これ等の酸化物粉末に金属プル
ミルニウム、金属1〜リウムあるいは金属ウランを混合
して燃料ペレットを焼結しても本発明の特性を持つ燃料
ペレッ1へが得られる。
Fuel pellets 1 having the characteristics of the present invention can also be obtained by mixing these oxide powders with metal plumylnium, metal 1-lium, or metal uranium and sintering the fuel pellets. .

また、本実施例では原料粉末に添加する金属核燃料物質
の形状を細線と1ノでいるか、特に細線に限定する必要
はイ1い。例えば、顆粒状の金属核燃料物質であっても
よい。
Further, in this embodiment, the shape of the metal nuclear fuel material added to the raw material powder is either a thin wire or not particularly limited to a thin wire. For example, it may be a granular metal nuclear fuel material.

[発明の効果] 以上説明したように、本発明により製造された金属核燃
お1物貿を混入したペレットは、従来のペレットに比較
して燃4′」俸出力上界時のベレッ(〜の熱応力破壊防
止効果が大ぎい3゜ また、本発明−よるペレッ1へては金属核燃料物質が酸
素のゲッターとして作用し、ペレッ1への0/M比の増
加を抑制する効果を有する。
[Effects of the Invention] As explained above, the pellets mixed with metal nuclear fuel produced by the present invention have a lower level of pellets (~4') at the upper limit of fuel output than conventional pellets. Great thermal stress fracture prevention effect 3° Furthermore, in the pellet 1 according to the present invention, the metal nuclear fuel material acts as an oxygen getter and has the effect of suppressing an increase in the O/M ratio to the pellet 1.

さらに本発明によるペレットでは高燃焼度におけるペレ
ットのスエリングを低減できるという効果を@覆る。
Furthermore, the pellet according to the present invention overcomes the effect of reducing swelling of the pellet at high burn-up.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の燃料ペレットの製造工程で製作した燃
オ91ペレットの典型的な組織を示す図、第2図は本発
明で製作したUO2ペレッ)への熱酊撃損傷抵抗に関す
る実験結果、第3図は本発明で製作したUO2ペレット
の気泡スエリング特性に関する実験結果、第4図(J、
従来の燃料ペレットの製造工程を示ず図である。 1・・・UO2ベレッ1への結晶粒 2・・・UO2ペレツ]〜の気孔 3・・・UO2ペレットの中の金属ウラン細線4・・・
UO2ペレットの微細クラック (8733)代理人 弁理士 猪 股 祥 晃(ほか 
1名) 第1図 第2図 第3図 ペ  し  ・〜ノ   ト 第4図
Figure 1 is a diagram showing a typical structure of UO91 pellets produced by the fuel pellet manufacturing process of the present invention, and Figure 2 is an experimental result regarding thermal intoxication damage resistance of UO2 pellets produced by the present invention. , Figure 3 shows the experimental results regarding the bubble swelling properties of the UO2 pellets produced according to the present invention, and Figure 4 (J,
It is a figure which does not show the manufacturing process of the conventional fuel pellet. 1...Crystal grains to UO2 pellets 1...UO2 pellets] ~ Pores 3...Metal uranium fine wires in UO2 pellets 4...
Fine cracks in UO2 pellets (8733) Agent: Yoshiaki Inomata, patent attorney (and others)
1 person) Figure 1 Figure 2 Figure 3 Peshi ~ Note Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)核燃料物質の酸化物粉末を圧粉成型後焼結する核
燃料ペレットの製造方法において、核燃料物質の酸化物
の粉末に、その粉末と同種または異種の金属核燃料物質
を混合することを特徴とする核燃料ペレットの製造方法
(1) A method for producing nuclear fuel pellets in which oxide powder of nuclear fuel material is compacted and then sintered, characterized by mixing the oxide powder of nuclear fuel material with a metal nuclear fuel material of the same kind or a different kind as the powder. A method for producing nuclear fuel pellets.
(2)上記金属核燃料物質が、ウイスカー状またはワイ
ヤー状細線であることを特徴とする特許請求の範囲第1
項記載の核燃料ペレットの製造方法。
(2) Claim 1, wherein the metal nuclear fuel material is a whisker-like or wire-like thin wire.
A method for producing nuclear fuel pellets as described in Section 1.
(3)上記金属核燃料物質が顆粒状であることを特徴と
する特許請求の範囲第1項記載の核燃料ペレットの製造
方法。
(3) The method for producing nuclear fuel pellets according to claim 1, wherein the metal nuclear fuel material is in the form of granules.
JP63078081A 1988-04-01 1988-04-01 Manufacture of nuclear fuel pellet Pending JPH01253694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63078081A JPH01253694A (en) 1988-04-01 1988-04-01 Manufacture of nuclear fuel pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63078081A JPH01253694A (en) 1988-04-01 1988-04-01 Manufacture of nuclear fuel pellet

Publications (1)

Publication Number Publication Date
JPH01253694A true JPH01253694A (en) 1989-10-09

Family

ID=13651894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63078081A Pending JPH01253694A (en) 1988-04-01 1988-04-01 Manufacture of nuclear fuel pellet

Country Status (1)

Country Link
JP (1) JPH01253694A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033504A (en) * 2009-08-03 2011-02-17 Japan Atomic Energy Agency Manufacturing method of nuclear fuel pellet, and the nuclear fuel pellet
WO2015080626A1 (en) * 2013-11-26 2015-06-04 Открытое Акционерное Общество "Акмэ-Инжиниринг" Nuclear fuel pellet having enhanced thermal conductivity, and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033504A (en) * 2009-08-03 2011-02-17 Japan Atomic Energy Agency Manufacturing method of nuclear fuel pellet, and the nuclear fuel pellet
WO2015080626A1 (en) * 2013-11-26 2015-06-04 Открытое Акционерное Общество "Акмэ-Инжиниринг" Nuclear fuel pellet having enhanced thermal conductivity, and preparation method thereof
CN105706177A (en) * 2013-11-26 2016-06-22 阿科姆工程合资(控股)公司 Nuclear fuel pellet having enhanced thermal conductivity, and preparation method thereof
US10381119B2 (en) 2013-11-26 2019-08-13 Joint Stock Company “Akme-Engineering” Nuclear fuel pellet having enhanced thermal conductivity, and preparation method thereof

Similar Documents

Publication Publication Date Title
RU2723561C2 (en) Method of producing completely ceramic microencapsulated nuclear fuel
CN108885907B (en) Full ceramic micro-encapsulated fuel prepared by taking burnable poison as sintering aid
JP2020508437A (en) Sintered nuclear fuel pellet, fuel rod, nuclear fuel assembly, and method for producing sintered nuclear fuel pellet
CN108565032A (en) UO2Metal fuel pellet and its manufacturing method
ZA200502296B (en) Fuel pellet for a nuclear reactor and method for the production thereof
CN108039210A (en) Fuel pellet and its manufacture method
US3019176A (en) Fuel element
JP5621102B2 (en) Nuclear fuel pellet manufacturing method and nuclear fuel pellet
JP3976716B2 (en) Method for producing sintered nuclear fuel containing tungsten metal mesh
JPH01253694A (en) Manufacture of nuclear fuel pellet
RU89904U1 (en) Nuclear reactor fuel rod
JP4674312B2 (en) Nuclear fuel pellet manufacturing method and nuclear fuel pellet
JP4099529B2 (en) Nuclear fuel pellet and manufacturing method thereof
RU2467411C1 (en) Nanostructured nuclear fuel pellet (versions) and nuclear reactor fuel element (versions)
JP2002519677A (en) Nuclear fuel pellets
JPS6362716B2 (en)
KR100450711B1 (en) Method of manufacturing nuclear fuel pellet consisting of duplex grains
JPH0694869A (en) Nuclear fuel pellet and its manufacture
JP4080199B2 (en) Manufacturing method of nuclear fuel pellet, fuel element using the nuclear fuel pellet, and fuel assembly
JP3862901B2 (en) Method for producing nuclear fuel pellets
RU115550U1 (en) NUCLEAR FUEL TABLET (OPTIONS) AND NUCLEAR REACTOR FUEL ELEMENT
Ohai et al. Sintered pellets obtaining for advanced fuel manufacturing
JPH0743487A (en) Nuclear fuel pellet
JPH03249596A (en) Production of nuclear fuel pellet
JPS58147678A (en) Nuclear fuel element