JPH0684409A - Conductive powder, conductive paste and actuator - Google Patents
Conductive powder, conductive paste and actuatorInfo
- Publication number
- JPH0684409A JPH0684409A JP4260688A JP26068892A JPH0684409A JP H0684409 A JPH0684409 A JP H0684409A JP 4260688 A JP4260688 A JP 4260688A JP 26068892 A JP26068892 A JP 26068892A JP H0684409 A JPH0684409 A JP H0684409A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- conductive
- piezoelectric
- ceramic
- electrostrictive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 115
- 239000000919 ceramic Substances 0.000 claims abstract description 66
- 239000002245 particle Substances 0.000 claims abstract description 33
- 239000010410 layer Substances 0.000 claims description 47
- 239000011247 coating layer Substances 0.000 claims description 17
- 239000007769 metal material Substances 0.000 claims description 15
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 229910052726 zirconium Inorganic materials 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 abstract description 34
- 229910052763 palladium Inorganic materials 0.000 abstract description 18
- 150000003839 salts Chemical class 0.000 abstract description 18
- 239000007788 liquid Substances 0.000 abstract description 17
- 239000003638 chemical reducing agent Substances 0.000 abstract description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 12
- 229910052751 metal Inorganic materials 0.000 abstract description 10
- 239000002184 metal Substances 0.000 abstract description 10
- 239000010970 precious metal Substances 0.000 abstract description 10
- 229920003169 water-soluble polymer Polymers 0.000 abstract description 10
- 239000010409 thin film Substances 0.000 abstract description 7
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 abstract description 6
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 abstract description 5
- 239000004354 Hydroxyethyl cellulose Substances 0.000 abstract description 5
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 abstract description 5
- 229910052709 silver Inorganic materials 0.000 abstract description 3
- 150000003863 ammonium salts Chemical class 0.000 abstract description 2
- 239000010408 film Substances 0.000 abstract description 2
- 239000002253 acid Substances 0.000 abstract 1
- 238000000926 separation method Methods 0.000 abstract 1
- KGYLMXMMQNTWEM-UHFFFAOYSA-J tetrachloropalladium Chemical compound Cl[Pd](Cl)(Cl)Cl KGYLMXMMQNTWEM-UHFFFAOYSA-J 0.000 abstract 1
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 39
- 229910000510 noble metal Inorganic materials 0.000 description 38
- 238000004519 manufacturing process Methods 0.000 description 23
- 239000007864 aqueous solution Substances 0.000 description 22
- 238000000034 method Methods 0.000 description 22
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 20
- 238000010304 firing Methods 0.000 description 13
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 11
- 238000000576 coating method Methods 0.000 description 11
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 11
- 239000011248 coating agent Substances 0.000 description 10
- 239000000463 material Substances 0.000 description 9
- 229910052697 platinum Inorganic materials 0.000 description 9
- 230000032798 delamination Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910002094 inorganic tetrachloropalladate Inorganic materials 0.000 description 4
- 239000012212 insulator Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000007747 plating Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- OAYXUHPQHDHDDZ-UHFFFAOYSA-N 2-(2-butoxyethoxy)ethanol Chemical compound CCCCOCCOCCO OAYXUHPQHDHDDZ-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- JGUREQGQSFSEAW-UHFFFAOYSA-J N.[Cl-].[Cl-].[Cl-].[Cl-].[Pt+4] Chemical compound N.[Cl-].[Cl-].[Cl-].[Cl-].[Pt+4] JGUREQGQSFSEAW-UHFFFAOYSA-J 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- BIVUUOPIAYRCAP-UHFFFAOYSA-N aminoazanium;chloride Chemical compound Cl.NN BIVUUOPIAYRCAP-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- FOSZYDNAURUMOT-UHFFFAOYSA-J azane;platinum(4+);tetrachloride Chemical compound N.N.N.N.[Cl-].[Cl-].[Cl-].[Cl-].[Pt+4] FOSZYDNAURUMOT-UHFFFAOYSA-J 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 238000010344 co-firing Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012799 electrically-conductive coating Substances 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229920003170 water-soluble synthetic polymer Polymers 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、導電性粉体に関するも
のである。本発明は特に、圧電または電歪アクチュエー
タの製造に有利に利用できる導電性粉末および、その導
電性粉末を含む導電性ペーストに関する。本発明は更
に、上記導電性粉末を用いた圧電または電歪アクチュエ
ータにも関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive powder. In particular, the present invention relates to a conductive powder that can be advantageously used for manufacturing a piezoelectric or electrostrictive actuator, and a conductive paste containing the conductive powder. The present invention also relates to a piezoelectric or electrostrictive actuator using the above conductive powder.
【0002】[0002]
【従来の技術】近年、圧電または電歪素子のポジショナ
及びアクチュエータとしての構成の研究が盛んに行なわ
れている。たとえば、圧電または電歪素子は、その表面
に電極層を形成し、それを多数積層した構成にて積層型
の圧電または電歪アクチュエータとして利用されてい
る。積層型アクチュエータは、発生力が大きい上に、応
答速度が速く、またバイモルフ型より電気機械変換効率
が高いという特徴を有しているため、プリンタヘッド、
精密位置決め装置等に微小変位制御素子として組み込ま
れ、利用されている。2. Description of the Related Art In recent years, research on the structure of a piezoelectric or electrostrictive element as a positioner and an actuator has been actively conducted. For example, a piezoelectric or electrostrictive element is used as a laminated piezoelectric or electrostrictive actuator having a structure in which an electrode layer is formed on the surface and a large number of layers are laminated. The laminated actuator has a large generation force, a high response speed, and a higher electromechanical conversion efficiency than the bimorph type actuator.
It is incorporated and used as a fine displacement control element in a precision positioning device or the like.
【0003】積層型圧電または電歪アクチュエータの製
造法には二種類ある。一つは、まず焼結した圧電または
電歪セラミックを切断、研磨して薄板状に加工し、これ
に電極を塗布したのち、接着もしくは圧着して積層化
し、次に積層体の端面に内部電極と一層おきに導通する
端部電極を付ける方法である。この製法では、工程数が
多いため生産性が悪く、また加工の制約上、一枚の圧電
または電歪セラミックスの厚さをあまり薄くできないた
め、駆動電圧を下げられないという問題がある。もう一
つの製造法は、積層セラミックスの製造方法をほぼ同一
であり、適当な圧電または電歪セラミックス粉とバイン
ダとを溶剤と混合して調製した混合液を、ドクターブレ
ード法、ロールコータ法またはスクリーン印刷法などの
塗布操作を利用してシート状に形成してグリーンシート
(未焼成の誘電体シート)とし、次いでこのグリーンシ
ートの表面に内部電極となる導電性ペーストを印刷など
の方法で塗布したブロックを製造したのち、このブロッ
クを順次積み重ねて積層体を得て、この積層体を焼成
し、最後に焼成物の端面に内部電極を一層おきに導通す
る端部電極を付ける方法である。この製造法によれば、
積層型アクチュエータが高い量産性にて製造することが
でき、また得られる積層型アクチュエータの駆動電圧を
下げることができるとの利点がある。There are two types of manufacturing methods for laminated piezoelectric or electrostrictive actuators. One is to cut and polish a sintered piezoelectric or electrostrictive ceramic into a thin plate shape, apply an electrode to this, and then bond or crimp it to form a laminate, and then laminate the internal electrode on the end face of the laminate. Is a method of attaching end electrodes that are electrically connected every other layer. This manufacturing method has a problem in that the productivity is poor due to the large number of steps, and because the thickness of one piezoelectric or electrostrictive ceramic cannot be made too thin due to processing restrictions, the driving voltage cannot be lowered. Another manufacturing method is almost the same as the manufacturing method of laminated ceramics, and a mixed liquid prepared by mixing a suitable piezoelectric or electrostrictive ceramic powder and a binder with a solvent is used to prepare a doctor blade method, a roll coater method or a screen. A green sheet (unfired dielectric sheet) is formed into a sheet by using a coating method such as a printing method, and then a conductive paste to be an internal electrode is coated on the surface of the green sheet by a method such as printing. After manufacturing the blocks, the blocks are sequentially stacked to obtain a laminated body, the laminated body is fired, and finally, end electrodes for electrically connecting every other internal electrode to the end surface of the fired product are attached. According to this manufacturing method,
There is an advantage that the laminated actuator can be manufactured with high mass productivity and the driving voltage of the obtained laminated actuator can be lowered.
【0004】後者のグリーンシートを利用する製法で
は、内部電極層の形成に用いる導電性ペーストとして
は、導電性の金属粉末を有機質ビヒクル中に均一に分散
させてペースト化したものを使用することになる。導電
性の金属粉末としては、用いる圧電または電歪セラミッ
クスの焼結温度以上の融点を有し、しかも大気雰囲気中
で圧電または電歪セラミックスと接触下に焼成しても、
酸化されたり、あるいは反応を起したりすることのない
金属材料の粉末であることが条件となる。この条件を満
足する金属粉末として、従来では、白金、金、パラジウ
ム、銀もしくはこれらの合金等の貴金属が一般的に用い
られてきた。ただし、還元雰囲気中あるいは低酸素分圧
雰囲気中で焼成する場合には、ニッケル、同等の卑金属
あるいは卑金属を含む合金が用いられることもある。In the latter manufacturing method using a green sheet, as the conductive paste used for forming the internal electrode layer, a conductive metal powder uniformly dispersed in an organic vehicle is used. Become. The conductive metal powder has a melting point equal to or higher than the sintering temperature of the piezoelectric or electrostrictive ceramics used, and even if it is fired in contact with the piezoelectric or electrostrictive ceramics in the air atmosphere,
The condition is that the powder is a metal material that is neither oxidized nor causes a reaction. As a metal powder satisfying this condition, noble metals such as platinum, gold, palladium, silver or alloys thereof have been generally used in the past. However, when firing in a reducing atmosphere or a low oxygen partial pressure atmosphere, nickel, an equivalent base metal, or an alloy containing a base metal may be used.
【0005】上記のグリーンシートを利用する製法は、
前記のように量産性が高く優れた製法であるが、一般
に、導電性金属材料と圧電または電歪セラミックスとの
間で、焼成時の膨張収縮曲線に極端な差があるため、グ
リーンシートと導電性金属材料塗布層との積層体を焼成
する際(すなわち、同時焼成の際)あるいは焼成後に、
導電性金属材料層(電極層)との界面でデラミネーショ
ン(層間剥離)が発生し易いとの問題がある。デラミネ
ーションが発生した場合には、製造される積層型アクチ
ュエータの各種特性、特に機械的強度が大きく低下し、
実用性が損なわれる。また、デラミネーションが発生し
ない場合でも、焼成後にひずみが残りやすく、積層型ア
クチュエータの強度の低下が発生する場合がある。この
ため、同時焼成に際しては微妙な条件の設定、高度の熟
練を操作などが必要であった。The manufacturing method using the above green sheet is
As described above, the manufacturing method is highly mass-producible and excellent, but in general, there is an extreme difference in the expansion / contraction curve during firing between the conductive metal material and the piezoelectric or electrostrictive ceramics. When firing a laminate with a coating layer of a hydrophilic metal material (that is, at the time of simultaneous firing) or after firing,
There is a problem that delamination (delamination) is likely to occur at the interface with the conductive metal material layer (electrode layer). When delamination occurs, various properties of the manufactured laminated actuator, especially mechanical strength, are greatly reduced,
Practicality is impaired. Further, even if delamination does not occur, strain is likely to remain after firing, and the strength of the laminated actuator may decrease. Therefore, in the simultaneous firing, it was necessary to set delicate conditions and operate with high skill.
【0006】上記の同時焼成におけるデラミネーション
の発生を防ぐための手段としては、導電性金属材料塗布
層に、共材となる圧電または電歪セラミックス(グリー
ンシートを構成する圧電または電歪セラミックスと同一
材料かあるいは同一成分を含むセラミックス材料)の粒
子を数%〜十数%の量で混在させて金属材料層(電極
層)の膨張収縮曲線をグリーンシートの膨張収縮曲線に
近ずける方法が利用されている。この方法によれば、デ
ラミネーションおよび残留ひずみの発生が回避でき、さ
らに電極層の導電性金属材料の使用量も低減させること
ができるとの利点がある。しかしながら、共材として用
いられる圧電または電歪セラミックスは絶縁体であるた
め、デラミネーション等の発生が有効に回避できるよう
に、電極層内の共材の量を増加させると、それに従っ
て、電極層の電気的特性が顕著に悪化するとの難点があ
る。As means for preventing the occurrence of delamination in the above co-firing, piezoelectric or electrostrictive ceramics as the co-material (the same as the piezoelectric or electrostrictive ceramics constituting the green sheet) are used in the conductive metal material coating layer. The method of making the expansion / contraction curve of the metal material layer (electrode layer) closer to the expansion / contraction curve of the green sheet by mixing particles of the material or the ceramic material containing the same component in an amount of several% to several tens%. Has been done. According to this method, it is possible to avoid the occurrence of delamination and residual strain, and further it is possible to reduce the amount of the conductive metal material used in the electrode layer. However, since the piezoelectric or electrostrictive ceramics used as the common material is an insulator, if the amount of common material in the electrode layer is increased so that the occurrence of delamination and the like can be effectively avoided, the electrode layer However, there is a problem that the electrical characteristics of are significantly deteriorated.
【0007】[0007]
【発明が解決しようとする課題】本発明の課題は、グリ
ーンシートを用い、同時焼成を利用する圧電または電歪
アクチュエータの製造に特に有利に使用することができ
る導電性粉末および導電性ペーストを提供することにあ
る。SUMMARY OF THE INVENTION An object of the present invention is to provide a conductive powder and a conductive paste which can be particularly advantageously used for manufacturing a piezoelectric or electrostrictive actuator using a green sheet and utilizing simultaneous firing. To do.
【0008】また、本発明の課題は、圧電または電歪素
子に付設する電極層を電気的特性の低下がなく、安価に
製造することのできる導電性粉末および導電性ペースト
を提供することにもある。Another object of the present invention is to provide a conductive powder and a conductive paste which can be manufactured at low cost without lowering the electrical characteristics of the electrode layer attached to the piezoelectric or electrostrictive element. is there.
【0009】また本発明の課題は、上記のような優れた
特性を有する導電性粉末および導電性ペーストを用いて
製造した、機械的特性および電気的特性の高い圧電また
は電歪アクチュエータ、特に積層型のアクチュエータを
提供することにもある。A further object of the present invention is to provide a piezoelectric or electrostrictive actuator having high mechanical and electrical characteristics, particularly a laminated type, which is manufactured by using the electrically conductive powder and the electrically conductive paste having the above excellent characteristics. There is also the provision of an actuator.
【0010】[0010]
【課題を解決するための手段】本発明は、圧電または電
歪セラミック粒子の周囲に導電性金属材料被覆層が形成
されてなる導電性粉体、およびこの導電性粉体を導電性
粉末を含んでなる導電性ペーストにある。DISCLOSURE OF THE INVENTION The present invention includes a conductive powder having a conductive metal material coating layer formed around piezoelectric or electrostrictive ceramic particles, and the conductive powder containing the conductive powder. In a conductive paste consisting of.
【0011】また、本発明は、上記の導電性粉末(ある
いは導電性ペースト)から形成された電極層を有する圧
電または電歪アクチュエータにもある。The present invention also resides in a piezoelectric or electrostrictive actuator having an electrode layer formed of the above-mentioned conductive powder (or conductive paste).
【0012】次に、代表的な積層型の圧電または電歪ア
クチュエータを示す添付図面を参照しながら、本発明を
詳しく説明する。代表的な積層型圧電または電歪アクチ
ュエータ(本明細書では単に積層型アクチュエータとも
いう)の構成の例を示す模式図を図1および図2に示
す。これらの積層型アクチュエータの構成自体は既に知
られ、かつ利用されている。The present invention will now be described in detail with reference to the accompanying drawings showing a typical laminated piezoelectric or electrostrictive actuator. 1 and 2 are schematic views showing an example of the configuration of a typical laminated piezoelectric or electrostrictive actuator (also simply referred to as a laminated actuator in this specification). The structure itself of these laminated actuators is already known and used.
【0013】図1の積層型アクチュエータは、以前から
知られ、利用されてきた構成のものであって、導電性粉
末から形成された電極層(内部電極層)11と、圧電ま
たは電歪セラミックからなる層12とが交互に積層され
てた構成を有する。そして、両側には各々の側の内部電
極に接続する外部電極13が付設されている。なお、積
層型アクチュエータは通常、電極層が数十層以上(たと
えば、百層)積層されているが、図では見易くするため
に層数を減らしている。The multilayer actuator shown in FIG. 1 has a structure known and used before, and includes an electrode layer (internal electrode layer) 11 formed of conductive powder and a piezoelectric or electrostrictive ceramic. And the layers 12 to be formed are alternately laminated. External electrodes 13 connected to the internal electrodes on each side are provided on both sides. Although the laminated actuator usually has several tens of electrode layers or more (for example, 100 layers) laminated, the number of layers is reduced for the sake of clarity.
【0014】図2の積層型アクチュエータは、図1の積
層型アクチュエータの改良型として提案されたものであ
って、導電性粉末から形成された電極層(内部電極層)
21と、圧電または電歪セラミックからなる層22とが
交互に積層されてた構成を有する。そして、両側には各
々の側の内部電極に接続する外部電極23が付設されて
いる。ただし、図1の積層型アクチュエータと同様に、
内部電極21と外部電極23との導通を両側で交互に行
なうようにするために、図2のタイプでは、内部電極2
1の片側に絶縁体24が設けられ、絶縁部を形成してい
る。この絶縁体は図2に示されているように、交互に設
けられる。なお、図2のタイプの積層型アクチュエータ
でも通常、電極層は数十層以上(たとえば、百層)積層
されているが、図では見易くするために層数を減らして
いる。The multi-layer actuator of FIG. 2 is proposed as an improved version of the multi-layer actuator of FIG. 1, and is an electrode layer (internal electrode layer) formed of conductive powder.
21 and layers 22 made of piezoelectric or electrostrictive ceramic are alternately laminated. External electrodes 23 connected to the internal electrodes on each side are provided on both sides. However, like the laminated actuator of FIG.
In order to alternately conduct the internal electrode 21 and the external electrode 23 on both sides, in the type shown in FIG.
An insulator 24 is provided on one side of No. 1 to form an insulating portion. The insulators are provided in alternation, as shown in FIG. In the laminated actuator of the type shown in FIG. 2, the electrode layers are usually laminated by several tens or more layers (for example, hundred layers), but the number of layers is reduced for the sake of clarity.
【0015】次に本発明の特徴的構成要件である導電性
粉末について詳しく述べる。本発明の導電性粉末は、前
述のように圧電または電歪セラミック粒子の周囲に導電
性金属材料被覆層が形成されてなる導電性粉体である。Next, the conductive powder, which is a characteristic feature of the present invention, will be described in detail. The conductive powder of the present invention is a conductive powder obtained by forming a conductive metal material coating layer around piezoelectric or electrostrictive ceramic particles as described above.
【0016】本発明の導電性粉末を製造するためには、
圧電または電歪セラミック粒子の周囲に、従来知られて
いる化学メッキ法あるいは無電解メッキ法などの方法を
利用して導電性金属材料被覆層を形成させてもよいが、
そのような方法で得られる導電性粉末では、電極層を形
成した場合に所望の電極特性が安定して得られにくいた
め、工業的に有利ということはできない。従って、本発
明の導電性粉末を製造するためには、下記のような新た
に開発された高純度の導電性金属材料被覆層の形成する
方法を利用することが望ましい。In order to produce the conductive powder of the present invention,
Around the piezoelectric or electrostrictive ceramic particles, a conductive metal material coating layer may be formed using a conventionally known method such as chemical plating or electroless plating.
The conductive powder obtained by such a method is not industrially advantageous because it is difficult to stably obtain desired electrode characteristics when the electrode layer is formed. Therefore, in order to produce the electroconductive powder of the present invention, it is desirable to utilize the following newly developed method for forming a highly pure electroconductive metal material coating layer.
【0017】すなわち、好ましい貴金属被覆セラミック
粉末の製造法は、貴金属塩の水溶液中にセラミック粉末
を分散させた分散液(一次分散液)に還元剤を添加し、
セラミック粉末の表面に貴金属薄膜層を形成させる工
程、そして、この貴金属薄膜層を有するセラミック粒子
を、貴金属塩と水溶性ポリマーとを含む水溶液に分散さ
せ、次いで該分散液(二次分散液)に還元剤を添加し
て、貴金属層をセラミック粒子の表面の貴金属薄膜層の
周りに形成させることからなる方法。That is, a preferable method for producing a ceramic powder coated with a noble metal is to add a reducing agent to a dispersion liquid (primary dispersion liquid) in which a ceramic powder is dispersed in an aqueous solution of a noble metal salt,
A step of forming a noble metal thin film layer on the surface of the ceramic powder, and the ceramic particles having the noble metal thin film layer are dispersed in an aqueous solution containing a noble metal salt and a water-soluble polymer, and then in the dispersion liquid (secondary dispersion liquid). A method comprising adding a reducing agent to form a noble metal layer around the noble metal thin film layer on the surface of ceramic particles.
【0018】上記の方法は、従来の化学メッキを改良し
た方法ということができる。すなわち、貴金属塩の水溶
液に分散させたセラミック粉末を含む分散液に還元剤を
添加して貴金属塩を還元し、セラミック粉末の表面に貴
金属を析出させて貴金属被覆層を形成させるという公知
の化学メッキ法を利用する方法であるが、セラミック粉
末または貴金属被覆粒子の凝集を抑制して、セラミック
相の露出が殆どなく、かつ純度の高い、すなわちセラミ
ック成分の混在が少ない貴金属被覆層を形成させる改良
方法である。The above method can be said to be an improved method of conventional chemical plating. That is, a known chemical plating method in which a reducing agent is added to a dispersion liquid containing a ceramic powder dispersed in an aqueous solution of a noble metal salt to reduce the noble metal salt, and a noble metal is deposited on the surface of the ceramic powder to form a noble metal coating layer. Method of utilizing the method, an improved method of suppressing the agglomeration of ceramic powder or noble metal-coated particles to form a noble metal coating layer having high exposure of the ceramic phase and high purity, that is, containing less ceramic components. Is.
【0019】本発明で用いる圧電または電歪セラミック
粒子の材料成分については特に制限がなく、たとえば、
PbTi03 、PZT(Pb(Zr,Ti)O3 の略
称)、PLZT((Pb,La)(Zr,Ti)O3 の
略称)、もしくはPMN(Pb(Mg1/3 Nb2/3 )O
3 の略称)にて表わされる金属酸化物、あるいはこれら
の金属酸化物を主成分として含む金属酸化物の粒子など
の圧電または電歪セラミック粒子粉末を利用することが
できる。There are no particular restrictions on the material components of the piezoelectric or electrostrictive ceramic particles used in the present invention.
PbTi0 3 , PZT (abbreviation of Pb (Zr, Ti) O 3 ), PLZT (abbreviation of (Pb, La) (Zr, Ti) O 3 ), or PMN (Pb (Mg 1/3 Nb 2/3 ) O
Piezoelectric or electrostrictive ceramic particle powders such as metal oxides represented by (abbreviation of 3 ) or particles of metal oxides containing these metal oxides as a main component can be used.
【0020】本発明で用いる圧電または電歪セラミック
粒子の粒子径についても特に制限はないが、前述の方法
を利用すれば、粒子径3μm以下、特に1μm以下、
0.8μm以下、更には粒子径0.5μm以下といった
超微粉末の均質な貴金属被覆が実現する。The particle size of the piezoelectric or electrostrictive ceramic particles used in the present invention is not particularly limited, but if the above method is used, the particle size is 3 μm or less, particularly 1 μm or less,
A uniform noble metal coating of ultrafine powder having a particle size of 0.8 μm or less and further a particle size of 0.5 μm or less is realized.
【0021】圧電または電歪セラミック粒子の表面に被
覆する貴金属としては、銀、白金、パラジウム、金など
のような電気伝導率が高い貴金属が選ばれる。As the noble metal with which the surface of the piezoelectric or electrostrictive ceramic particles is coated, a noble metal having a high electric conductivity such as silver, platinum, palladium or gold is selected.
【0022】上記の貴金属被覆セラミック粉末の好まし
い製造法では、まず貴金属の塩を水に溶解して貴金属の
水溶液を調製し、次いでこれにセラミック粉末を均一に
分散させて、一次分散液を得る。なお、セラミック粉末
の水分散液を先に調製し、これに水溶性貴金属塩を溶解
させる方法を利用することもできる。水溶性の貴金属の
塩としては、テトラクロロパラジウム酸アンモニウム
塩、テトラアンミンパラジウム酸クロライド、テトラク
ロロ白金酸アンモニウム塩、テトラアンミン白金酸クロ
ライドなどの各種の貴金属の塩(あるいは錯体)を利用
することができる。なお、一次分散液に、水溶性の貴金
属の塩とセラミック粉末以外のほかの物質(例えば、水
溶性ポリマー)は少量であれば添加してもよい。ただ
し、例えば、水溶性ポリマーを添加する場合には、その
添加量は後述の二次分散液への水溶性ポリマーの添加量
に比較して少ない量とする必要がある。In the preferred method for producing the above-mentioned noble metal-coated ceramic powder, a noble metal salt is first dissolved in water to prepare an aqueous solution of the noble metal, and then the ceramic powder is uniformly dispersed therein to obtain a primary dispersion liquid. It is also possible to use a method in which an aqueous dispersion of ceramic powder is first prepared and then a water-soluble noble metal salt is dissolved therein. As the water-soluble noble metal salt, various noble metal salts (or complexes) such as tetrachloropalladate ammonium salt, tetraamminepalladium chloride, tetrachloroplatinum ammonium salt, and tetraammineplatinic chloride can be used. It should be noted that a substance other than the water-soluble noble metal salt and the ceramic powder (for example, a water-soluble polymer) may be added to the primary dispersion liquid in a small amount. However, for example, when the water-soluble polymer is added, the addition amount needs to be smaller than the addition amount of the water-soluble polymer to the secondary dispersion liquid described later.
【0023】次に、上記の貴金属塩水溶液にセラミック
粉末を分散させてなるセラミック分散液(一次分散液)
を撹拌しながら、この分散液に還元剤を添加する。還元
剤としては、ヒドラジン、塩酸ヒドラジン、ギ酸、ホル
マリン、次亜リン酸などのような公知の化学メッキ法で
利用される還元剤が一般的に用いられる。還元剤は、通
常水溶液として、上記の一次分散液に加える。あるい
は、上記の一次分散液を還元剤水溶液に添加してもよ
い。この一次分散液と還元剤水溶液との混合により、セ
ラミック粉末の表面に貴金属薄膜(単原子膜あるいはそ
れに近い薄膜)が形成される。Next, a ceramic dispersion liquid (primary dispersion liquid) obtained by dispersing ceramic powder in the above-mentioned precious metal salt aqueous solution.
A reducing agent is added to this dispersion while stirring. As the reducing agent, a reducing agent such as hydrazine, hydrazine hydrochloride, formic acid, formalin, hypophosphorous acid and the like used in a known chemical plating method is generally used. The reducing agent is usually added as an aqueous solution to the above primary dispersion. Alternatively, the above primary dispersion may be added to the aqueous reducing agent solution. By mixing the primary dispersion and the reducing agent aqueous solution, a noble metal thin film (a monoatomic film or a thin film similar thereto) is formed on the surface of the ceramic powder.
【0024】次いで、上記の表面に貴金属薄膜層が形成
されたセラミック粉末(一次被覆セラミック粉末と呼
ぶ)を分散液から取り出したのち、この一次被覆セラミ
ック粉末を今度は、貴金属塩と水溶性ポリマーとを含む
水溶液に分散させて、二次分散液を調製する。ただし、
一次被覆セラミック粉末は必ずしも一次分散液から分離
する必要はなく、一次被覆セラミック粉末を含む一次分
散液に、貴金属塩と水溶性ポリマーとを添加して、二次
分散液を調製することもできる。Next, the ceramic powder having a noble metal thin film layer formed on the surface (referred to as a primary coating ceramic powder) is taken out from the dispersion liquid, and this primary coating ceramic powder is then mixed with a precious metal salt and a water-soluble polymer. To prepare a secondary dispersion liquid. However,
The primary coating ceramic powder does not necessarily have to be separated from the primary dispersion, and the noble metal salt and the water-soluble polymer may be added to the primary dispersion containing the primary coating ceramic powder to prepare the secondary dispersion.
【0025】二次分散液を調製する際に用いる貴金属塩
(水溶性貴金属)は、一次分散液を調製するに用いた水
溶性貴金属塩と同一であっても、あるいは別の水溶性貴
金属塩であってもよい。The noble metal salt (water-soluble noble metal) used in preparing the secondary dispersion may be the same as the water-soluble noble metal salt used in preparing the primary dispersion, or may be a different water-soluble noble metal salt. It may be.
【0026】二次分散液を調製するために用いられる水
溶性ポリマーに特に制限はないが、水溶性ポリマーとし
ては、セラミック微粉末分散性の良い、ヒドロキシエチ
ルセルロース、ヒドロキシプロピルセルロース、メチル
セルロース、ヒドロキシエチルメチルセルロース、ヒド
ロキシプロピルメチルセルロース、カルボキシメチルセ
ルロースなどのような水溶性セルロース誘導体を用いる
ことが望ましい。ただし、ゼラチン、カゼインなどの水
溶性天然物ポリマー、ポリビニルアルコール、ポリビニ
ルピロリドンなどの水溶性合成高分子化合物を用いても
よい。The water-soluble polymer used for preparing the secondary dispersion is not particularly limited, but as the water-soluble polymer, hydroxyethyl cellulose, hydroxypropyl cellulose, methyl cellulose, hydroxyethyl methyl cellulose having good dispersibility of fine ceramic powder can be used. It is desirable to use water-soluble cellulose derivatives such as, hydroxypropylmethyl cellulose, carboxymethyl cellulose and the like. However, water-soluble natural product polymers such as gelatin and casein, and water-soluble synthetic polymer compounds such as polyvinyl alcohol and polyvinylpyrrolidone may be used.
【0027】次いで、上記の貴金属塩と水溶性ポリマー
とを含む水溶液に一次被覆セラミック粉末を分散させて
なる二次分散液を撹拌しながら、この分散液に還元剤を
添加する。還元剤としては、原則として、一次被覆セラ
ミック粉末を生成させるために用いた還元剤が用いられ
るが、必ずしも同一である必要はない。この二次分散液
と還元剤(還元剤水溶液)との混合により、一次被覆セ
ラミック粉末の表面に一次被覆層よりはるかに厚い貴金
属層が形成される。Next, a reducing agent is added to this dispersion while stirring the secondary dispersion prepared by dispersing the primary coating ceramic powder in the aqueous solution containing the above-mentioned noble metal salt and water-soluble polymer. As the reducing agent, in principle, the reducing agent used for producing the primary coating ceramic powder is used, but it is not necessary to be the same. By mixing the secondary dispersion and the reducing agent (reducing agent aqueous solution), a noble metal layer much thicker than the primary coating layer is formed on the surface of the primary coating ceramic powder.
【0028】次いで、上記の表面に貴金属層が積層形成
されたセラミック粉末(二次被覆セラミック粉末と呼
ぶ)を、分散液から取り出したのち乾燥して、目的の貴
金属被覆セラミック粉末を得る。Next, the ceramic powder having a noble metal layer laminated on the surface (referred to as a secondary coated ceramic powder) is taken out from the dispersion and dried to obtain the target noble metal coated ceramic powder.
【0029】本発明の圧電または電歪セラミック粒子の
周囲に導電性金属材料被覆層が形成されてなる導電性粉
体では、芯部(核、あるいはコア)となるセラミック部
と、被覆層(シェル)となる貴金属部との比率を任意に
選ぶことができるが、通常、セラミック:貴金属を5:
95〜99:1(重量比)とする。但し、10:90〜
97:3(重量比)、さらには5:95〜80:20
(重量比)が好ましい。そして特に、セラミック:貴金
属が、10:90〜50:50(重量比)のものが好ま
しい。In the electroconductive powder of the present invention in which the electroconductive metal material coating layer is formed around the piezoelectric or electrostrictive ceramic particles, the ceramic portion to be the core portion (nucleus or core) and the coating layer (shell ) Can be arbitrarily selected, but usually ceramic: precious metal is 5:
It is 95 to 99: 1 (weight ratio). However, from 10:90
97: 3 (weight ratio), further 5:95 to 80:20
(Weight ratio) is preferable. In particular, the ceramic: noble metal is preferably 10:90 to 50:50 (weight ratio).
【0030】本発明の導電性粉体、そのまま単独で、常
法に従い、通常の結合剤などと混合して導電性塗料(ペ
ースト)とすることができるが、本発明の貴金属で被覆
した圧電または電歪セラミック粒子粉末を純貴金属粉末
と混合して用いてもよい。The electrically conductive powder of the present invention can be mixed as it is with an ordinary binder or the like into an electrically conductive coating (paste) according to a conventional method. The electrostrictive ceramic particle powder may be used as a mixture with a pure noble metal powder.
【0031】導電性ペーストを基板に塗布し、電極を製
造する方法は一般的に利用されており、本発明の貴金属
で被覆した圧電または電歪セラミック粒子を用いた導電
性ペーストを用いる場合も同様に処理して電極とするこ
とができる。The method of applying an electrically conductive paste to a substrate to produce an electrode is generally used, and the same applies when an electrically conductive paste using the noble metal-coated piezoelectric or electrostrictive ceramic particles of the present invention is used. Can be processed into an electrode.
【0032】[0032]
[実施例1]−−パラジウム被覆PZT(Pb(Zr,
Ti)O3 )微粉末の製造 (1)パラジウム一次被覆PZT微粉末の製造 5.0gのチタン酸PZT微粉末(Pb(Zr,Ti)
O3 、平均粒径0.5μm、比表面積2.1m2/g)と
4mlのテトラクロロパラジウム酸アンモニウム水溶液
(金属パラジウムに換算して1g/100mlの濃度の
水溶液)とを純水200mlに添加して、テトラクロロ
パラジウム酸アンモニウムの水溶液にチタン酸バリウム
微粉末が分散された一次分散液を調製した。この一次分
散液を、室温にて撹拌しながら、これに3mlの抱水ヒ
ドラジン水溶液(100%抱水ヒドラジン1mlを10
0mlの純水で希釈したもの)を添加した。この抱水ヒ
ドラジン水溶液の添加により、微量の金属パラジウムが
PZT微粉末の表面に均一に析出して、パラジウム一次
被覆PZT微粉末が生成した。[Example 1] --- Palladium-coated PZT (Pb (Zr,
Manufacture of Ti) O 3 ) fine powder (1) Manufacture of PZT fine powder coated with primary palladium: 5.0 g of PZT titanate fine powder (Pb (Zr, Ti))
O 3 , an average particle size of 0.5 μm, a specific surface area of 2.1 m 2 / g) and 4 ml of an aqueous solution of ammonium tetrachloropalladate (concentration of 1 g / 100 ml in terms of metallic palladium) were added to 200 ml of pure water. Then, a primary dispersion liquid in which barium titanate fine powder was dispersed in an aqueous solution of ammonium tetrachloropalladate was prepared. While stirring this primary dispersion at room temperature, 3 ml of an aqueous solution of hydrazine hydrate (1 ml of 100% hydrazine hydrate was added to 10 ml of this).
(Diluted with 0 ml of pure water) was added. By the addition of this aqueous hydrazine hydrate solution, a trace amount of metallic palladium was uniformly deposited on the surface of the PZT fine powder, and palladium primary-coated PZT fine powder was produced.
【0033】(2)パラジウム二次被覆PZT微粉末の
製造 上記のパラジウム一次被覆PZT微粉末を取り出して乾
燥させたのち、これをヒドロキシエチルセルロース水溶
液(0.2g/500ml)に均一に充分に分散させ、
懸濁させた。この分散液に、今度は、テトラアンミンパ
ラジウム酸クロライド水溶液(金属パラジウム(Pd)
に換算して15g含有)を添加して、二次分散液を調製
した。次いで、二次分散液を撹拌しながら、これに室温
にて、これに抱水ヒドラジン水溶液(100%抱水ヒド
ラジン4.5ml含有)をゆっくり添加した。この抱水
ヒドラジン水溶液の添加により、黒灰色の被覆層を有す
るPZT微粉末が得られた。これを濾別し、水洗し、次
いで乾燥して乾燥微粉末を得た。この乾燥微粉末(二次
被覆粒子)を走査型電子顕微鏡で観察したところ、凝集
がほとんど見られない均質な粉末であることが確認され
た。なお、この二次被覆粒子は、75重量%の金属パラ
ジウムと25重量%のPZTとからなっていた。(2) Production of PZT fine powder of secondary coating of palladium PZT fine powder of primary coating of palladium was taken out and dried, and then uniformly dispersed in an aqueous solution of hydroxyethyl cellulose (0.2 g / 500 ml). ,
Suspended. This dispersion was then mixed with an aqueous solution of tetraamminepalladium chloride (metal palladium (Pd)
(15 g in terms of) was added to prepare a secondary dispersion. Then, while the secondary dispersion was being stirred, an aqueous hydrazine hydrate solution (containing 4.5 ml of 100% hydrazine hydrate) was slowly added thereto at room temperature. By adding this hydrazine hydrate aqueous solution, PZT fine powder having a black-grey coating layer was obtained. This was separated by filtration, washed with water, and then dried to obtain a dry fine powder. When the dried fine powder (secondarily coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles consisted of 75 wt% metallic palladium and 25 wt% PZT.
【0034】パラジウム被覆PZT微粉末12.5重量
部、パラジウム金属粉末32.5重量部、エチルセルロ
ース3.8重量部、ジブチルフタレート3.8重量部、
そしてブチルカルビトール42.5重量部を3本ロール
ミルを用いて混練し、導電性ペーストを得た。更に、パ
ラジウム被覆PZT微粉末を用いず、パラジウム金属粉
末を50重量部を用いて、同様にして導電性ペーストを
得た。得られた導電性ペーストをスクリーン印刷によ
り、PZTグリーンシート(未焼成基板)の上に印刷
し、100℃で30分間乾燥の後、5時間かけて105
0℃にまで加熱した。次いで、この温度で一時間加熱焼
成したのち、冷却した。得られた電極の表面の外観と電
気特性(抵抗値)を第1表に示す。また、上記の導電性
ペーストを用いて同時焼成法により積層型圧電アクチュ
エータ[50層、電極間隔200μm(焼成後)]を製
造した。そして、この積層型圧電アクチュエータの破壊
応力10MN/m2 における三点曲げ試験(サンプル1
0個)での破壊確率を調べた。その結果も、第1表に示
す。Palladium-coated PZT fine powder 12.5 parts by weight, palladium metal powder 32.5 parts by weight, ethyl cellulose 3.8 parts by weight, dibutyl phthalate 3.8 parts by weight,
Then, 42.5 parts by weight of butyl carbitol was kneaded using a three-roll mill to obtain a conductive paste. Further, a conductive paste was obtained in the same manner by using 50 parts by weight of palladium metal powder without using the palladium-coated PZT fine powder. The obtained conductive paste is printed on the PZT green sheet (unbaked substrate) by screen printing, dried at 100 ° C. for 30 minutes, and then dried over 5 hours to 105.
Heated to 0 ° C. Then, after heating and firing at this temperature for 1 hour, it was cooled. Table 1 shows the appearance and electrical characteristics (resistance value) of the surface of the obtained electrode. Further, a laminated piezoelectric actuator [50 layers, electrode spacing 200 μm (after firing)] was manufactured by the simultaneous firing method using the above conductive paste. A three-point bending test (Sample 1) at a breaking stress of 10 MN / m 2 of this laminated piezoelectric actuator was performed.
The destruction probability at 0) was investigated. The results are also shown in Table 1.
【0035】 第1表 ──────────────────────────────────── 導電性粉末 抵抗値(mΩ/sq.) 外 観 破壊確率 ──────────────────────────────────── パラジウム被覆PZT微粉末 +Pd金属粉末 80 良 好 0% ──────────────────────────────────── Pd金属粉末のみ 75 電極周辺部剥離 50% ────────────────────────────────────Table 1 ──────────────────────────────────── Conductive powder Resistance value (mΩ / sq.) Outside probability of destruction ──────────────────────────────────── Palladium-coated PZT fine powder + Pd metal Powder 80 Good 0% ──────────────────────────────────── Pd Metal powder only 75 Electrode peripheral part Peeling 50% ────────────────────────────────────
【0036】[実施例2]−−パラジウム被覆PZT微
粉末の製造 (1)パラジウム一次被覆PZT微粉末の製造 各材料の使用量を下記のように替えた以外は、実施例1
の(1)と同様にしてパラジウム一次被覆PZT微粉末
を製造した。 PZT微粉末(実施例1と同一):4.0g テトラクロロパラジウム酸アンモニウム水溶液(同
上):3.2ml 純水:200ml(同上) 抱水ヒドラジン水溶液(同上):1.5ml (2)パラジウム二次被覆PZT微粉末の製造 各材料の使用量を下記のように替えた以外は、実施例1
の(2)と同様にしてパラジウム二次被覆PZT微粉末
を製造した。 ヒドロキシエチルセルロース:0.2g/500ml
(実施例1と同一) テトラアンミンパラジウム酸クロライド水溶液:16g
(金属Pd換算値) 抱水ヒドラジン水溶液:4.8ml(100%抱水ヒド
ラジン換算) 得られた黒灰色の被覆層を有するPZT微粉末を濾別
し、水洗し、次いで乾燥して乾燥微粉末を得た。この乾
燥微粉末(二次被覆粒子)を走査型電子顕微鏡で観察し
たところ、凝集が殆ど見られない均質な粉末であること
が確認された。この二次被覆粒子は、80重量%の金属
パラジウムと20重量%のPZTとからなっていた。[Example 2] -Production of palladium-coated PZT fine powder (1) Production of palladium primary-coated PZT fine powder Example 1 was changed except that the amounts of the respective materials used were changed as follows.
PdT-coated PZT fine powder was prepared in the same manner as in (1). PZT fine powder (same as Example 1): 4.0 g Ammonium tetrachloropalladate aqueous solution (same as above): 3.2 ml Pure water: 200 ml (same as above) Hydrazine hydrate aqueous solution (same as above): 1.5 ml (2) Palladium di Production of Next Coated PZT Fine Powder Example 1 except that the amount of each material used was changed as follows:
PdT secondary-coated PZT fine powder was produced in the same manner as in (2). Hydroxyethyl cellulose: 0.2 g / 500 ml
(Same as Example 1) Tetraamminepalladium chloride aqueous solution: 16 g
(Metal Pd equivalent) Aqueous hydrazine hydrate solution: 4.8 ml (100% hydrazine hydrate equivalent) The obtained PZT fine powder having a black gray coating layer was filtered off, washed with water, and then dried to obtain a dry fine powder. Got When the dried fine powder (secondary coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles consisted of 80% by weight metallic palladium and 20% by weight PZT.
【0037】上記のパラジウム二次被覆PZT微粉末に
ついて実施例1と同様にして、導電性ペーストを作成
し、次いで、この導電性ペーストを用いて同時焼成法に
より電極、そして積層型圧電アクチュエータして、導電
性粉末としての評価を行なったところ、実施例1におけ
る結果とほぼ同等な結果が得られた。A conductive paste was prepared in the same manner as in Example 1 using the above-mentioned palladium secondary-coated PZT fine powder, and then this conductive paste was used as an electrode and a laminated piezoelectric actuator by the simultaneous firing method. As a result of evaluation as a conductive powder, almost the same results as those in Example 1 were obtained.
【0038】[実施例3]−−白金被覆PZT微粉末の
製造 (1)白金一次被覆PZT微粉末の製造 各材料および使用量を下記のように替えた以外は、実施
例1の(1)と同様にして白金一次被覆PZT微粉末を
製造した。 PZT微粉末(実施例1と同一):3.0g テトラクロロ白金酸アンモニウム水溶液(金属Ptに換
算して1g/100mlの濃度の水溶液):1.5ml 純水:200ml(同上) 抱水ヒドラジン水溶液(同上):1.0ml (2)白金二次被覆PZT微粉末の製造 各材料の使用量を下記のように替えた以外は、実施例1
の(2)と同様にして白金二次被覆PZT微粉末を製造
した。 ヒドロキシエチルセルロース:0.2g/500ml
(実施例1と同一) テトラアンミン白金酸クロライド水分散液:17g(金
属Pt換算値) 抱水ヒドラジン水溶液:4.5ml(100%抱水ヒド
ラジン換算) 得られた黒灰色の被覆層を有するPZT微粉末を濾別
し、水洗し、次いで乾燥して乾燥微粉末を得た。この乾
燥微粉末(二次被覆粒子)を走査型電子顕微鏡で観察し
たところ、凝集が殆ど見られない均質な粉末であること
が確認された。この二次被覆粒子は85重量%の白金と
15重量%のPZTとからなっていた。上記の白金二次
被覆PZT微粉末について実施例1と同様にして、導電
性ペーストを作成し、次いでこの導電性ペーストを用い
て同時焼成法により電極、そして積層型圧電アクチュエ
ータして、導電性粉末としての評価を行なったところ、
良好な結果が得られた。[Example 3] -Production of platinum-coated PZT fine powder (1) Production of platinum primary-coated PZT fine powder (1) of Example 1 except that the materials and the amounts used were changed as follows. Platinum primary-coated PZT fine powder was produced in the same manner as in. PZT fine powder (the same as in Example 1): 3.0 g Ammonium tetrachloroplatinate aqueous solution (aqueous solution having a concentration of 1 g / 100 ml in terms of metal Pt): 1.5 ml Pure water: 200 ml (same as above) Hydrazine hydrate aqueous solution (Same as above): 1.0 ml (2) Production of platinum secondary coated PZT fine powder Example 1 except that the amount of each material used was changed as follows:
A platinum secondary coated PZT fine powder was produced in the same manner as in (2). Hydroxyethyl cellulose: 0.2 g / 500 ml
(Same as Example 1) Tetraammineplatinum chloride aqueous dispersion: 17 g (metal Pt conversion value) Hydrazine hydrate aqueous solution: 4.5 ml (100% hydrazine hydration conversion) PZT fine powder having the obtained black gray coating layer The powder was filtered off, washed with water and then dried to obtain a dry fine powder. When the dried fine powder (secondary coated particles) was observed with a scanning electron microscope, it was confirmed that the powder was a homogeneous powder with almost no aggregation. The secondary coated particles consisted of 85% by weight platinum and 15% by weight PZT. A conductive paste was prepared from the above-mentioned platinum secondary-coated PZT fine powder in the same manner as in Example 1, and then the conductive paste was used to form an electrode by the simultaneous firing method and a laminated piezoelectric actuator. As a result,
Good results have been obtained.
【0039】[0039]
【発明の効果】本発明の圧電または電歪セラミック粒子
の周囲に導電性金属材料被覆層が形成されてなる導電性
粉体を用いることにより、電極、および圧電または電歪
アクチュエータ(特に積層型)を、貴金属の使用量を低
減させ、かつ電極層の剥離を抑制しながら、製造するこ
とができる。EFFECT OF THE INVENTION By using a conductive powder in which a conductive metal material coating layer is formed around the piezoelectric or electrostrictive ceramic particles of the present invention, an electrode and a piezoelectric or electrostrictive actuator (particularly a laminated type) are used. Can be manufactured while reducing the amount of precious metal used and suppressing peeling of the electrode layer.
【図1】代表的な積層型圧電または電歪アクチュエータ
の構成の例を示す模式図。FIG. 1 is a schematic diagram showing an example of the configuration of a typical laminated piezoelectric or electrostrictive actuator.
【図2】別の代表的な積層型圧電または電歪アクチュエ
ータの構成の例を示す模式図。FIG. 2 is a schematic view showing an example of the configuration of another typical laminated piezoelectric or electrostrictive actuator.
11 電極層(内部電極層) 12 圧電または電歪セラミックからなる層 13 外部電極 21 電極層(内部電極層) 22 圧電または電歪セラミックからなる層 23 外部電極 24 絶縁体 11 Electrode Layer (Internal Electrode Layer) 12 Piezoelectric or Electrostrictive Ceramic Layer 13 External Electrode 21 Electrode Layer (Internal Electrode Layer) 22 Piezoelectric or Electrostrictive Ceramic Layer 23 External Electrode 24 Insulator
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 41/09 (72)発明者 小林 義浩 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社中央研究所内 (72)発明者 中西 紀元 神奈川県川崎市川崎区鈴木町1−1 味の 素株式会社中央研究所内─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location H01L 41/09 (72) Inventor Yoshihiro Kobayashi 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ajinomoto Central Research Institute Co., Ltd. (72) Inventor Nori Nakanishi 1-1, Suzuki-cho, Kawasaki-ku, Kawasaki-shi, Kanagawa Ajinomoto Co., Ltd. Central Research Institute
Claims (6)
導電性金属材料被覆層が形成されてなる導電性粉体。1. A conductive powder comprising a piezoelectric or electrostrictive ceramic particle and a conductive metal material coating layer formed around the particle.
が、PbTi03 、Pb(Zr,Ti)O3 、(Pb,
La)(Zr,Ti)O3 、もしくはPb(Mg1/3 N
b2/3 )O3 にて表わされる金属酸化物、あるいはこれ
らの金属酸化物を主成分として含む金属酸化物の粒子で
ある請求項1に記載の導電性粉体。Wherein said piezoelectric or electrostrictive ceramic particles are, PbTi0 3, Pb (Zr, Ti) O 3, (Pb,
La) (Zr, Ti) O 3 or Pb (Mg 1/3 N
The conductive powder according to claim 1, which is a particle of a metal oxide represented by b 2/3 ) O 3 or a metal oxide containing these metal oxides as a main component.
ミック粒子成分相が実質的に存在することのない請求項
1に記載の導電性粉体。3. The conductive powder according to claim 1, wherein the ceramic particle component phase is substantially absent on the outer surface of the conductive metal material coating layer.
含んでなる導電性ペースト。4. A conductive paste containing the conductive powder according to claim 1, 2, or 3.
ら形成された電極層を有する圧電または電歪アクチュエ
ータ。5. A piezoelectric or electrostrictive actuator having an electrode layer formed from the conductive powder according to claim 1.
からなる層とが交互に積層されてなる請求項5に記載の
積層型の圧電または電歪アクチュエータ。6. The laminated piezoelectric or electrostrictive actuator according to claim 5, wherein the electrode layers and layers made of piezoelectric or electrostrictive ceramic are alternately laminated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4260688A JPH0684409A (en) | 1992-09-03 | 1992-09-03 | Conductive powder, conductive paste and actuator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4260688A JPH0684409A (en) | 1992-09-03 | 1992-09-03 | Conductive powder, conductive paste and actuator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0684409A true JPH0684409A (en) | 1994-03-25 |
Family
ID=17351397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4260688A Pending JPH0684409A (en) | 1992-09-03 | 1992-09-03 | Conductive powder, conductive paste and actuator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0684409A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005286014A (en) * | 2004-03-29 | 2005-10-13 | Denso Corp | Conductive paste |
US8384271B2 (en) | 2009-11-16 | 2013-02-26 | Samsung Electronics Co., Ltd. | Electroactive polymer actuator and method of manufacturing the same |
US8564181B2 (en) | 2010-12-07 | 2013-10-22 | Samsung Electronics Co., Ltd. | Electroactive polymer actuator and method of manufacturing the same |
-
1992
- 1992-09-03 JP JP4260688A patent/JPH0684409A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005286014A (en) * | 2004-03-29 | 2005-10-13 | Denso Corp | Conductive paste |
US8384271B2 (en) | 2009-11-16 | 2013-02-26 | Samsung Electronics Co., Ltd. | Electroactive polymer actuator and method of manufacturing the same |
US8564181B2 (en) | 2010-12-07 | 2013-10-22 | Samsung Electronics Co., Ltd. | Electroactive polymer actuator and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100859646B1 (en) | Conductive particle manufacturing method, conductive paste, and electronic component manufacturing method | |
US6632524B1 (en) | Nickel powder, method for preparing the same and paste for use in making electrodes for electronic parts | |
JPH07207185A (en) | Coated palladium fine powder and conductive paste | |
US5871840A (en) | Nickel powder containing a composite oxide of La and Ni and process for preparing the same | |
JP3397753B2 (en) | Multilayer piezoelectric element and manufacturing method thereof | |
JPH06168620A (en) | Conductive paste composition | |
JP2014037614A (en) | Metal powder, electronic component and method of producing the same | |
JPH0684409A (en) | Conductive powder, conductive paste and actuator | |
JP2007165063A (en) | Conductive particle, conductive paste, and electronic component | |
JP2002334611A (en) | Conductive particle composite | |
JP4427966B2 (en) | Multilayer ceramic electronic component and manufacturing method thereof | |
JP2002080902A (en) | Method for producing electrically conductive powder, electrically conductive powder, electrically conductive paste and laminated ceramic electronic parts | |
JP3316235B2 (en) | Manufacturing method of precious metal coated ceramic powder | |
JP3698098B2 (en) | Method for producing conductive powder, conductive powder, conductive paste, and multilayer ceramic electronic component | |
JP2808639B2 (en) | Conductive particles for electrodes of ceramic electronic components | |
JP2004068090A (en) | Method for manufacturing conductive powder, conductive powder, conductive paste and electronic partt of laminated ceramic | |
JPH08212827A (en) | Conductive powder, its manufacture and conductive paste containing it | |
JP2002275509A (en) | Method for manufacturing metal powder, metal powder, conductive paste which uses the same and multilayer ceramic electronic parts which use the same | |
JP2003129116A (en) | Method for manufacturing nickel powder, nickel powder, nickel paste, and laminated ceramic electronic component | |
JP2553658B2 (en) | Electrode material for electronic parts | |
JP4085587B2 (en) | Metal powder manufacturing method, metal powder, conductive paste and multilayer ceramic electronic component | |
JPH03215916A (en) | Method for formation of electrode and electronic part using it | |
JP2000269073A (en) | Multilayer ceramic capacitor and manufacture thereof | |
JPH03218615A (en) | Formation of electrode and laminated chip component using same | |
JPH029113A (en) | Paste for internal electrode and chip component using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20030708 |