JPH0687683A - Production of noble metal coated ceramic powder - Google Patents

Production of noble metal coated ceramic powder

Info

Publication number
JPH0687683A
JPH0687683A JP26068992A JP26068992A JPH0687683A JP H0687683 A JPH0687683 A JP H0687683A JP 26068992 A JP26068992 A JP 26068992A JP 26068992 A JP26068992 A JP 26068992A JP H0687683 A JPH0687683 A JP H0687683A
Authority
JP
Japan
Prior art keywords
noble metal
powder
coated
fine powder
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26068992A
Other languages
Japanese (ja)
Other versions
JP3316235B2 (en
Inventor
Shinroku Kawakado
眞六 川角
Michio Yamada
迪夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWAZUMI GIJUTSU KENKYUSHO KK
Original Assignee
KAWAZUMI GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWAZUMI GIJUTSU KENKYUSHO KK filed Critical KAWAZUMI GIJUTSU KENKYUSHO KK
Priority to JP26068992A priority Critical patent/JP3316235B2/en
Publication of JPH0687683A publication Critical patent/JPH0687683A/en
Application granted granted Critical
Publication of JP3316235B2 publication Critical patent/JP3316235B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5111Ag, Au, Pd, Pt or Cu
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0068Ingredients with a function or property not provided for elsewhere in C04B2103/00
    • C04B2103/0096Reducing agents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Abstract

PURPOSE:To provide a method for producing noble metal coated ceramic powder by which the formation of a flocculated body is inhibited, ceramic components are element prevented from entering a formed noble metal coating layer and a ceramic phase is hardly exposed when ceramic powder, especially fine ceramic powder having <=1mum particle diameter is coated with a noble metal such as Pd by chemical plating. CONSTITUTION:A reducing agent is added to a primary dispersion liq. prepd. by dispersing ceramic powder in an aq. soln. of a noble metal salt and a thin noble metal film is formed on the surface of the ceramic powder. This ceramic powder with the thin noble metal film is dispersed in an aq. soln. contg. a noble metal salt and a water-soluble polymer, a reducing agent is added to the resulting secondary dispersion liq. and a noble metal layer is formed around the thin noble metal film on the surface of the ceramic powder.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、貴金属被覆セラミック
粉末の製造法に関するものである。本発明は特に、貴金
属被覆層にセラミック粉末成分による汚染が実質的に見
られない貴金属被覆セラミック粉末の製造法に関するも
のである。また、本発明は特に、実質的に一次粒子から
なり、凝集体の混在が少ない貴金属被覆セラミック微粉
末を製造するに適した製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a precious metal-coated ceramic powder. The present invention particularly relates to a method for producing a noble metal-coated ceramic powder in which the noble metal coating layer is substantially free from contamination by the ceramic powder component. Further, the present invention particularly relates to a production method suitable for producing a noble metal-coated ceramic fine powder which is substantially composed of primary particles and has few agglomerates mixed therein.

【0002】[0002]

【従来の技術】積層コンデンサ、及びその他の各種の電
子部品の電極層は、一般に銀、白金、金、パラジウムな
どの貴金属粉末と有機バインダとからなる導電性ペース
トを、セラミック基板に膜状に塗布し、これを焼成する
ことにより形成している。このようにして形成された電
極層は実質的に貴金属の連続層となる。貴金属の連続層
は、電極材料としては電気抵抗が少なく、高い導電性を
示すため、以前より利用されてきている。しかし、近年
において、高価な貴金属の使用量を少なくして製造コス
トの低減を図ることが検討されている。また、導電性ペ
ーストを基板に塗布して焼成する場合に、製造工程の簡
略化を図るために、未焼成のセラミック基板(グリーン
シートともいう)に直接導電性ペーストを塗布し、この
塗布物を焼成することによって、基板の焼成と導電性ペ
ーストの焼成(電極層の形成)とを同時に行なう方法
(同時焼成)が利用されるようになっている。同時焼成
は工程の簡素化に寄与する有用な方法であるが、グリー
ンシートと、貴金属粉末を主成分とする導電性ペースト
の塗布層とを同時に焼成すると、形成される貴金属層と
セラミック基板との熱膨張率の相違から、セラミック層
にひびや割れ目(クラック)が発生しやすくなるとの問
題がある。また、セラミックシートと電極との界面に剥
離現象(デラミネーション)を生じることも多い。
2. Description of the Related Art For electrode layers of multilayer capacitors and various other electronic components, a conductive paste generally composed of a noble metal powder such as silver, platinum, gold, or palladium and an organic binder is applied in a film form on a ceramic substrate. Then, it is formed by firing. The electrode layer thus formed is substantially a continuous layer of noble metal. The noble metal continuous layer has been used for a long time as an electrode material because it has low electric resistance and high conductivity. However, in recent years, it has been studied to reduce the manufacturing cost by reducing the amount of expensive precious metal used. In addition, when the conductive paste is applied to the substrate and fired, the conductive paste is directly applied to an unfired ceramic substrate (also referred to as a green sheet) in order to simplify the manufacturing process. By firing, a method of performing firing of the substrate and firing of the conductive paste (formation of an electrode layer) at the same time (simultaneous firing) is used. Co-firing is a useful method that contributes to the simplification of the process, but if the green sheet and the coating layer of the conductive paste containing the noble metal powder as the main component are co-fired, the noble metal layer and the ceramic substrate are formed. Due to the difference in the coefficient of thermal expansion, there is a problem that cracks and cracks are likely to occur in the ceramic layer. In addition, a peeling phenomenon (delamination) often occurs at the interface between the ceramic sheet and the electrode.

【0003】デラミネーションやクラックを回避するた
めの、そしてまた貴金属の使用量を減らすための方策と
して、セラミック基板と実質的に同一の材料からなるセ
ラミック粉末を導電性ペーストに導入することが既に提
案され実用化されている。この方法は、導電性ペースト
にセラミック粉末を導入することにより、導電性ペース
トから形成される電極層の熱膨張率とセラミック基板の
熱膨張率との差を小さくしてデラミネーションの発生を
防ぐとの原理に基づいている。また、同時に貴金属粉末
使用量の低減にもつながるとの利点を有する。この方法
を利用することにより、デラミネーションの発生の抑制
は可能となる。しかし、電極層中に混在するセラミック
粉末が電極層の電気的特性、特に導電性に悪影響を与え
ることから、高い導電性を必要とする電極層の形成には
利用できないとの問題がある。このため、セラミック粒
子を、化学メッキ法などの表面被覆方法を利用して、貴
金属層で被覆して導電性粉末にすることも既に検討され
ている。この貴金属被覆セラミック粉末を導電性粉末と
して用いて導電性ペーストを調製することにより、電極
層の導電性は、貴金属粉末とセラミック粉末とから形成
される電極層の導電性に比較して顕著に向上する。しか
しながら、セラミック粉末として粒子径が3μm以下、
特に1μm以下の微粒子粉末を用い、これに化学メッキ
法を利用して貴金属被覆層を形成して得た導電性粉末で
は、高い導電性を示す導電性粉末が得られにくいことが
わかった。すなわち、最近では、電子部品、電子装置の
小型化および電極材料のコスト低減の手段のひとつとし
て電極層の薄膜化(例えば、層厚10μm以下、さらに
層厚3μm以下、そして更には層厚1μm以下)が図ら
れており、そのような薄膜電極層の形成には、前述のよ
うな、粒子径が3μm以下、特に1μm以下の微粒子セ
ラミック粉末の表面を貴金属で均質に被覆した導電性微
粉末を用意することが必要となる。しかし、そのような
貴金属で均質に被覆した導電性微粉末を通常の化学メッ
キ法で安定して製造することは非常にむずかしい。
As a measure for avoiding delamination and cracks, and also for reducing the amount of precious metals used, it has already been proposed to introduce a ceramic powder made of the same material as the ceramic substrate into the conductive paste. Has been put into practical use. This method, by introducing a ceramic powder into the conductive paste, to reduce the difference between the coefficient of thermal expansion of the electrode layer formed from the conductive paste and the coefficient of thermal expansion of the ceramic substrate to prevent the occurrence of delamination. It is based on the principle of. At the same time, there is an advantage that the amount of precious metal powder used can be reduced. By using this method, it is possible to suppress the occurrence of delamination. However, since the ceramic powder mixed in the electrode layer adversely affects the electrical characteristics of the electrode layer, particularly the conductivity, there is a problem that it cannot be used for forming the electrode layer requiring high conductivity. For this reason, it has already been studied to coat the ceramic particles with a noble metal layer into a conductive powder using a surface coating method such as a chemical plating method. By preparing a conductive paste using this noble metal-coated ceramic powder as a conductive powder, the conductivity of the electrode layer is significantly improved compared to the conductivity of the electrode layer formed from the noble metal powder and the ceramic powder. To do. However, the particle size of the ceramic powder is 3 μm or less,
In particular, it has been found that it is difficult to obtain a conductive powder having high conductivity by using a conductive powder obtained by using a fine metal powder having a particle size of 1 μm or less and forming a noble metal coating layer on the powder using a chemical plating method. That is, recently, as one of means for downsizing electronic components and electronic devices and cost reduction of electrode materials, thinning of electrode layers (for example, layer thickness 10 μm or less, further layer thickness 3 μm or less, and further layer thickness 1 μm or less). In order to form such a thin film electrode layer, as described above, a conductive fine powder in which the surface of fine particle ceramic powder having a particle diameter of 3 μm or less, particularly 1 μm or less is uniformly coated with a noble metal is used. It is necessary to prepare. However, it is very difficult to stably produce such conductive fine powder uniformly coated with a noble metal by the usual chemical plating method.

【0004】従来、セラミック粉末表面に貴金属被覆層
を形成する方法として各種の方法が知られており、その
代表的な方法として無電解メッキ法がある。この無電解
メッキ法は、無電極メッキ法あるいは化学メッキ法とも
よばれ、一般には貴金属塩の水溶液にセラミック粉末を
分散させておき、この分散液に還元剤を添加して、貴金
属をセラミック粉末の表面に析出させる方法である。こ
の方法は比較的大きな粒子からなるセラミック粉末を貴
金属で被覆する場合には、あまり問題がなく、実施する
ことができるが、微粒子のセラミック粉末、例えば直径
が3μm以下、特に1μm以下の超微粒子のセラミック
粉末の表面を貴金属で被覆しようとする場合にはセラミ
ック微粒子の表面に均一に貴金属被覆層を形成させるの
がむずかしいとの問題がある。これは、微粒子のセラミ
ック粉末は、貴金属塩の水溶液中で、そして特に還元反
応が起きる際に凝集しやすく、貴金属被覆層が、そのセ
ラミック粉末凝集体(二次粒子)の表面に形成されるた
めである。表面が貴金属被覆層で覆われた凝集体は、後
に例えば薄膜電極層を形成するために導電性ペーストを
調製する際に崩壊し、一次粒子となるが、その一次粒子
の表面は、一部の領域において貴金属被覆面を持つが、
凝集体形成時に他の粒子と接していた領域ではセラミッ
ク相が露出することになる。従って、このようにセラミ
ック相が露出して表面が不均質となった導電性粒子を用
いて電極層を形成すると、その電極層の電気的特性、特
に導電率が充分なレベルに達しにくい。また、上記のよ
うな従来の化学メッキ法では、還元反応により生成する
貴金属がセラミック粒子表面にのみ析出するとは限ら
ず、生成する貴金属の一部はそれ自体で微粒子を形成す
るため、その貴金属微粒子が、得られる被覆粉末に混在
することになる。
Conventionally, various methods have been known as a method for forming a noble metal coating layer on the surface of ceramic powder, and a typical method thereof is an electroless plating method. This electroless plating method is also called an electrodeless plating method or a chemical plating method. Generally, ceramic powder is dispersed in an aqueous solution of a noble metal salt, and a reducing agent is added to this dispersion liquid so that the noble metal is coated on the surface of the ceramic powder. It is a method of precipitating. This method can be carried out without much problems when the ceramic powder consisting of relatively large particles is coated with the noble metal, but it can be carried out as fine particle ceramic powder, for example, ultrafine particles having a diameter of 3 μm or less, particularly 1 μm or less. When it is desired to coat the surface of the ceramic powder with the noble metal, it is difficult to uniformly form the noble metal coating layer on the surface of the ceramic fine particles. This is because fine-grained ceramic powder tends to aggregate in an aqueous solution of a noble metal salt, and particularly when a reduction reaction occurs, and a noble metal coating layer is formed on the surface of the ceramic powder aggregate (secondary particles). Is. Aggregates whose surface is covered with a noble metal coating layer are disintegrated when a conductive paste is prepared later to form a thin film electrode layer and become primary particles, but the surface of the primary particles is a part of Has a noble metal coated surface in the area,
The ceramic phase is exposed in the region that was in contact with other particles when the aggregate was formed. Therefore, when the electrode layer is formed by using the conductive particles in which the ceramic phase is exposed and the surface is inhomogeneous as described above, the electrical characteristics of the electrode layer, particularly the electrical conductivity, are difficult to reach a sufficient level. Further, in the conventional chemical plating method as described above, the noble metal produced by the reduction reaction does not always deposit only on the surface of the ceramic particles, and a part of the produced noble metal itself forms fine particles, so the noble metal fine particles are formed. Will be mixed in the obtained coating powder.

【0005】上記のような事情から、導電性微粒子を得
るために、化学メッキ法を利用して微粒子のセラミック
粉末を貴金属で被覆する場合には、凝集体の生成をでき
る限り抑制しながら貴金属被覆を実施する必要がある
が、現在のところ、用いる試薬および操作において実用
上充分に満足できる方法は知られていない。
In view of the above circumstances, when the fine ceramic powder is coated with the noble metal by using the chemical plating method in order to obtain the conductive fine particles, the noble metal coating is performed while suppressing the formation of aggregates as much as possible. However, at present, there is no known method that is practically sufficiently satisfactory in the reagents and procedures to be used.

【0006】[0006]

【発明が解決しようとする課題】本発明の課題は、化学
メッキ法を利用して微粒子のセラミック粉末を貴金属で
被覆する場合に、凝集体の生成をできる限り抑制しなが
ら貴金属被覆が実施できる方法を提供することにある。
また、本発明は、粒子径(特に断わらない限り、平均粒
子径を意味する)3μm以下、特に1μm以下のセラミ
ック微粒子粉末を貴金属で被覆して、セラミック相の露
出が殆どなく、かつ純度の高い、すなわちセラミック成
分の混在が少ない貴金属被覆層とする方法を提供するこ
とも、その課題である。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of coating a noble metal while using a chemical plating method to coat a fine ceramic powder with a noble metal while suppressing the formation of aggregates. To provide.
Further, according to the present invention, a ceramic fine particle powder having a particle diameter (meaning an average particle diameter unless otherwise specified) of 3 μm or less, particularly 1 μm or less is coated with a noble metal, and the ceramic phase is hardly exposed and the purity is high. That is, it is also an object to provide a method of forming a noble metal coating layer in which the mixture of ceramic components is small.

【0007】[0007]

【課題を解決するための手段】本発明は、貴金属塩の水
溶液中にセラミック粉末を分散させた分散液(一次分散
液)に還元剤を添加し、セラミック粉末の表面に貴金属
薄膜層を形成させる工程、そして、この貴金属薄膜層を
有するセラミック粉末を、貴金属塩と水溶性ポリマーと
を含む水溶液に分散させ、次いで該分散液(二次分散
液)に還元剤を添加して、貴金属層をセラミック粉末の
表面の貴金属薄膜層の周りに形成させることからなる貴
金属被覆セラミック粉末の製造法にある。
According to the present invention, a reducing agent is added to a dispersion liquid (primary dispersion liquid) in which ceramic powder is dispersed in an aqueous solution of a precious metal salt to form a precious metal thin film layer on the surface of the ceramic powder. Step, and disperse the ceramic powder having the noble metal thin film layer in an aqueous solution containing a noble metal salt and a water-soluble polymer, and then add a reducing agent to the dispersion (secondary dispersion) to make the noble metal layer ceramic. There is a method for producing a ceramic powder coated with a noble metal, which comprises forming around the noble metal thin film layer on the surface of the powder.

【0008】本発明は、従来の化学メッキを改良した方
法ということができる。すなわち、貴金属塩の水溶液に
分散させたセラミック粉末を含む分散液に還元剤を添加
して貴金属塩を還元し、セラミック粉末の表面に貴金属
を析出させて貴金属被覆層を形成させるという公知の化
学メッキ法を利用する方法であるが、セラミック粉末あ
るいは貴金属被覆粒子の凝集を抑制して、セラミック相
の露出が殆どなく、かつ純度の高い、すなわちセラミッ
ク成分の混在が少ない貴金属被覆層を形成させる改良方
法である。
The present invention can be said to be an improved method of conventional chemical plating. That is, a known chemical plating method in which a reducing agent is added to a dispersion liquid containing a ceramic powder dispersed in an aqueous solution of a noble metal salt to reduce the noble metal salt, and the noble metal is deposited on the surface of the ceramic powder to form a noble metal coating layer. Method of utilizing the method, but an improved method of suppressing the agglomeration of ceramic powder or noble metal-coated particles to form a noble metal coating layer that has almost no exposure of the ceramic phase and is high in purity, that is, contains less ceramic components. Is.

【0009】本発明で用いるセラミック粉末の材料成分
については特に制限がないが、通常の電子部品の製造に
用いられる各種のセラミック製基板の材料から任意に選
んだ材料から形成されたものが用いられる。そのような
セラミック材料としては、チタン酸バリウム、酸化アル
ミニウム、二酸化チタン、酸化ジルコニウム、酸化ケイ
素などの酸化物粉末、そしてPbTi03 、PZT(P
b(Zr,Ti)O3の略称)、PLZT((Pb,L
a)(Zr,Ti)O3 の略称)、もしくはPMN(P
b(Mg1/3 Nb2/3 )O3 の略称)にて表わされる金
属酸化物、あるいはこれらの金属酸化物を主成分として
含む金属酸化物の粒子などの圧電または電歪セラミック
粒子粉末を挙げることができる。
The material components of the ceramic powder used in the present invention are not particularly limited, but those formed from materials arbitrarily selected from the materials of various ceramic substrates used in the production of ordinary electronic parts are used. . Such a ceramic material, barium titanate, aluminum oxide, titanium dioxide, zirconium oxide, oxide powder such as silicon oxide, and PbTi0 3, PZT (P
b (Zr, Ti) O 3 abbreviation), PLZT ((Pb, L
a) (Zr, Ti) O 3 abbreviation) or PMN (P
a piezoelectric or electrostrictive ceramic particle powder such as a metal oxide represented by b (Mg 1/3 Nb 2/3 ) O 3 or particles of a metal oxide containing these metal oxides as a main component. Can be mentioned.

【0010】本発明で用いるセラミック粉末の粒子径に
ついても特に制限はないが、前述のように、本発明の方
法を利用すれば、粒子径3μm以下、特に1μm以下の
セラミック微粒子粉末を貴金属で高純度に被覆すること
ができるので、本発明の被覆方法の実施に際しては、こ
のような微粒子状のセラミック粉末を選ぶことが有利で
ある。なお、本発明の被覆方法によれば、粒子径が0.
8μm以下、更には粒子径0.5μm以下といった超微
粉末の均質な貴金属被覆が実現する。
The particle size of the ceramic powder used in the present invention is not particularly limited, but as described above, when the method of the present invention is used, the ceramic fine particle powder having a particle size of 3 μm or less, particularly 1 μm or less is increased with a noble metal. It is advantageous to select such a finely divided ceramic powder when carrying out the coating method of the present invention, since the coating can be performed with a high degree of purity. In addition, according to the coating method of the present invention, the particle diameter is 0.
A uniform noble metal coating of ultrafine powder having a particle size of 8 μm or less and further a particle size of 0.5 μm or less is realized.

【0011】セラミック粉末の表面に被覆する貴金属と
しては、銀、白金、パラジウム、金などのような電気伝
導率が高い貴金属が選ばれる。
As the noble metal with which the surface of the ceramic powder is coated, a noble metal having a high electric conductivity such as silver, platinum, palladium or gold is selected.

【0012】次に、本発明の貴金属被覆セラミック粉末
の製造法における操作について詳しく説明する。本発明
の貴金属被覆セラミック粉末の製造法では、まず貴金属
の塩を水に溶解して、貴金属の水溶液を調製し、次いで
これにセラミック粉末を均一に分散させて、一次分散液
を得る。なお、セラミック粉末の水分散液を先に調製
し、これに水溶性貴金属塩を溶解させる方法を利用する
こともできる。水溶性の貴金属の塩としては、テトラク
ロロパラジウム酸アンモニウム塩、テトラアンミンパラ
ジウム酸クロライド、テトラクロロ白金酸アンモニウム
塩、テトラアンミン白金酸クロライドなどの各種の貴金
属の塩(あるいは錯体)を利用することができる。な
お、一次分散液に、水溶性の貴金属の塩とセラミック粉
末以外のほかの物質(例えば、水溶性ポリマー)は少量
であれば添加してもよい。ただし、例えば、水溶性ポリ
マーを添加する場合には、その添加量は後述の二次分散
液への水溶性ポリマーの添加量に比較して少ない量とす
る必要がある。
Next, the operation of the method for producing the noble metal-coated ceramic powder of the present invention will be described in detail. In the method for producing a ceramic powder coated with a noble metal of the present invention, first, a salt of a noble metal is dissolved in water to prepare an aqueous solution of the noble metal, and then the ceramic powder is uniformly dispersed in this to obtain a primary dispersion liquid. It is also possible to use a method in which an aqueous dispersion of ceramic powder is first prepared and then a water-soluble noble metal salt is dissolved therein. As the water-soluble noble metal salt, various noble metal salts (or complexes) such as tetrachloropalladate ammonium salt, tetraamminepalladium chloride, tetrachloroplatinum ammonium salt, and tetraammineplatinic chloride can be used. It should be noted that a substance other than the water-soluble noble metal salt and the ceramic powder (for example, a water-soluble polymer) may be added to the primary dispersion liquid in a small amount. However, for example, when the water-soluble polymer is added, the addition amount needs to be smaller than the addition amount of the water-soluble polymer to the secondary dispersion liquid described later.

【0013】次に、上記の貴金属塩水溶液にセラミック
粉末を分散させてなるセラミック分散液(一次分散液)
を撹拌しながら、この分散液に還元剤を添加する。還元
剤としては、ヒドラジン、塩酸ヒドラジン、ギ酸、ホル
マリン、次亜リン酸などのような公知の化学メッキ法で
利用される還元剤が一般的に用いられる。還元剤は、通
常水溶液として、上記の一次分散液に加える。あるい
は、上記の一次分散液を還元剤水溶液に添加してもよ
い。この一次分散液と還元剤水溶液との混合により、セ
ラミック粉末の表面に貴金属薄膜(単原子膜あるいはそ
れに近い薄膜)が形成される。
Next, a ceramic dispersion liquid (primary dispersion liquid) obtained by dispersing ceramic powder in the above-mentioned precious metal salt aqueous solution.
A reducing agent is added to this dispersion while stirring. As the reducing agent, a reducing agent such as hydrazine, hydrazine hydrochloride, formic acid, formalin, hypophosphorous acid and the like used in a known chemical plating method is generally used. The reducing agent is usually added as an aqueous solution to the above primary dispersion. Alternatively, the above primary dispersion may be added to the aqueous reducing agent solution. By mixing the primary dispersion and the reducing agent aqueous solution, a noble metal thin film (a monoatomic film or a thin film similar thereto) is formed on the surface of the ceramic powder.

【0014】次いで、上記の表面に貴金属薄膜層が形成
されたセラミック粉末(一次被覆セラミック粉末と呼
ぶ)を分散液から取り出したのち、この一次被覆セラミ
ック粉末を今度は、貴金属塩と水溶性ポリマーとを含む
水溶液に分散させて、二次分散液を調製する。ただし、
一次被覆セラミック粉末は必ずしも一次分散液から分離
する必要はなく、一次被覆セラミック粉末を含む一次分
散液に、貴金属塩と水溶性ポリマーとを添加して、二次
分散液を調製することもできる。
Then, the above-mentioned ceramic powder having a noble metal thin film layer formed on the surface (referred to as primary coating ceramic powder) is taken out from the dispersion liquid, and this primary coating ceramic powder is then mixed with a noble metal salt and a water-soluble polymer. To prepare a secondary dispersion liquid. However,
The primary coating ceramic powder does not necessarily have to be separated from the primary dispersion, and the noble metal salt and the water-soluble polymer may be added to the primary dispersion containing the primary coating ceramic powder to prepare the secondary dispersion.

【0015】二次分散液を調製する際に用いる貴金属塩
(水溶性貴金属)は、一次分散液を調製するに用いた水
溶性貴金属塩と同一であっても、あるいは別の水溶性貴
金属塩であってもよい。
The noble metal salt (water-soluble noble metal) used in preparing the secondary dispersion may be the same as the water-soluble noble metal salt used in preparing the primary dispersion, or may be another water-soluble noble metal salt. It may be.

【0016】二次分散液を調製するために用いられる水
溶性ポリマーに特に制限はないが、水溶性ポリマーとし
ては、セラミック微粉末分散性の良い、ヒドロキシエチ
ルセルロース、ヒドロキシプロピルセルロース、メチル
セルロース、ヒドロキシエチルメチルセルロース、ヒド
ロキシプロピルメチルセルロース、カルボキシメチルセ
ルロースなどのような水溶性セルロース誘導体を用いる
ことが望ましい。ただし、ゼラチン、カゼインなどの水
溶性天然物ポリマー、ポリビニルアルコール、ポリビニ
ルピロリドンなどの水溶性合成高分子化合物を用いても
よい。
The water-soluble polymer used for preparing the secondary dispersion is not particularly limited, but as the water-soluble polymer, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyethyl methyl cellulose, which has good dispersibility of ceramic fine powder, can be used. It is desirable to use water-soluble cellulose derivatives such as, hydroxypropylmethyl cellulose, carboxymethyl cellulose and the like. However, water-soluble natural product polymers such as gelatin and casein, and water-soluble synthetic polymer compounds such as polyvinyl alcohol and polyvinylpyrrolidone may be used.

【0017】次いで、上記の貴金属塩と水溶性ポリマー
とを含む水溶液に一次被覆セラミック粉末を分散させて
なる二次分散液を撹拌しながら、この分散液に還元剤を
添加する。還元剤としては、原則として、一次被覆セラ
ミック粉末を生成させるために用いた還元剤が用いられ
るが、必ずしも同一である必要はない。この二次分散液
と還元剤(還元剤水溶液)との混合により、一次被覆セ
ラミック粉末の表面に一次被覆層よりはるかに厚い貴金
属層が形成される。
Next, a reducing agent is added to this dispersion while stirring the secondary dispersion prepared by dispersing the primary coating ceramic powder in the aqueous solution containing the above-mentioned noble metal salt and water-soluble polymer. As the reducing agent, in principle, the reducing agent used for producing the primary coating ceramic powder is used, but it is not necessary to be the same. By mixing the secondary dispersion and the reducing agent (reducing agent aqueous solution), a noble metal layer much thicker than the primary coating layer is formed on the surface of the primary coating ceramic powder.

【0018】次いで、上記の表面に貴金属層が積層形成
されたセラミック粉末(二次被覆セラミック粉末と呼
ぶ)を、分散液から取り出したのち乾燥して、目的の貴
金属被覆セラミック粉末を得る。
Next, the ceramic powder having a noble metal layer laminated on the surface (referred to as secondary coated ceramic powder) is taken out from the dispersion and dried to obtain the target noble metal coated ceramic powder.

【0019】本発明の製造法によって貴金属被覆セラミ
ック粉末を得る場合、芯部(核、あるいはコア)となる
セラミック部と、被覆層(シェル)となる貴金属部との
比率は任意に選ぶことができるが、通常は、セラミッ
ク:貴金属を5:95〜80:20(重量比)とする。
特に、セラミック:貴金属が、10:90〜50:50
(重量比)のものが好ましい。
When the noble metal-coated ceramic powder is obtained by the production method of the present invention, the ratio of the ceramic part which becomes the core (nucleus or core) and the noble metal part which becomes the coating layer (shell) can be arbitrarily selected. However, the ratio of ceramic: noble metal is usually 5:95 to 80:20 (weight ratio).
Especially, ceramic: precious metal is 10:90 to 50:50
(Weight ratio) is preferable.

【0020】本発明の製造法によって得られる貴金属被
覆セラミック粉末は、そのまま単独で、常法に従い、通
常の結合剤などと混合して導電性塗料(ペースト)とす
ることができるが、貴金属被覆セラミック粉末を純貴金
属粉末と混合して用いてもよい。
The noble metal-coated ceramic powder obtained by the production method of the present invention can be used alone as a conductive paint (paste) by mixing it with an ordinary binder or the like by a conventional method. The powder may be used as a mixture with a pure precious metal powder.

【0021】導電性ペーストを基板に塗布し、電極を製
造する方法は一般的に利用されており、本発明の貴金属
被覆セラミック粉末を用いた導電性ペーストを用いる場
合も同様に処理して電極とすることができる。
A method of manufacturing an electrode by applying a conductive paste to a substrate is generally used. When the conductive paste using the noble metal-coated ceramic powder of the present invention is used, the same treatment is performed to form an electrode. can do.

【0022】[0022]

【実施例】【Example】

[実施例1]−−パラジウム被覆チタン酸バリウム微粉
末の製造 (1)パラジウム一次被覆チタン酸バリウム微粉末の製
造 2.0gのチタン酸バリウム微粉末(BaTiO3 、平
均粒径0.2μm、比表面積12.7m2/g)と3.2
mlのテトラクロロパラジウム酸アンモニウム水溶液
(金属パラジウムに換算して1g/100mlの濃度の
水溶液)とを純水200mlに添加して、テトラクロロ
パラジウム酸アンモニウムの水溶液にチタン酸バリウム
微粉末が分散された一次分散液を調製した。この一次分
散液を、室温にて撹拌しながら、これに1.2mlの抱
水ヒドラジン水溶液(100%抱水ヒドラジン1mlを
100mlの純水で希釈したもの)を添加した。この抱
水ヒドラジン水溶液の添加により、微量の金属パラジウ
ムがチタン酸バリウム微粉末の表面に均一に析出して、
パラジウム一次被覆チタン酸バリウム微粉末が生成し
た。
Example 1 Production of Palladium-Coated Barium Titanate Fine Powder (1) Production of Palladium Primary-Coated Barium Titanate Fine Powder 2.0 g Barium Titanate Fine Powder (BaTiO 3 , Average Particle Size 0.2 μm, Ratio) Surface area 12.7 m 2 / g) and 3.2
ml of an aqueous solution of ammonium tetrachloropalladate (an aqueous solution having a concentration of 1 g / 100 ml in terms of metal palladium) was added to 200 ml of pure water, and barium titanate fine powder was dispersed in the aqueous solution of ammonium tetrachloropalladate. A primary dispersion was prepared. While stirring this primary dispersion at room temperature, 1.2 ml of an aqueous hydrazine hydrate solution (1 ml of 100% hydrazine hydrate diluted with 100 ml of pure water) was added. By adding this hydrazine hydrate aqueous solution, a trace amount of metallic palladium is uniformly deposited on the surface of the barium titanate fine powder,
Palladium primary coated barium titanate fine powder was produced.

【0023】(2)パラジウム二次被覆チタン酸バリウ
ム微粉末の製造 上記のパラジウム一次被覆チタン酸バリウム微粉末を取
り出して乾燥させたのち、これをヒドロキシエチルセル
ロース水溶液(0.2g/500ml)に均一に充分に
分散させ、懸濁させた。この分散液に、今度は、テトラ
アンミンパラジウム酸クロライド水溶液(金属パラジウ
ム(Pd)に換算して18.0g含有)を添加して、二
次分散液を調製した。次いで、二次分散液を撹拌しなが
ら、これに室温にて、抱水ヒドラジン水溶液(100%
抱水ヒドラジン5.4ml含有)をゆっくりと添加し
た。この抱水ヒドラジン水溶液の添加により、黒灰色の
被覆層を有するチタン酸バリウム微粉末が得られた。こ
れを濾別し、水洗し、次いで乾燥して乾燥微粉末を得
た。この乾燥微粉末(二次被覆粒子)を走査型電子顕微
鏡で観察したところ、凝集がほとんど見られない均質な
粉末であることが確認された。なお、この二次被覆粒子
は、90重量%の金属パラジウムと10重量%のチタン
酸バリウムとからなっていた。
(2) Production of Palladium Secondary-Coated Barium Titanate Fine Powder The palladium primary-coated barium titanate fine powder was taken out and dried, and then uniformly added to a hydroxyethyl cellulose aqueous solution (0.2 g / 500 ml). It was well dispersed and suspended. Next, an aqueous solution of tetraamminepalladium chloride (containing 18.0 g of metal palladium (Pd) was added) was added to this dispersion to prepare a secondary dispersion. Then, while stirring the secondary dispersion, an aqueous hydrazine hydrate solution (100%
Hydrazine hydrate (containing 5.4 ml) was slowly added. By adding this hydrazine hydrate aqueous solution, barium titanate fine powder having a blackish gray coating layer was obtained. This was separated by filtration, washed with water, and then dried to obtain a dry fine powder. When the dried fine powder (secondarily coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles consisted of 90% by weight of metallic palladium and 10% by weight of barium titanate.

【0024】[実施例2]−−パラジウム被覆チタン酸
バリウム微粉末の製造 (1)パラジウム一次被覆チタン酸バリウム微粉末の製
造 各材料の使用量を下記のように替えた以外は、実施例1
の(1)と同様にしてパラジウム一次被覆チタン酸バリ
ウム微粉末を製造した。 チタン酸バリウム微粉末(実施例1と同一):4.0g テトラクロロパラジウム酸アンモニウム水溶液(同
上):6.4ml 純水:200ml(同上) 抱水ヒドラジン水溶液(同上):2.4ml (2)パラジウム二次被覆チタン酸バリウム微粉末の製
造 各材料の使用量を下記のように替えた以外は、実施例1
の(2)と同様にしてパラジウム二次被覆チタン酸バリ
ウム微粉末を製造した。 ヒドロキシエチルセルロース:0.2g/500ml
(実施例1と同一) テトラアンミンパラジウム酸クロライド水溶液:16g
(金属Pd換算値) 抱水ヒドラジン水溶液:4.8ml(100%抱水ヒド
ラジン換算) 得られた黒灰色の被覆層を有するチタン酸バリウム微粉
末を濾別し、水洗し、次いで乾燥して乾燥微粉末を得
た。この乾燥微粉末(二次被覆粒子)を走査型電子顕微
鏡で観察したところ、凝集がほとんど見られない均質な
粉末であることが確認された。この二次被覆粒子は、8
0重量%の金属パラジウムと20重量%のチタン酸バリ
ウムとからなっていた。
Example 2 Production of Palladium-Coated Barium Titanate Fine Powder (1) Production of Palladium Primary-Coated Barium Titanate Fine Powder Example 1 except that the amount of each material used was changed as follows.
Palladium primary-coated barium titanate fine powder was produced in the same manner as in (1) above. Barium titanate fine powder (same as in Example 1): 4.0 g Ammonium tetrachloropalladate aqueous solution (same as above): 6.4 ml Pure water: 200 ml (same as above) Hydrazine hydrate aqueous solution (same as above): 2.4 ml (2) Production of Palladium Secondary Coated Barium Titanate Fine Powder Example 1 except that the amount of each material used was changed as follows:
Palladium secondary-coated barium titanate fine powder was produced in the same manner as in (2). Hydroxyethyl cellulose: 0.2 g / 500 ml
(Same as Example 1) Tetraamminepalladium chloride aqueous solution: 16 g
(Metal Pd equivalent) Aqueous hydrazine hydrate solution: 4.8 ml (100% hydrazine hydrate equivalent) The obtained barium titanate fine powder having a black gray coating layer was filtered off, washed with water, and then dried and dried. A fine powder was obtained. When the dried fine powder (secondarily coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles are 8
It consisted of 0% by weight metallic palladium and 20% by weight barium titanate.

【0025】[実施例3]−−パラジウム被覆チタン酸
バリウム微粉末の製造 (1)パラジウム一次被覆チタン酸バリウム微粉末の製
造 各材料の使用量を下記のように替えた以外は、実施例1
の(1)と同様にしてパラジウム一次被覆チタン酸バリ
ウム微粉末を製造した。 チタン酸バリウム微粉末(実施例1と同一):5.0g テトラクロロパラジウム酸アンモニウム水溶液(同
上):8.0ml 純水:200ml(同上) 抱水ヒドラジン水溶液(同上):3.0ml (2)パラジウム二次被覆チタン酸バリウム微粉末の製
造 各材料の使用量を下記のように替えた以外は、実施例1
の(2)と同様にしてパラジウム二次被覆チタン酸バリ
ウム微粉末を製造した。 ヒドロキシエチルセルロース:0.2g/500ml
(実施例1と同一) テトラアンミンパラジウム酸クロライド水溶液:15g
(金属Pd換算値) 抱水ヒドラジン水溶液:4.5ml(100%抱水ヒド
ラジン換算) 得られた黒灰色の被覆層を有するチタン酸バリウム微粉
末を濾別し、水洗し、次いで乾燥して乾燥微粉末を得
た。この乾燥微粉末(二次被覆粒子)を走査型電子顕微
鏡で観察したところ、凝集がほとんど見られない均質な
粉末であることが確認された。この二次被覆粒子は、7
5重量%の金属パラジウムと25重量%のチタン酸バリ
ウムとからなっていた。
Example 3 Production of Palladium-Coated Barium Titanate Fine Powder (1) Production of Palladium Primary-Coated Barium Titanate Fine Powder Example 1 except that the amount of each material used was changed as follows.
Palladium primary-coated barium titanate fine powder was produced in the same manner as in (1) above. Barium titanate fine powder (same as that of Example 1): 5.0 g Ammonium tetrachloropalladate aqueous solution (same as above): 8.0 ml Pure water: 200 ml (same as above) Hydrazine hydrate aqueous solution (same as above): 3.0 ml (2) Production of Palladium Secondary Coated Barium Titanate Fine Powder Example 1 except that the amount of each material used was changed as follows:
Palladium secondary-coated barium titanate fine powder was produced in the same manner as in (2). Hydroxyethyl cellulose: 0.2 g / 500 ml
(Same as Example 1) Tetraamminepalladium chloride aqueous solution: 15 g
(Metal Pd equivalent) Aqueous hydrazine hydrate solution: 4.5 ml (100% hydrazine hydrate equivalent) The obtained barium titanate fine powder having a black gray coating layer was filtered off, washed with water, and then dried and dried. A fine powder was obtained. When the dried fine powder (secondarily coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles are 7
It consisted of 5% by weight metallic palladium and 25% by weight barium titanate.

【0026】[比較例1]−−パラジウム被覆チタン酸
バリウム微粉末の製造 実施例1で用いたものと同じチタン酸バリウム微粉末
5.0gを、テトラアンミンパラジウム酸クロライド水
溶液(金属パラジウム(Pd)に換算して15g含有)
とイソプロピルアルコールとの混合液300mlに分散
させた。次いで、この分散液を撹拌しながら、室温に
て、これに抱水ヒドラジン水溶液(100%抱水ヒドラ
ジン4.5ml含有)をゆっくりと添加した。この抱水
ヒドラジン水溶液の添加により、黒色の被覆層を有する
チタン酸バリウム微粉末が得られた。これを濾別し、水
洗し、次いで乾燥して乾燥微粉末を得た。この乾燥微粉
末(被覆粒子)を走査型電子顕微鏡で観察したところ、
多量のパラジウム金属粒子と多量の凝集体を含む粉末で
あることが確認された。なお、このパラジウム金属粒子
と凝集体を含む粉末の全体としては、75重量%の金属
パラジウムと25重量%のチタン酸バリウムとからなっ
ていた。
Comparative Example 1-Production of Palladium-Coated Barium Titanate Fine Powder 5.0 g of the same barium titanate fine powder used in Example 1 was added to an aqueous solution of tetraamminepalladium chloride (metal palladium (Pd)). (Contains 15g when converted)
And dispersed in 300 ml of a mixed solution of isopropyl alcohol. Then, while stirring this dispersion, an aqueous hydrazine hydrate solution (containing 4.5 ml of 100% hydrazine hydrate) was slowly added thereto at room temperature. By adding this hydrazine hydrate aqueous solution, barium titanate fine powder having a black coating layer was obtained. This was separated by filtration, washed with water, and then dried to obtain a dry fine powder. When the dried fine powder (coated particles) was observed with a scanning electron microscope,
It was confirmed to be a powder containing a large amount of palladium metal particles and a large amount of aggregates. The entire powder containing the palladium metal particles and the agglomerates was composed of 75% by weight of metallic palladium and 25% by weight of barium titanate.

【0027】[電極材料としてのパラジウム二次被覆チ
タン酸バリウム微粉末の評価]実施例1〜3の各例で得
られたパラジウム被覆チタン酸バリウム微粉末100重
量部、エチルセルロース5重量部、そしてテルピネオー
ル75重量部を3本ロールミルを用いて混練し、導電性
ペーストを得た。また、比較例1で得られたパラジウム
金属粒子と凝集体を含む粉末を用い、同様にして導電性
ペーストを得た。更に、パラジウム被覆チタン酸バリウ
ム微粉末の代りにパラジウム金属粉末を用い、同様にし
て導電性ペーストを得た。得られた導電性ペーストをス
クリーン印刷により、チタン酸バリウムグリーンシート
(未焼成基板)の上に印刷し、100℃で10分間乾燥
の後1300℃で1時間焼成した。室温より1300℃
までの昇温は200℃/時で行なった。このようにして
得られた電極の表面の外観と電気特性(抵抗値)を第1
表に示す。
[Evaluation of Palladium Secondary-Coated Barium Titanate Fine Powder as Electrode Material] 100 parts by weight of the palladium-coated barium titanate fine powder obtained in each of Examples 1 to 3, 5 parts by weight of ethyl cellulose, and terpineol. 75 parts by weight were kneaded using a three-roll mill to obtain a conductive paste. A conductive paste was obtained in the same manner by using the powder containing the palladium metal particles and the aggregate obtained in Comparative Example 1. Further, a palladium metal powder was used instead of the palladium-coated barium titanate fine powder, and a conductive paste was obtained in the same manner. The obtained conductive paste was printed on a barium titanate green sheet (unbaked substrate) by screen printing, dried at 100 ° C. for 10 minutes, and then baked at 1300 ° C. for 1 hour. 1300 ° C from room temperature
Up to 200 ° C./hour. The surface appearance and electrical characteristics (resistance value) of the electrode thus obtained are
Shown in the table.

【0028】 第1表 ──────────────────────────────────── BiTiO3:Pd 抵抗値(mΩ/sq.) 外 観 ──────────────────────────────────── 実施例1 10:90 50.6 良 好 実施例2 20:80 54.6 良 好 実施例3 25:70 69.0 良 好 比較例1 25:70 540 良 好 参考例 0:100 44.0 部分的な剥離発生 ────────────────────────────────────Table 1 ──────────────────────────────────── BiTiO 3 : Pd Resistance (mΩ / Sq.) External appearance ──────────────────────────────────── Example 1 10:90 50. 6 Good Good Example 2 20:80 54.6 Good Good Example 3 25:70 69.0 Good Good Comparative Example 1 25:70 540 Good Good Reference Example 0: 100 44.0 Partial peeling occurrence ─── ──────────────────────────────────

【0029】[実施例4]−−パラジウム被覆チタン酸
バリウム微粉末の製造 (1)パラジウム一次被覆チタン酸バリウム微粉末の製
造 各材料の使用量を下記のように替えた以外は、実施例1
の(1)と同様にしてパラジウム一次被覆チタン酸バリ
ウム微粉末を製造した。 チタン酸バリウム微粉末(実施例1と同一):10.0
g テトラクロロパラジウム酸アンモニウム水溶液(同
上):16ml 純水:200ml(同上) 抱水ヒドラジン水溶液(同上):3ml (2)パラジウム二次被覆チタン酸バリウム微粉末の製
造 各材料の使用量を下記のように替えた以外は、実施例1
の(2)と同様にしてパラジウム二次被覆チタン酸バリ
ウム微粉末を製造した。 ヒドロキシエチルセルロース:0.2g/500ml
(実施例1と同一) テトラアンミンパラジウム酸クロライド水溶液:10g
(金属Pd換算値) 抱水ヒドラジン水溶液:3.0ml(100%抱水ヒド
ラジン換算) 得られた黒灰色の被覆層を有するチタン酸バリウム微粉
末を濾別し、水洗し、次いで乾燥して乾燥微粉末を得
た。この乾燥微粉末(二次被覆粒子)を走査型電子顕微
鏡で観察したところ、凝集がほとんど見られない均質な
粉末であることが確認された。この二次被覆粒子は、5
0重量%の金属パラジウムと50重量%のチタン酸バリ
ウムとからなっていた。上記のパラジウム被覆チタン酸
バリウム微粉末50重量部、パラジウム金属粉末50重
量部、エチルセルロース5重量部、そしてテルピネオー
ル75重量部を3本ロールミルを用いて混練し、導電性
ペースト(チタン酸バリウム:金属パラジウム=25:
75、重量比)を得た。得られた導電性ペーストから前
述の方法によって、電極を製造し、この電極の表面の外
観と電気特性(抵抗値)とを調べたところ、外観は良好
であり、抵抗値は55.0mΩ/sq.とパラジウム金
属粉末のみを用いた導電性ペーストから製造した電極と
近似した値を示した。
Example 4 Production of Palladium-Coated Barium Titanate Fine Powder (1) Production of Palladium Primary-Coated Barium Titanate Fine Powder Example 1 except that the amount of each material used was changed as follows.
Palladium primary-coated barium titanate fine powder was produced in the same manner as in (1) above. Barium titanate fine powder (same as in Example 1): 10.0
g Ammonium tetrachloropalladate aqueous solution (same as above): 16 ml Pure water: 200 ml (same as above) Aqueous hydrazine hydrate solution (same as above): 3 ml (2) Palladium secondary coated barium titanate Fine powder production Example 1 except that
Palladium secondary-coated barium titanate fine powder was produced in the same manner as in (2). Hydroxyethyl cellulose: 0.2 g / 500 ml
(Same as Example 1) Tetraamminepalladium chloride aqueous solution: 10 g
(Metal Pd equivalent) Aqueous hydrazine hydrate solution: 3.0 ml (100% hydrazine hydrate equivalent) The obtained barium titanate fine powder having a black gray coating layer was filtered off, washed with water, and then dried and dried. A fine powder was obtained. When the dried fine powder (secondarily coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles are 5
It consisted of 0% by weight metallic palladium and 50% by weight barium titanate. 50 parts by weight of the above palladium-coated barium titanate fine powder, 50 parts by weight of palladium metal powder, 5 parts by weight of ethyl cellulose, and 75 parts by weight of terpineol were kneaded using a three-roll mill, and a conductive paste (barium titanate: metallic palladium = 25:
75, weight ratio). An electrode was produced from the obtained conductive paste by the method described above, and the appearance and electrical characteristics (resistance value) of the surface of this electrode were examined. The appearance was good and the resistance value was 55.0 mΩ / sq. . And a value similar to that of an electrode manufactured from a conductive paste using only palladium metal powder.

【0030】[実施例5]−−パラジウム被覆PZT
(Pb(Zr,Ti)O3 )微粉末の製造 (1)パラジウム一次被覆PZT微粉末の製造 5.0gのPZT微粉末(Pb(Zr,Ti)O3 、平
均粒径0.5μm、比表面積2.1m2/g)と4mlの
テトラクロロパラジウム酸アンモニウム水溶液(金属パ
ラジウムに換算して1g/100mlの濃度の水溶液)
とを純水200mlに添加して、テトラクロロパラジウ
ム酸アンモニウムの水溶液にPZT微粉末が分散された
一次分散液を調製した。この一次分散液を、室温にて撹
拌しながら、これに3mlの抱水ヒドラジン水溶液(1
00%抱水ヒドラジン1mlを100mlの純水で希釈
したもの)を添加した。この抱水ヒドラジン水溶液の添
加により、微量の金属パラジウムがPZT微粉末の表面
に均一に析出して、パラジウム一次被覆PZT微粉末が
生成した。
[Example 5] Palladium-coated PZT
(Pb (Zr, Ti) O 3 ) Fine Powder Production (1) Palladium Primary-Coated PZT Fine Powder Production 5.0 g of PZT fine powder (Pb (Zr, Ti) O 3 , average particle size 0.5 μm, ratio Surface area 2.1 m 2 / g) and 4 ml ammonium tetrachloropalladate aqueous solution (concentration of 1 g / 100 ml in terms of metallic palladium)
And were added to 200 ml of pure water to prepare a primary dispersion liquid in which PZT fine powder was dispersed in an aqueous solution of ammonium tetrachloropalladate. While stirring the primary dispersion at room temperature, 3 ml of an aqueous hydrazine hydrate solution (1
1 ml of 00% hydrazine hydrate diluted with 100 ml of pure water) was added. By the addition of this aqueous hydrazine hydrate solution, a trace amount of metallic palladium was uniformly deposited on the surface of the PZT fine powder, and palladium primary-coated PZT fine powder was produced.

【0031】(2)パラジウム二次被覆PZT微粉末の
製造 上記のパラジウム一次被覆PZT微粉末を取り出して乾
燥させたのち、これをヒドロキシエチルセルロース水溶
液(0.2g/500ml)に均一に充分に分散させ、
懸濁させた。この分散液に、今度は、テトラアンミンパ
ラジウム酸クロライド水溶液(金属パラジウム(Pd)
に換算して15g含有)を添加して、二次分散液を調製
した。次いで、二次分散液を撹拌しながら、室温にて、
これに抱水ヒドラジン水溶液(100%抱水ヒドラジン
4.5ml含有)をゆっくり添加した。この抱水ヒドラ
ジン水溶液の添加により、黒灰色の被覆層を有するPZ
T微粉末が得られた。これを濾別し、水洗し、次いで乾
燥して乾燥微粉末を得た。この乾燥微粉末(二次被覆粒
子)を走査型電子顕微鏡で観察したところ、凝集がほと
んど見られない均質な粉末であることが確認された。な
お、この二次被覆粒子は、75重量%の金属パラジウム
と25重量%のPZTとからなっていた。
(2) Production of PZT fine powder coated with palladium secondary coating The above-mentioned PZT fine powder coated with palladium primary was taken out and dried, and then uniformly dispersed in an aqueous solution of hydroxyethyl cellulose (0.2 g / 500 ml). ,
Suspended. This dispersion was then mixed with an aqueous solution of tetraamminepalladium chloride (metal palladium (Pd)
(15 g in terms of) was added to prepare a secondary dispersion. Then, while stirring the secondary dispersion, at room temperature,
To this, an aqueous hydrazine hydrate solution (containing 4.5 ml of 100% hydrazine hydrate) was slowly added. By adding this hydrazine hydrate aqueous solution, PZ having a black gray coating layer
T fine powder was obtained. This was separated by filtration, washed with water, and then dried to obtain a dry fine powder. When the dried fine powder (secondarily coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles consisted of 75 wt% metallic palladium and 25 wt% PZT.

【0032】[実施例6]−−パラジウム被覆PZT微
粉末の製造 (1)パラジウム一次被覆PZT微粉末の製造 各材料の使用量を下記のように替えた以外は、実施例5
の(1)と同様にしてパラジウム一次被覆PZT微粉末
を製造した。 PZT微粉末(実施例5と同一):4.0g テトラクロロパラジウム酸アンモニウム水溶液(同
上):3.2ml 純水:200ml(同上) 抱水ヒドラジン水溶液(同上):1.5ml (2)パラジウム二次被覆PZT微粉末の製造 各材料の使用量を下記のように替えた以外は、実施例5
の(2)と同様にしてパラジウム二次被覆PZT微粉末
を製造した。 ヒドロキシエチルセルロース:0.2g/500ml
(実施例5と同一) テトラアンミンパラジウム酸クロライド水溶液:16g
(金属Pd換算値) 抱水ヒドラジン水溶液:4.8ml(100%抱水ヒド
ラジン換算) 得られた黒灰色の被覆層を有するPZT微粉末を濾別
し、水洗し、次いで乾燥して乾燥微粉末を得た。この乾
燥微粉末(二次被覆粒子)を走査型電子顕微鏡で観察し
たところ、凝集が殆ど見られない均質な粉末であること
が確認された。この二次被覆粒子は、80重量%の金属
パラジウムと20重量%のPZTとからなっていた。
[Example 6] -Production of palladium-coated PZT fine powder (1) Production of palladium primary-coated PZT fine powder Example 5 was repeated except that the amounts of the respective materials used were changed as follows.
PdT-coated PZT fine powder was prepared in the same manner as in (1). PZT fine powder (same as in Example 5): 4.0 g Ammonium tetrachloropalladate aqueous solution (same as above): 3.2 ml Pure water: 200 ml (same as above) Hydrazine hydrate aqueous solution (same as above): 1.5 ml (2) Palladium di Production of Next Coated PZT Fine Powder Example 5 except that the amount of each material used was changed as follows.
PdT secondary-coated PZT fine powder was produced in the same manner as in (2). Hydroxyethyl cellulose: 0.2 g / 500 ml
(Same as Example 5) Tetraamminepalladium chloride aqueous solution: 16 g
(Metal Pd equivalent) Aqueous hydrazine hydrate solution: 4.8 ml (100% hydrazine hydrate equivalent) The obtained PZT fine powder having a black gray coating layer was filtered off, washed with water, and then dried to obtain a dry fine powder. Got When the dried fine powder (secondary coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles consisted of 80% by weight metallic palladium and 20% by weight PZT.

【0033】[実施例7]−−パラジウムPZT微粉末
の製造 (1)パラジウム一次被覆PZT微粉末の製造 各材料の使用量を下記のように替えた以外は、実施例5
の(1)と同様にしてパラジウム一次被覆PZT微粉末
を製造した。 PZT微粉末(実施例5と同一):3.0g テトラクロロパラジウム酸アンモニウム水溶液(同
上):2.4ml 純水:200ml(同上) 抱水ヒドラジン水溶液(同上):1.0ml (2)パラジウム二次被覆PZT微粉末の製造 各材料の使用量を下記のように替えた以外は、実施例5
の(2)と同様にしてパラジウム二次被覆PZT微粉末
を製造した。 ヒドロキシエチルセルロース:0.2g/500ml
(実施例5と同一) テトラアンミンパラジウム酸クロライド水溶液:17g
(金属Pd換算値) 抱水ヒドラジン水溶液:5.1ml(100%抱水ヒド
ラジン換算) 得られた黒灰色の被覆層を有するPZT微粉末を濾別
し、水洗し、次いで乾燥して乾燥微粉末を得た。この乾
燥微粉末(二次被覆粒子)を走査型電子顕微鏡で観察し
たところ、凝集が殆ど見られない均質な粉末であること
が確認された。この二次被覆粒子は、85重量%の金属
パラジウムと15重量%のPZTとからなっていた。
[Example 7] -Production of palladium PZT fine powder (1) Production of palladium primary-coated PZT fine powder Example 5 except that the amount of each material used was changed as follows.
PdT-coated PZT fine powder was prepared in the same manner as in (1). PZT fine powder (same as in Example 5): 3.0 g Ammonium tetrachloropalladate aqueous solution (same as above): 2.4 ml Pure water: 200 ml (same as above) Hydrazine hydrate aqueous solution (same as above): 1.0 ml (2) Palladium di Production of Next Coated PZT Fine Powder Example 5 except that the amount of each material used was changed as follows.
PdT secondary-coated PZT fine powder was produced in the same manner as in (2). Hydroxyethyl cellulose: 0.2 g / 500 ml
(Same as Example 5) Tetraamminepalladium chloride aqueous solution: 17 g
(Metal Pd conversion value) Aqueous hydrazine hydrate aqueous solution: 5.1 ml (100% hydrazine hydration conversion) The obtained PZT fine powder having a black gray coating layer was separated by filtration, washed with water, and then dried to obtain dried fine powder. Got When the dried fine powder (secondary coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles consisted of 85% by weight metallic palladium and 15% by weight PZT.

【0034】[電極材料としてのパラジウム二次被覆P
ZT微粉末の評価]実施例5〜7の各例で得られたパラ
ジウム被覆PZT微粉末100重量部、エチルセルロー
ス5重量部、そしてテルピネオール75重量部を3本ロ
ールミルを用いて混練し、導電性ペーストを得た。得ら
れた導電性ペーストをPZTグリーンシート上にスクリ
ーン印刷し、1150℃にて1時間焼成して電極を製造
し、この電極の表面の外観と電気特性(抵抗値)とを調
べた。このようにして得られた電極の表面の外観と電気
特性(抵抗値)を第2表に示す。
[Palladium secondary coating P as electrode material
Evaluation of ZT fine powder] 100 parts by weight of the palladium-coated PZT fine powder obtained in each of Examples 5 to 7, 5 parts by weight of ethyl cellulose, and 75 parts by weight of terpineol were kneaded using a three-roll mill to obtain a conductive paste. Got The obtained conductive paste was screen-printed on a PZT green sheet and baked at 1150 ° C. for 1 hour to manufacture an electrode, and the appearance and electrical characteristics (resistance value) of the surface of this electrode were examined. Table 2 shows the appearance and electrical characteristics (resistance value) of the surface of the electrode thus obtained.

【0035】 第2表 ──────────────────────────────────── PZT:Pd 抵抗値(mΩ/sq.) 外 観 ──────────────────────────────────── 実施例5 25:75 182.9 良 好 実施例6 20:80 141.6 良 好 実施例7 15:80 106.5 良 好 ────────────────────────────────────Table 2 ──────────────────────────────────── PZT: Pd Resistance value (mΩ / sq.) Outside ──────────────────────────────────── Example 5 25:75 182.9 Good Good Example 6 20:80 141.6 Good Good Example 7 15:80 106.5 Good Good ─────────────────────────── ──────────

【0036】[実施例8]−−白金被覆PZT微粉末の
製造 (1)白金一次被覆PZT微粉末の製造 各材料および使用量を下記のように替えた以外は、実施
例5の(1)と同様にして白金一次被覆PZT微粉末を
製造した。 PZT微粉末(実施例5と同一):3.0g テトラクロロ白金酸アンモニウム水溶液(金属Ptに換
算して1g/100mlの濃度の水溶液):1.5ml 純水:200ml(実施例5と同一) 抱水ヒドラジン水溶液(同上):1.0ml (2)白金二次被覆PZT微粉末の製造 各材料の使用量を下記のように替えた以外は、実施例5
の(2)と同様にして白金二次被覆PZT微粉末を製造
した。 ヒドロキシエチルセルロース:0.2g/500ml
(実施例1と同一) テトラアンミン白金酸クロライド水分散液:17g(金
属Pt換算値) 抱水ヒドラジン水溶液:4.5ml(100%抱水ヒド
ラジン換算) 得られた黒灰色の被覆層を有するPZT微粉末を濾別
し、水洗し、次いで乾燥して乾燥微粉末を得た。この乾
燥微粉末(二次被覆粒子)を走査型電子顕微鏡で観察し
たところ、凝集が殆ど見られない均質な粉末であること
が確認された。この二次被覆粒子は85重量%の白金と
15重量%のPZTとからなっていた。上記の白金被覆
PZT微粉末を用い、実施例5に記載の方法に従い、導
電性ペーストを調製し、次いでこの導電性ペーストから
前述の方法によって、電極を製造して、この電極の表面
の外観と電気特性(抵抗値)とを調べたところ、外観は
良好であり、抵抗値は368.0mΩ/sq.と良好な
結果を示した。
[Example 8] -Production of platinum-coated PZT fine powder (1) Production of platinum primary-coated PZT fine powder Example 1 (1) of Example 5 except that the materials and the amounts used were changed as follows. Platinum primary-coated PZT fine powder was produced in the same manner as in. PZT fine powder (same as Example 5): 3.0 g Ammonium tetrachloroplatinate aqueous solution (aqueous solution having a concentration of 1 g / 100 ml in terms of metal Pt): 1.5 ml Pure water: 200 ml (same as Example 5) Aqueous hydrazine hydrate solution (the same as above): 1.0 ml (2) Production of platinum secondary-coated PZT fine powder Example 5 except that the amount of each material used was changed as follows:
A platinum secondary coated PZT fine powder was produced in the same manner as in (2). Hydroxyethyl cellulose: 0.2 g / 500 ml
(Same as Example 1) Tetraammineplatinum chloride aqueous dispersion: 17 g (metal Pt conversion value) Hydrazine hydrate aqueous solution: 4.5 ml (100% hydrazine hydration conversion) PZT fine powder having the obtained black gray coating layer The powder was filtered off, washed with water and then dried to obtain a dry fine powder. When the dried fine powder (secondary coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles consisted of 85% by weight platinum and 15% by weight PZT. Using the platinum-coated PZT fine powder described above, a conductive paste was prepared according to the method described in Example 5, and then an electrode was produced from this conductive paste by the method described above, and the appearance of the surface of the electrode and When the electrical characteristics (resistance value) were examined, the appearance was good and the resistance value was 368.0 mΩ / sq. And showed good results.

【0037】[実施例9]−−パラジウム被覆二酸化チ
タン微粉末の製造 (1)パラジウム一次被覆二酸化チタン微粉末の製造 各材料および使用量を下記のように替えた以外は、実施
例1の(1)と同様にしてパラジウム一次被覆二酸化チ
タン微粉末を製造した。 二酸化チタン微粉末(TiO2 、平均粒径0.3μm、
比表面積:7.14m2/g):10.0g テトラクロロパラジウム酸アンモニウム水溶液(実施例
1と同一):8.0ml 純水:200ml(同上) 抱水ヒドラジン水溶液(同上):3.0ml (2)パラジウム二次被覆二酸化チタン微粉末の製造 各材料の使用量を下記のように替えた以外は、実施例1
の(2)と同様にしてパラジウム二次被覆二酸化チタン
微粉末を製造した。 ヒドロキシエチルセルロース:0.2g/500ml
(実施例1と同一) テトラアンミンパラジウム酸クロライド水溶液:10g
(金属Pd換算値) 抱水ヒドラジン水溶液:3.0ml(100%抱水ヒド
ラジン換算) 得られた黒灰色の被覆層を有する二酸化チタン微粉末を
濾別し、水洗し、次いで乾燥して乾燥微粉末を得た。こ
の乾燥微粉末(二次被覆粒子)を走査型電子顕微鏡で観
察したところ、凝集がほとんど見られない均質な粉末で
あることが確認された。この二次被覆粒子は、50重量
%の金属パラジウムと50重量%の二酸化チタンとから
なっていた。
Example 9 Production of Palladium-Coated Titanium Dioxide Fine Powder (1) Production of Palladium Primary-Coated Titanium Dioxide Fine Powder In Example 1 except that the materials and the amounts used were changed as follows: Palladium primary-coated titanium dioxide fine powder was produced in the same manner as in 1). Titanium dioxide fine powder (TiO 2 , average particle size 0.3 μm,
Specific surface area: 7.14 m 2 / g): 10.0 g Ammonium tetrachloropalladate aqueous solution (same as in Example 1): 8.0 ml Pure water: 200 ml (same as above) Hydrazine hydrate aqueous solution (same as above): 3.0 ml ( 2) Production of Palladium Secondary Coated Titanium Dioxide Fine Powder Example 1 except that the amount of each material used was changed as follows:
Palladium secondary coated titanium dioxide fine powder was produced in the same manner as in (2). Hydroxyethyl cellulose: 0.2 g / 500 ml
(Same as Example 1) Tetraamminepalladium chloride aqueous solution: 10 g
(Metallic Pd conversion value) Aqueous hydrazine hydrate aqueous solution: 3.0 ml (100% hydrazine hydration conversion) The obtained titanium dioxide fine powder having a black gray coating layer was filtered off, washed with water, and then dried to dryness. A powder was obtained. When the dried fine powder (secondarily coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles consisted of 50% by weight metallic palladium and 50% by weight titanium dioxide.

【0038】[実施例10]−−パラジウム被覆酸化ア
ルミニウム微粉末の製造 (1)パラジウム一次被覆酸化アルミニウム微粉末の製
造 各材料および使用量を下記のように替えた以外は、実施
例1の(1)と同様にしてパラジウム一次被覆酸化アル
ミニウム微粉末を製造した。 酸化アルミニウム微粉末(Al23 、平均粒径0.3
μm、比表面積7.26m2/g):10.0g テトラクロロパラジウム酸アンモニウム水溶液(実施例
1と同一):5.0ml 純水:200ml(同上) 抱水ヒドラジン水溶液(同上):2.0ml (2)パラジウム二次被覆酸化アルミニウム微粉末の製
造 各材料の使用量を下記のように替えた以外は、実施例1
の(2)と同様にしてパラジウム二次被覆酸化アルミニ
ウム微粉末を製造した。 ヒドロキシエチルセルロース:0.2g/500ml
(実施例1と同一) テトラアンミンパラジウム酸クロライド水溶液:10g
(金属Pd換算値) 抱水ヒドラジン水溶液:3.0ml(100%抱水ヒド
ラジン換算) 得られた黒灰色の被覆層を有する酸化アルミニウム微粉
末を濾別し、水洗し、次いで乾燥して乾燥微粉末を得
た。この乾燥微粉末(二次被覆粒子)を走査型電子顕微
鏡で観察したところ、凝集がほとんど見られない均質な
粉末であることが確認された。この二次被覆粒子は、5
0重量%の金属パラジウムと50重量%の酸化アルミニ
ウムとからなっていた。
Example 10 Production of Palladium-Coated Aluminum Oxide Fine Powder (1) Production of Palladium Primary-Coated Aluminum Oxide Fine Powder In Example 1 except that the respective materials and the amounts used were changed as follows: Palladium primary-coated aluminum oxide fine powder was produced in the same manner as in 1). Aluminum oxide fine powder (Al 2 O 3 , average particle size 0.3
μm, specific surface area 7.26 m 2 / g): 10.0 g Ammonium tetrachloropalladate aqueous solution (same as in Example 1): 5.0 ml Pure water: 200 ml (same as above) Hydrazine hydrate aqueous solution (same as above): 2.0 ml (2) Production of Palladium Secondary Coated Aluminum Oxide Fine Powder Example 1 except that the amount of each material used was changed as follows:
Palladium secondary-coated aluminum oxide fine powder was produced in the same manner as in (2). Hydroxyethyl cellulose: 0.2 g / 500 ml
(Same as Example 1) Tetraamminepalladium chloride aqueous solution: 10 g
(Metallic Pd conversion value) Aqueous hydrazine hydrate solution: 3.0 ml (100% hydrazine hydration conversion) The obtained aluminum oxide fine powder having a black gray coating layer was filtered off, washed with water, and then dried and dried to a fine powder. A powder was obtained. When the dried fine powder (secondarily coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles are 5
It consisted of 0% by weight metallic palladium and 50% by weight aluminum oxide.

【0039】[実施例11]−−パラジウム被覆酸化ジ
ルコニウム微粉末の製造 (1)パラジウム一次被覆酸化ジルコニウム微粉末の製
造 各材料および使用量を下記のように替えた以外は、実施
例1の(1)と同様にしてパラジウム一次被覆酸化ジル
コニウム微粉末を製造した。 酸化ジルコニウム微粉末(ZrO2 、平均粒径0.2μ
m、比表面積12.26m2/g):10.0g テトラクロロパラジウム酸アンモニウム水溶液(実施例
1と同一):14.0ml 純水:200ml(同上) 抱水ヒドラジン水溶液(同上):5.0ml (2)パラジウム二次被覆酸化ジルコニウム微粉末の製
造 各材料の使用量を下記のように替えた以外は、実施例1
の(2)と同様にしてパラジウム二次被覆酸化ジルコニ
ウム微粉末を製造した。 ヒドロキシエチルセルロース:0.2g/500ml
(実施例1と同一) テトラアンミンパラジウム酸クロライド水溶液:10g
(金属Pd換算値) 抱水ヒドラジン水溶液:3.0ml(100%抱水ヒド
ラジン換算) 得られた黒灰色の被覆層を有する酸化ジルコニウム微粉
末を濾別し、水洗し、次いで乾燥して乾燥微粉末を得
た。この乾燥微粉末(二次被覆粒子)を走査型電子顕微
鏡で観察したところ、凝集がほとんど見られない均質な
粉末であることが確認された。この二次被覆粒子は、5
0重量%の金属パラジウムと50重量%の酸化ジルコニ
ウムとからなっていた。
Example 11 Production of Palladium-Coated Zirconium Oxide Fine Powder (1) Production of Palladium Primary-Coated Zirconium Oxide Fine Powder In Example 1 except that the respective materials and the amounts used were changed as follows: Palladium primary-coated zirconium oxide fine powder was produced in the same manner as in 1). Zirconium oxide fine powder (ZrO 2 , average particle size 0.2μ
m, specific surface area 12.26 m 2 / g): 10.0 g ammonium tetrachloropalladate aqueous solution (same as in Example 1): 14.0 ml pure water: 200 ml (same as above) hydrazine hydrate aqueous solution (same as above): 5.0 ml (2) Production of Palladium Secondary Coated Zirconium Oxide Fine Powder Example 1 except that the amount of each material used was changed as follows.
Palladium secondary-coated zirconium oxide fine powder was produced in the same manner as in (2). Hydroxyethyl cellulose: 0.2 g / 500 ml
(Same as Example 1) Tetraamminepalladium chloride aqueous solution: 10 g
(Metal Pd conversion value) Aqueous hydrazine hydrate solution: 3.0 ml (100% hydrazine hydration conversion) The obtained zirconium oxide fine powder having a black-grey coating layer was filtered off, washed with water, and then dried to dryness. A powder was obtained. When the dried fine powder (secondarily coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles are 5
It consisted of 0% by weight metallic palladium and 50% by weight zirconium oxide.

【0040】[実施例12]−−パラジウム被覆酸化ケ
イ素微粉末の製造 (1)パラジウム一次被覆酸化ケイ素微粉末の製造 各材料および使用量を下記のように替えた以外は、実施
例1の(1)と同様にしてパラジウム一次被覆酸化ケイ
素微粉末を製造した。 酸化ケイ素微粉末(SiO2 、平均粒径0.3μm、比
表面積:49.05m2/g):10.0g テトラクロロパラジウム酸アンモニウム水溶液(実施例
1と同一):8.0ml 純水:200ml(同上) 抱水ヒドラジン水溶液(同上):3.0ml (2)パラジウム二次被覆酸化ケイ素微粉末の製造 各材料の使用量を下記のように替えた以外は、実施例1
の(2)と同様にしてパラジウム二次被覆酸化ケイ素微
粉末を製造した。 ヒドロキシエチルセルロース:0.2g/500ml
(実施例1と同一) テトラアンミンパラジウム酸クロライド水溶液:10g
(金属Pd換算値) 抱水ヒドラジン水溶液:3.0ml(100%抱水ヒド
ラジン換算) 得られた黒灰色の被覆層を有する酸化ケイ素微粉末を濾
別し、水洗し、次いで乾燥して乾燥微粉末を得た。この
乾燥微粉末(二次被覆粒子)を走査型電子顕微鏡で観察
したところ、凝集がほとんど見られない均質な粉末であ
ることが確認された。この二次被覆粒子は、50重量%
の金属パラジウムと50重量%の酸化ケイ素とからなっ
ていた。
Example 12 Production of Palladium-Coated Silicon Oxide Fine Powder (1) Production of Palladium Primary-Coated Silicon Oxide Fine Powder In Example 1 except that the respective materials and the amounts used were changed as follows: Palladium primary-coated silicon oxide fine powder was produced in the same manner as in 1). Silicon oxide fine powder (SiO 2 , average particle size 0.3 μm, specific surface area: 49.05 m 2 / g): 10.0 g Ammonium tetrachloropalladate aqueous solution (same as in Example 1): 8.0 ml Pure water: 200 ml (Same as above) Aqueous hydrazine hydrate solution (Same as above): 3.0 ml (2) Production of Palladium Secondary Coated Silicon Oxide Fine Powder Example 1 except that the amount of each material used was changed as follows:
Palladium secondary-coated silicon oxide fine powder was produced in the same manner as in (2). Hydroxyethyl cellulose: 0.2 g / 500 ml
(Same as Example 1) Tetraamminepalladium chloride aqueous solution: 10 g
(Metallic Pd conversion value) Aqueous hydrazine hydrate solution: 3.0 ml (100% hydrazine hydration conversion) The obtained silicon oxide fine powder having a black gray coating layer was filtered off, washed with water, and then dried to dryness. A powder was obtained. When the dried fine powder (secondarily coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles are 50% by weight.
Of palladium metal and 50% by weight of silicon oxide.

【0041】[0041]

【発明の効果】本発明の方法を利用してセラミック粉末
を貴金属で被覆することにより、凝集体の生成を高度に
抑制しながらの貴金属被覆が実現する。特に、本発明の
製造法を利用することにより、粒子径1μm以下(更に
は、0.5μm以下)のセラミック微粒子粉末を貴金属
で被覆して、セラミック相の露出が殆どなく、かつ純度
の高い、すなわちセラミック成分の混在が少ない貴金属
被覆層を形成することができる。本発明により得られる
貴金属被覆セラミック粒子は膜厚の薄い電極の製造に特
に有利に利用できる。
Industrial Applicability By coating the ceramic powder with the noble metal using the method of the present invention, the noble metal coating can be realized while highly suppressing the formation of aggregates. In particular, by utilizing the production method of the present invention, a ceramic fine particle powder having a particle diameter of 1 μm or less (further, 0.5 μm or less) is coated with a noble metal so that the ceramic phase is hardly exposed and the purity is high. That is, it is possible to form the noble metal coating layer in which the mixture of the ceramic components is small. The noble metal-coated ceramic particles obtained according to the present invention can be used particularly advantageously in the production of thin-film electrodes.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 貴金属塩の水溶液中にセラミック粉末を
分散させた分散液に還元剤を添加し、セラミック粉末の
表面に貴金属薄膜層を形成させる工程、そして、この貴
金属薄膜層を有するセラミック粉末を、貴金属塩と水溶
性ポリマーとを含む水溶液に分散させ、次いで該分散液
に還元剤を添加して、貴金属層をセラミック粉末の表面
の貴金属薄膜層の周りに形成させることからなる貴金属
被覆セラミック粉末の製造法。
1. A step of forming a precious metal thin film layer on the surface of ceramic powder by adding a reducing agent to a dispersion liquid in which ceramic powder is dispersed in an aqueous solution of a precious metal salt, and a ceramic powder having this precious metal thin film layer. , A noble metal-coated ceramic powder, which comprises dispersing in an aqueous solution containing a noble metal salt and a water-soluble polymer, and then adding a reducing agent to the dispersion to form a noble metal layer around the noble metal thin film layer on the surface of the ceramic powder. Manufacturing method.
JP26068992A 1992-09-03 1992-09-03 Manufacturing method of precious metal coated ceramic powder Expired - Fee Related JP3316235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26068992A JP3316235B2 (en) 1992-09-03 1992-09-03 Manufacturing method of precious metal coated ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26068992A JP3316235B2 (en) 1992-09-03 1992-09-03 Manufacturing method of precious metal coated ceramic powder

Publications (2)

Publication Number Publication Date
JPH0687683A true JPH0687683A (en) 1994-03-29
JP3316235B2 JP3316235B2 (en) 2002-08-19

Family

ID=17351412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26068992A Expired - Fee Related JP3316235B2 (en) 1992-09-03 1992-09-03 Manufacturing method of precious metal coated ceramic powder

Country Status (1)

Country Link
JP (1) JP3316235B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007121052A3 (en) * 2006-04-13 2007-12-06 3M Innovative Properties Co Metal-coated superabrasive material and methods of making the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007121052A3 (en) * 2006-04-13 2007-12-06 3M Innovative Properties Co Metal-coated superabrasive material and methods of making the same

Also Published As

Publication number Publication date
JP3316235B2 (en) 2002-08-19

Similar Documents

Publication Publication Date Title
US6632524B1 (en) Nickel powder, method for preparing the same and paste for use in making electrodes for electronic parts
JP3393093B2 (en) Manufacturing method of piezoelectric / electrostrictive ceramic microactuator using photolithography method
US5512379A (en) Coated palladium fine powder and electroconductive paste
JPH06168620A (en) Conductive paste composition
JPH10324906A (en) Nickel powder and production thereof
JP2002334614A (en) Conductive particles
JP2002334611A (en) Conductive particle composite
JP5206246B2 (en) Nickel powder and method for producing the same
JP3316235B2 (en) Manufacturing method of precious metal coated ceramic powder
JPH026206B2 (en)
JPH07242845A (en) Electrically-conductive coating compound for electrode and its production
JPH0543921A (en) Production of nickel fine powder
JP3705052B2 (en) Method for producing ultrafine conductor paste
JP2005154861A (en) Double layer-coated copper powder, method of producing the double layer-coated copper powder, and electrically conductive paste using the double layer-coated copper powder
JP2799916B2 (en) Conductive metal-coated ceramic powder
JPH08212827A (en) Conductive powder, its manufacture and conductive paste containing it
JP4288468B2 (en) Mixed fine particles and conductive paste
JPH07197103A (en) Method for coating surface of metallic powder with metallic compound
JPH0684409A (en) Conductive powder, conductive paste and actuator
JP3299159B2 (en) Nickel powder for internal electrode of multilayer ceramic capacitor and method for producing the same
JP4096645B2 (en) Nickel powder manufacturing method, nickel powder, conductive paste, and multilayer ceramic electronic component
JP2808639B2 (en) Conductive particles for electrodes of ceramic electronic components
JP2002275509A (en) Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same
JPH02215005A (en) Conductive grain and its manufacture
JP4780272B2 (en) Composite conductive particle powder, conductive paint containing the composite conductive particle powder, and multilayer ceramic capacitor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020514

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees