JPH01248092A - Manufacture of nuclear fuel pellet - Google Patents

Manufacture of nuclear fuel pellet

Info

Publication number
JPH01248092A
JPH01248092A JP63074954A JP7495488A JPH01248092A JP H01248092 A JPH01248092 A JP H01248092A JP 63074954 A JP63074954 A JP 63074954A JP 7495488 A JP7495488 A JP 7495488A JP H01248092 A JPH01248092 A JP H01248092A
Authority
JP
Japan
Prior art keywords
aluminum
nuclear fuel
fuel pellets
added
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63074954A
Other languages
Japanese (ja)
Inventor
Noboru Fujiwara
昇 藤原
Yoshihisa Tamaki
喜久 田巻
Motokazu Yoshikawa
吉川 元和
Shinichi Hasegawa
伸一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Nuclear Fuel Co Ltd
Original Assignee
Mitsubishi Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Nuclear Fuel Co Ltd filed Critical Mitsubishi Nuclear Fuel Co Ltd
Priority to JP63074954A priority Critical patent/JPH01248092A/en
Publication of JPH01248092A publication Critical patent/JPH01248092A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To enable actual manufacturing of fuel pellets having large crystalline grains, by specifying an adding amount of aluminum compounds to a nuclear fuel which is produced by sintering a green compact to be mixed with an added uranium dioxide or mixed compound of an uranium dioxide and a plutonium. CONSTITUTION:As a green compact, an aluminum compound is added and mixed with an uranium dioxide or a mixed compound of an uranium dioxide and a plutonium. In a manufacturing process of nuclear fuel pellets to produce nuclear fuels, in which process the green compact is sintered in a reducing atmosphere, one or more than two kinds of an oxidized aluminum, an aluminum hydroxide or an aluminum salt of fatty acid are added by amount of 0.001-0.07wt.%, as an aluminum element and then are mixed with a conventional mixing method and compressed to produce the green compact. This compressed powder mass is sintered in a reducing atmosphere and at a temperature of 1,700 to 1,800 deg.C therewith nuclear fuel pellets having large crystalline grain can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、原子炉燃料用酸化物(UO3およびU、P
uの混合酸化物等)のペレットa造法に関するものであ
る。
Detailed Description of the Invention [Industrial Application Field] The present invention provides oxides for nuclear reactor fuel (UO3 and U, P
This relates to a method for producing pellets (a) of mixed oxides of u, etc.).

〔従来の技術〕[Conventional technology]

通常の原子炉用燃料としては、二酸化ウランの焼結ペレ
ットをジルカロイ等の被覆管に充填したものが原子燃料
要素として使用されている。
As a normal nuclear reactor fuel, sintered pellets of uranium dioxide filled in a cladding tube such as Zircaloy are used as a nuclear fuel element.

この場合、上記ペレットは1通常U02粉末に潤滑剤を
加えて混合し、圧粉体に成形後、温度=1700℃以上
の還元性雰囲気中で焼結することによりU○2ペレット
が製造されている。
In this case, the above pellets are usually produced by mixing U02 powder with a lubricant, molding it into a compact, and sintering it in a reducing atmosphere at a temperature of 1700°C or higher. There is.

上記二酸化ウランの焼結ペレットをジルカロイ等の被覆
管に充填してなる凰子燃料要素は、核分裂を行なうと、
核分裂によってキセノンおよびクリプトン等の核分裂生
成ガス(Fission ProductGas、以下
FPガスという)が発生し、かかるFPP2O被覆管内
部に発生すると、高いガス圧が生成し、被覆管が破損す
る危険が生じる。そのため原子燃料要素の早期交換を必
要とし、このような原子燃料要素の早期交換は、原子炉
を用いた原子力発電の経済性をそこなうものである。
When nuclear fission is performed, the sintered fuel element, which is made by filling a cladding tube such as Zircaloy with the sintered pellets of uranium dioxide mentioned above, will undergo nuclear fission.
Nuclear fission generates fission product gas (hereinafter referred to as FP gas) such as xenon and krypton, and when generated inside the FPP2O cladding tube, high gas pressure is generated and there is a risk that the cladding tube will be damaged. Therefore, early replacement of the nuclear fuel element is required, and such early replacement of the nuclear fuel element impairs the economic efficiency of nuclear power generation using a nuclear reactor.

このため、核燃料ペレットから発生する上記FPガス放
出抑制のための手段が、従来からいろいろとなされてき
たが、その主な方法は1次のようなものがある。
For this reason, various measures have been taken to suppress the release of the above-mentioned FP gas generated from nuclear fuel pellets, and the main methods include the following.

(11UO2セラミックス燃料の結晶粒を焼結中に成長
させ、粗大化することによりFPガス保有能力を焼結体
ペレットに付与する方法。
(A method of imparting FP gas holding ability to sintered pellets by growing and coarsening the crystal grains of 11UO2 ceramic fuel during sintering.

(2)FPP2O化学的な方法で不動化しまたはビン止
めして、FPP2O放出を抑制する方法。
(2) A method of suppressing FPP2O release by immobilizing or bottling FPP2O using a chemical method.

上記(1)の方法は、U02ペレットの結晶粒径が粗大
化すると、結晶粒径が大きいため1粒内で生成したFP
P2O拡散速度の大きくなる粒界まで達するのに比較的
長時間を要し、その結果FPP2O放出が抑制される物
理的抑制法であって、上記(1)の方法を示す公知文献
としては、特開昭54−148996号公報、特開昭5
8−44394号公報および特公昭61−34079号
公報などがあり、また上記(2)の方法を示す公知文献
としては、特公昭50−5203号公報、特公昭51−
34079号公報、特公昭54−8837号公報がるる
In method (1) above, when the crystal grain size of U02 pellets becomes coarse, FP generated within one grain due to the large crystal grain size
This is a physical suppression method in which it takes a relatively long time for P2O to reach the grain boundaries where the diffusion rate increases, and as a result, FPP2O release is suppressed. Publication No. 54-148996, Japanese Patent Application Publication No. 1973
There are Japanese Patent Publications No. 8-44394 and Japanese Patent Publication No. 61-34079, and known documents showing the method (2) above include Japanese Patent Publications No. 50-5203 and Japanese Patent Publication No. 51-1983.
34079, and Japanese Patent Publication No. 54-8837.

上記(1)の方法を示す公知文献の特開昭54−148
996号には、Sを20〜1,000ppm含んだ活性
U02粉末を用いて平均粒径:50μm以上の結晶粒径
をもつペレットを作成し、FPガス放出を抑制する方法
が記載されており、上記特開昭58−44394号公報
には、UO2にL1化合物をLlとして20〜5000
 ppm添加し。
Japanese Unexamined Patent Publication No. 54-148, which is a known document showing the method of (1) above.
No. 996 describes a method for suppressing FP gas release by creating pellets with an average grain size of 50 μm or more using activated U02 powder containing 20 to 1,000 ppm of S. In the above-mentioned Japanese Patent Application Laid-open No. 58-44394, it is stated that L1 compound is added to UO2 and Ll is 20 to 5000.
Add ppm.

温度:1200℃以上での低温焼結で大結晶粒径ペレッ
トを作成し、FPガス放出を抑制する方法が記載されて
おシ。
A method is described in which large grain size pellets are created by low-temperature sintering at a temperature of 1200°C or higher to suppress FP gas release.

上記特公昭61−29678号公報には、UO2にL1
20としてO,OO5〜1.Owt%添力1ル、低温焼
結することにより大結晶粒径のペレットを作成してFP
ガス放出を抑制する方法が記載されている。
In the above-mentioned Japanese Patent Publication No. 61-29678, it is stated that UO2 has L1
20 as O, OO5~1. FP by creating pellets with large grain size by low-temperature sintering with Owt% loading of 1 l.
Methods for suppressing outgassing are described.

その他に、 UO2粉末にNb2O5、Cr2O,等を
添加して大きな結晶粒径をもつペレットを製造する方法
も知られている。
In addition, it is also known to add Nb2O5, Cr2O, etc. to UO2 powder to produce pellets with large crystal grain sizes.

さらに、上記(2)の方法を示す公知文献である上記特
公昭50−5203号公報には、002粒子をA!20
3等で被覆した高温ガス炉燃料に関するものであり。
Furthermore, in the above-mentioned Japanese Patent Publication No. 50-5203, which is a publicly known document showing the method (2) above, 002 particles are A! 20
This relates to high temperature gas reactor fuel coated with grade 3.

上記特公昭51−340’79号公報には、 、U2O
5:O,15〜3,7wt%を添加し、結晶中にAA 
203を微細粒子で分散せしめ、FPP2O放出抑制(
ガスのビン止め)を行なう方法が記載されており。
In the above-mentioned Japanese Patent Publication No. 51-340'79, U2O
5: Add 15 to 3.7 wt% of O, and add AA to the crystal.
203 is dispersed in fine particles to suppress FPP2O release (
It describes how to do this (stopping the gas bottle).

上記特公昭54−8837号公報には、U02粉末に、
ケイ酸アルミニウム、シリカ−アルミナ−マグネシア、
シリカ−アルミナ−カルシア、チタン酸アルミニウム等
を添加して、FPP2O不動化を行ない、その放出を抑
制する方法が記載されている。
In the above-mentioned Japanese Patent Publication No. 54-8837, U02 powder contains
Aluminum silicate, silica-alumina-magnesia,
A method for immobilizing FPP2O and suppressing its release by adding silica-alumina-calcia, aluminum titanate, etc. is described.

その他に上記(1)および(2)以外の俵燃料ペレット
製造技術として、特開昭55−2’7942号公報およ
び特開昭55−104791号公報があるが上記公報に
は、U○2粉末に、0゜2〜0.5重量−のM2O3を
含む酸化物t−添加またけペレット外殻に配し、ペレッ
トの硬度金工げ、セラミック核燃料素子として金属被覆
管との熱膨t&率の差に起因して起こる機械的相互作用
の低減をはかる方法が記載されている。
Other than the above (1) and (2), there are other bale fuel pellet manufacturing technologies such as JP-A-55-2'7942 and JP-A-55-104791. In addition, an oxide t containing 0.2 to 0.5 weight of M2O3 is placed on the outer shell of the pellet, and the hardness of the pellet is treated with metal, and the difference in thermal expansion T and the metal clad tube as a ceramic nuclear fuel element is achieved. A method for reducing the mechanical interaction caused by this is described.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の技術(1)の特開昭54−148996号公
報の8を含んだ活性UO2粉末を用いて大結晶粒径Rレ
ツ)k作成する方法は、 UO2粉末が活性であるため
に取扱いが無しく、また成形性に問題があった。また、
上記特開昭58−44394号公報および特公昭61−
29’6’78号公報記載のL102等のL1化合物k
m加して大結晶粒径ペレットを作成する方法は、焼結さ
れたペレット中に熱中性子吸収断面積の大きいLi(中
性子吸収断面積ニアQ、’7バーン)が残留する可能性
があるために好ましくなく、さらに、上記Nb2O5,
Cr2O3等を添加する場合には、0.2〜1重量s程
度の多量に添加する必要があり、U○2ペレットの融点
を下げる等の問題点があった。
The above-mentioned conventional technique (1) of JP-A-54-148996, in which active UO2 powder containing 8 is used to create a large crystal grain size R, is difficult to handle because UO2 powder is active. There was also a problem with moldability. Also,
The above-mentioned Japanese Unexamined Patent Publication No. 58-44394 and Japanese Patent Publication No. 1988-61-
L1 compound k such as L102 described in 29'6'78 publication
The method of adding m to create large grain size pellets is difficult because Li with a large thermal neutron absorption cross section (neutron absorption cross section near Q, '7 burn) may remain in the sintered pellet. Furthermore, the above-mentioned Nb2O5,
When adding Cr2O3, etc., it is necessary to add a large amount of about 0.2 to 1 weight s, which poses problems such as lowering the melting point of the U○2 pellets.

上記従来の技術(2)の方法では、FPガスを化学的に
不動化またはビン化めするために&A!203.AM酸
アルミニウム、チタン酸アルミニウム等を大量に添加し
なければ効果があがらず、大量添加によりU○2核燃料
ペレットの融点も下がり、純度も低下するので好ましく
ない。
In the method of conventional technology (2) above, &A! 203. The effect will not be obtained unless a large amount of aluminum AM acid, aluminum titanate, etc. is added, and adding a large amount lowers the melting point of the U○2 nuclear fuel pellets and lowers the purity, which is not preferable.

〔課題を解決するための手段〕[Means to solve the problem]

そこで1本発明者等は、熱中性子吸収断面積が小さく、
U02ペレットの融点に影響を与えずかつ不純物として
許容される程度の微i添加でもUO3ペレットの結晶粒
径を大きくすることができる金属化合物を棟々調査研究
を行なったところ。
Therefore, the present inventors proposed that the thermal neutron absorption cross section is small,
We have conducted extensive research into metal compounds that do not affect the melting point of U02 pellets and can increase the crystal grain size of UO3 pellets even with the addition of a small amount of i that is acceptable as an impurity.

酸化アルミニウム、水酸化アルミニウム、脂肪酸のアル
ミニウム塩のうち1種または2種以上をMとして0.0
01〜0.07重量%添加し、既知の方法で混合および
圧粉体となし、これを還元性雰囲気中、温度:l、70
0〜1,800℃にて焼結すると大結晶粒径の核燃料ペ
レットヲ製造することができるという知見を得たのであ
る。
One or more of aluminum oxide, aluminum hydroxide, and aluminum salts of fatty acids, M = 0.0
01 to 0.07% by weight was added, mixed and made into a green compact by a known method, and this was heated in a reducing atmosphere at a temperature of 70 liters.
They found that nuclear fuel pellets with large crystal grain sizes can be produced by sintering at 0 to 1,800°C.

この発明でいう核燃料とは、主としてUO2であるが、
ウランとプルトニウムの混合酸化物で。
The nuclear fuel referred to in this invention is mainly UO2, but
With mixed oxides of uranium and plutonium.

MOXとよばれるものであってもよく、そのことは理論
的に当業者によって認められよう。
It may be called MOX, as will be recognized in theory by those skilled in the art.

この発明において、添加するAt203. AM(Of
()3゜脂肪酸のアルミニウム塩の添加で結晶粒径に与
える影響を確認したところ、これらアルミニウム化合物
の化学的形態にあ″!f!ll影響を受けず、添加する
A11iiによることがわかった。
In this invention, At203. AM(Of
When we confirmed the effect of the addition of aluminum salts of ()3° fatty acids on crystal grain size, we found that they were not affected by the chemical forms of these aluminum compounds and were due to the addition of A11ii.

上記M化合物の添加は、AIとしてO,OO1重量%(
loppm)未満ではUO2焼結ペレットの結晶粒の粗
大化は起らず、A1として0001重童チ(l Opp
m )添加すると結晶粒の粗大化が始まり。
The addition of the above M compound is 1% by weight of O, OO as AI (
loppm), the grains of the UO2 sintered pellets do not coarsen;
m) When added, crystal grains begin to coarsen.

Mとして0.003重量%(30ppm)添加するとU
o2焼結ペレットの平均結晶粒径は30〜40μmとな
り、ALとして0.07重量%(γOOppm ) ’
fr越えて添加しても、それ以上に結晶粒径は大きくな
らず、かえって、0.07重量%()OOppm )を
越える添加は、 UO2焼結核燃料ペレットの融点を下
げ、純度も低下するので好ましくない。したがって、f
iJ、化合物のMとしての添加’ii Q、 OOl〜
0、07 恵fk% (l Oppm 〜)OOppm
 )と定めた。
When 0.003% by weight (30ppm) of M is added, U
The average grain size of the o2 sintered pellets is 30 to 40 μm, and the AL is 0.07% by weight (γOOppm)'
Even if it is added in excess of fr, the crystal grain size will not increase further; on the contrary, if it is added in excess of 0.07% by weight ()OOppm), it will lower the melting point of the UO2 sintered tube fuel pellets and reduce the purity. Undesirable. Therefore, f
iJ, addition of compound as M'ii Q, OOl~
0,07 Megumi fk% (l Oppm ~)OOppm
).

特にM化合物のMとしての添加は、U02焼結ペレット
の平均結晶粒径が30〜40μmとなる0、003重童
%(30ppm)を下限とし、ASTMにおけるU02
バレットの不純物使用がMの含有上限を250 ppm
としていることから5M化合物のMとしての添加は、0
.003〜0.025重量%(30〜250ppm)の
範囲とすることが特に好ましい。
In particular, the lower limit of the addition of the M compound as M is 0.003% (30 ppm), which makes the average crystal grain size of the U02 sintered pellets 30 to 40 μm.
Barrett's use of impurities raises the upper limit of M content to 250 ppm
Therefore, the addition of 5M compound as M is 0
.. A range of 0.003 to 0.025% by weight (30 to 250 ppm) is particularly preferred.

UO2粉末へのM化合物の添加は* ”2o3 、 u
(oH)3の他に脂肪酸のアルミニウム塩を添加するこ
とができる。上記脂肪酸のアルミニウム塩は、ステアリ
ン酸アルミニウム、オレイン酸アルミニウム。
The addition of M compound to UO2 powder is *”2o3, u
In addition to (oH)3, aluminum salts of fatty acids can be added. The above-mentioned aluminum salts of fatty acids include aluminum stearate and aluminum oleate.

バルミチン酸アルミニウムが主として用いられる。Aluminum valmitate is primarily used.

これら脂肪酸のアルミニウム塩は、 UO2粉末に圧粉
体成形時の潤滑剤として添加することができ。
These aluminum salts of fatty acids can be added to UO2 powder as a lubricant during compaction.

AMの供給と同時に潤滑剤としての機能もはたすために
好都合である。
This is advantageous because it serves as a lubricant while supplying AM.

従来、Uo2粉末圧粉体を作成するために、上記U02
粉末に添加する潤滑剤として、一般にステアリン酸亜鉛
が知られているが、上記A!20s 、AM(OH)3
mおよび/または脂肪酸のアルミニウム塩とともに。
Conventionally, in order to create a Uo2 powder compact, the above U02
Zinc stearate is generally known as a lubricant added to powder, but the above A! 20s, AM(OH)3
m and/or with aluminum salts of fatty acids.

上記公知のステアリン酸亜鉛を潤滑剤として添加して圧
粉体を成形し焼結する方法も、この発明の方法に含まれ
る。
The method of the present invention also includes a method of adding the above-mentioned known zinc stearate as a lubricant, molding and sintering a green compact.

上述のようにM2O3を添加または被覆したU○2セラ
ミック核燃料については、上記従来の技術(2)で述べ
た特公昭50−5203号公報や特公昭51−3407
9号公報により知られている。
Regarding the U○2 ceramic nuclear fuel to which M2O3 is added or coated as mentioned above, Japanese Patent Publication No. 50-5203 and Japanese Patent Publication No. 51-3407 mentioned in the above-mentioned conventional technology (2)
It is known from Publication No. 9.

しかしながら、上記公知の特公昭50−5203号公報
や特公昭51−34079号公報では。
However, in the above-mentioned publicly known Japanese Patent Publication No. 50-5203 and Japanese Patent Publication No. 51-34079.

Al2O3の添加量が0.15電i%以上と多く、 F
Pガスを化学的な方法で不動化し、その放出が抑制され
ているのに対し1本願発明は1Mとして0,071に童
−以下(A1203を添加した場合は0.132重1j
tts以下)の添加でUO2−!l’レットの結晶粒径
を大きくシ、結晶内部で生成したFPガスが拡散により
粒界に到達するまでの時間を長びかせることによりFP
ガスの放出を抑制するものであシ、技術思想が相違する
The amount of Al2O3 added is as high as 0.15% or more, and F
While P gas is immobilized by a chemical method and its release is suppressed, the present invention has a 1M concentration of 0.071 kg or less (0.132 weight 1j when A1203 is added).
tts or less) by adding UO2-! By increasing the crystal grain size of l'let and prolonging the time it takes for the FP gas generated inside the crystal to reach the grain boundary through diffusion, FP
They are intended to suppress the release of gas, and the technical philosophy is different.

また、特開昭55−27942号公報および特開昭55
−104791号公報に述べられている方法は1M20
3を0.5重量%以上の多量に添加しペレットの硬度を
下けて、セラミック核燃料素子と金属被覆管との熱膨張
の差に起因して起こる機械的相互作用を低減するもので
あるから1本願発明とは目的、構成および効果を全く異
にするものである。
Also, JP-A-55-27942 and JP-A-55
-The method described in Publication No. 104791 is 1M20
3 is added in a large amount of 0.5% by weight or more to lower the hardness of the pellet and reduce the mechanical interaction caused by the difference in thermal expansion between the ceramic nuclear fuel element and the metal cladding tube. 1 This invention is completely different in purpose, structure, and effect from the claimed invention.

〔実施例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

平均粒径:0.97pmのUO2粉末。UO2 powder with average particle size: 0.97 pm.

平均粒径:0.50μmのM2O3粉末。M2O3 powder with average particle size: 0.50 μm.

平均粒径:0.61μmのfiJ、(OH)3粉末。FiJ, (OH)3 powder with average particle size: 0.61 μm.

を用意し、さらに ステアリン酸アルミニウム、パルミチン酸アルミニウム
、オレイン酸アルミニウム、およびステアリン酸亜鉛を
用意し、第1表の実施例1〜10および比較例1〜4に
示される配合組成となるように配合し友ものを混合し、
上記混合したものを金型に充填し、3t/c11L2の
圧力でプレスして直径:10顛×高さ:15uの圧粉体
を成形した。
and further prepared aluminum stearate, aluminum palmitate, aluminum oleate, and zinc stearate, and blended them to have the composition shown in Examples 1 to 10 and Comparative Examples 1 to 4 in Table 1. Mix your friends,
The above mixture was filled into a mold and pressed at a pressure of 3t/c11L2 to form a green compact with a diameter of 10 pieces and a height of 15 u.

これら圧粉体を水素気流中、温度:l、750℃で5時
間焼結し、得られたU02ペレットの平均結晶粒径およ
び焼結密度を測定し、これらの測定結果を第1表に示し
た。この実施例では脂肪酸のアルミニウム塩としてステ
アリン酸アルミニウム。
These green compacts were sintered in a hydrogen stream at 750°C for 5 hours, and the average crystal grain size and sintered density of the U02 pellets obtained were measured. The results of these measurements are shown in Table 1. Ta. In this example, aluminum stearate is used as the aluminum salt of fatty acid.

パルミチン酸アルミニウムおよびオレイン酸アルミニウ
ムについて実施したが、脂肪酸のアルミニウム塩は、こ
れらに限定されるものではない。
Although aluminum palmitate and aluminum oleate were used, aluminum salts of fatty acids are not limited to these.

〔発明の効果〕〔Effect of the invention〕

上記実施例の結果から、この発明において。 Based on the results of the above examples, in this invention.

U○2粉末に微量のアルミニウム化合物を添加混合する
ことによシ、従来の製造方法で容易に結晶粒径ノ大キい
U○2ベレツ2トを得ることができ、かっこの方法で得
られたU02ペレットはMの添加量が1alkなことか
ら、002にレットに要求される熱的特性および核的特
性にも悪い影響を与えない。
By adding and mixing a small amount of aluminum compound to U○2 powder, it is possible to easily obtain U○2 pellets with a large crystal grain size using conventional manufacturing methods, and it is possible to obtain U○2 particles with a large crystal grain size using the conventional manufacturing method. Since the added amount of M in the U02 pellets is 1 alk, it does not have a negative effect on the thermal properties and nuclear properties required for the 002 pellets.

出願人  三菱原子燃料株式会社Applicant: Mitsubishi Nuclear Fuel Co., Ltd.

Claims (1)

【特許請求の範囲】 1、二酸化ウランまたは二酸化ウランとプルトニウムの
混合酸化物にアルミニウム化合物を添加して混合したも
のを圧粉体とし、上記圧粉体を還元性雰囲気中で焼結す
ることにより核燃料ペレットを製造する方法において、 上記アルミニウム化合物をアルミニウムに換算して0.
001〜0.07重量%(10〜700ppm)添加す
ることを特徴とする核燃料ペレットの製造法。 2、上記アルミニウム化合物をアルミニウムに換算して
0.003〜0.025重量%(30〜250ppm)
添加することを特徴とする請求項1記載の核燃料ペレッ
トの製造法。 3、上記アルミニウム化合物は、酸化アルミニウムであ
ることを特徴とする請求項1または2記載の核燃料ペレ
ットの製造法。 4、上記アルミニウム化合物は、水酸化アルミニウムで
あることを特徴とする請求項1または2記載の核燃料ペ
レットの製造法。 5、上記アルミニウム化合物は、脂肪酸のアルミニウム
塩であることを特徴とする請求項1または2記載の核燃
料ペレットの製造法。 6、上記アルミニウム化合物は、酸化アルミニウム、水
酸化アルミニウム、脂肪酸のアルミニウム塩のうち2種
以上であることを特徴とする請求項1または2記載の核
燃料ペレットの製造法。 7、上記脂肪酸のアルミニウム塩は、圧粉体成形時の潤
滑剤として添加することを特徴とする請求項5または6
記載の核燃料ペレットの製造法。
[Claims] 1. By adding an aluminum compound to uranium dioxide or a mixed oxide of uranium dioxide and plutonium to form a green compact, and sintering the green compact in a reducing atmosphere. In the method for producing nuclear fuel pellets, the aluminum compound is converted into aluminum and has a content of 0.
A method for producing nuclear fuel pellets, characterized by adding 0.001 to 0.07% by weight (10 to 700 ppm). 2. 0.003 to 0.025% by weight (30 to 250 ppm) of the above aluminum compound in terms of aluminum
2. The method for producing nuclear fuel pellets according to claim 1, further comprising adding: 3. The method for producing nuclear fuel pellets according to claim 1 or 2, wherein the aluminum compound is aluminum oxide. 4. The method for producing nuclear fuel pellets according to claim 1 or 2, wherein the aluminum compound is aluminum hydroxide. 5. The method for producing nuclear fuel pellets according to claim 1 or 2, wherein the aluminum compound is an aluminum salt of a fatty acid. 6. The method for producing nuclear fuel pellets according to claim 1 or 2, wherein the aluminum compound is two or more of aluminum oxide, aluminum hydroxide, and aluminum salts of fatty acids. 7. Claim 5 or 6, wherein the aluminum salt of the fatty acid is added as a lubricant during compacting.
The method for producing nuclear fuel pellets described.
JP63074954A 1988-03-29 1988-03-29 Manufacture of nuclear fuel pellet Pending JPH01248092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63074954A JPH01248092A (en) 1988-03-29 1988-03-29 Manufacture of nuclear fuel pellet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63074954A JPH01248092A (en) 1988-03-29 1988-03-29 Manufacture of nuclear fuel pellet

Publications (1)

Publication Number Publication Date
JPH01248092A true JPH01248092A (en) 1989-10-03

Family

ID=13562225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63074954A Pending JPH01248092A (en) 1988-03-29 1988-03-29 Manufacture of nuclear fuel pellet

Country Status (1)

Country Link
JP (1) JPH01248092A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236490A (en) * 1989-03-10 1990-09-19 Mitsubishi Nuclear Fuel Co Ltd Production of nuclear fuel pellet containing gadolinium oxide having large crystal grain size
JPH04127085A (en) * 1990-09-18 1992-04-28 Nuclear Fuel Ind Ltd Manufacture of nuclear fuel pellet
JP2007507703A (en) * 2003-10-06 2007-03-29 コミッサリア ア レネルジー アトミーク Method for producing nuclear fuel pellets based on (U, Pu) O2 or (U, Th) O2 mixed oxides
US8449795B2 (en) * 2006-12-05 2013-05-28 Korea Atomic Energy Research Institute Method of manufacturing sinter-active U3O8 powder and method of producing nuclear fuel pellets utilizing the same
JP2017533406A (en) * 2014-09-08 2017-11-09 ウェスティングハウス エレクトリック スウェーデン アーベー Method for making nuclear fuel pellets for nuclear power reactors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874527A (en) * 1981-10-27 1983-05-06 ウエスチングハウス エレクトリック コ−ポレ−ション Manufacture of uranium dioxide fuel pellet
JPH01193691A (en) * 1987-11-20 1989-08-03 General Electric Co <Ge> Nuclear fuel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5874527A (en) * 1981-10-27 1983-05-06 ウエスチングハウス エレクトリック コ−ポレ−ション Manufacture of uranium dioxide fuel pellet
JPH01193691A (en) * 1987-11-20 1989-08-03 General Electric Co <Ge> Nuclear fuel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236490A (en) * 1989-03-10 1990-09-19 Mitsubishi Nuclear Fuel Co Ltd Production of nuclear fuel pellet containing gadolinium oxide having large crystal grain size
JPH04127085A (en) * 1990-09-18 1992-04-28 Nuclear Fuel Ind Ltd Manufacture of nuclear fuel pellet
JP2007507703A (en) * 2003-10-06 2007-03-29 コミッサリア ア レネルジー アトミーク Method for producing nuclear fuel pellets based on (U, Pu) O2 or (U, Th) O2 mixed oxides
US8449795B2 (en) * 2006-12-05 2013-05-28 Korea Atomic Energy Research Institute Method of manufacturing sinter-active U3O8 powder and method of producing nuclear fuel pellets utilizing the same
JP2017533406A (en) * 2014-09-08 2017-11-09 ウェスティングハウス エレクトリック スウェーデン アーベー Method for making nuclear fuel pellets for nuclear power reactors

Similar Documents

Publication Publication Date Title
RU2735243C2 (en) Completely ceramic microencapsulated fuel, made with burnable absorber as a sintering intensifier
CA2254489C (en) Method of manufacturing nuclear fuel pellet by recycling irradiated oxide fuel pellet
EP0317772B1 (en) Nuclear fuel
US9653188B2 (en) Fabrication method of burnable absorber nuclear fuel pellets and burnable absorber nuclear fuel pellets fabricated by the same
EP0502395B1 (en) Nuclear fuel pellets and method of manufacturing the same
WO2018124915A1 (en) Nuclear fuel pellet and method for the production thereof
JPH01248092A (en) Manufacture of nuclear fuel pellet
US20020163093A1 (en) Controlled atmosphere sintering process for urania containing silica additive
JP2655908B2 (en) Method for producing nuclear fuel pellet containing gatolinium oxide having large crystal grain size
KR20010001112A (en) Method of manufacturing oxide fuel pellets containing neutron-absorbing materials
KR920000286B1 (en) Manufacture of oxide group nuclear fuel sintered body
US6190582B1 (en) Controlled atmosphere sintering process for urania containing silica additive
KR101564744B1 (en) Boron-bearing burnable absorber nuclear fuel pellet and the method for manufacturing thereof
JPS6129678B2 (en)
JPH0755975A (en) Producing nuclear fuel pellet
US3272600A (en) Method of producing nuclear fuel monocarbides from higher carbides
JP4135976B2 (en) Modified nuclear fuel for delaying RIM effect
JPH0371674B2 (en)
JPH0415920B2 (en)
EP4036935A1 (en) Sintering additive for forming film capable of improving oxidation resistance of nuclear fuel pellets, and preparation method therefor
JP2662359B2 (en) Method for producing nuclear fuel pellets
JP2002181975A (en) Fuel pellet, its manufacturing method, and its fuel element and fuel assembly
JPH0761820A (en) Production of nuclear fuel pellet
RU2193242C2 (en) Pelletized nuclear fuel
JPH0470594A (en) Fabrication of nuclear fuel pellet of oxide with niobia additive