JPH068490B2 - Sintered alloy with excellent specularity and method for producing the same - Google Patents

Sintered alloy with excellent specularity and method for producing the same

Info

Publication number
JPH068490B2
JPH068490B2 JP63206722A JP20672288A JPH068490B2 JP H068490 B2 JPH068490 B2 JP H068490B2 JP 63206722 A JP63206722 A JP 63206722A JP 20672288 A JP20672288 A JP 20672288A JP H068490 B2 JPH068490 B2 JP H068490B2
Authority
JP
Japan
Prior art keywords
less
sintered alloy
sintering
specularity
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63206722A
Other languages
Japanese (ja)
Other versions
JPH0257666A (en
Inventor
純一 太田
禎公 清田
一男 桜田
宏 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP63206722A priority Critical patent/JPH068490B2/en
Publication of JPH0257666A publication Critical patent/JPH0257666A/en
Publication of JPH068490B2 publication Critical patent/JPH068490B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、粉末冶金法によって製造される鏡面性に優れ
た焼結合金およびその製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a sintered alloy produced by a powder metallurgy method and having excellent mirror surface properties, and a production method thereof.

<従来の技術> 近年、粉末冶金法による焼結部品の製造は著しい伸びを
示し、焼結部品の適用範囲が広がりつつある。なかでも
形状の複雑化にともない、加工歩留りの劣る切削加工法
から粉末冶金法に置き換えられつつある。
<Prior Art> In recent years, the production of sintered parts by powder metallurgy has shown remarkable growth, and the range of application of sintered parts is expanding. Among them, the cutting method, which has a poor processing yield, is being replaced by the powder metallurgy method due to the complicated shape.

しかし、粉末冶金法で製造された焼結合金には気孔が存
在し、この気孔が鏡面性や耐食性を損ねるといった欠点
があった。このため、焼結合金の密度はできるだけ高い
ことが望まれている。
However, the sintered alloy produced by the powder metallurgy method has pores, and these pores have a drawback that the specularity and the corrosion resistance are impaired. Therefore, it is desired that the density of the sintered alloy be as high as possible.

従来の金型プレス成形では原料粉末が200〜数10μ
mと大きいので、成形焼結だけでは密度比80〜90%
で、気孔率も高く、気孔径も粗大であった。特に原料が
粗粒粉であるため、粒子間に50μm以上の粗大気孔が
残留し、鏡面性ばかりでなく、耐食性も損ねていた。そ
こで鏡面性の得られる焼結合金の製造方法として、焼結
体表面を部分的に溶融凝固させる方法が開発されてい
る。
In the conventional die press molding, the raw material powder is 200 to several 10 μm.
Since it is as large as m, the density ratio is 80 to 90% only by forming and sintering.
The porosity was also high and the pore size was coarse. In particular, since the raw material was coarse powder, coarse air holes of 50 μm or more remained between the particles, and not only specularity but also corrosion resistance was impaired. Therefore, a method of partially melting and solidifying the surface of the sintered body has been developed as a method for producing a sintered alloy having a mirror surface property.

たとえば、特開昭62−290803号に示されるよう
に、焼結後、表層部をレーザーを用いて熱溶融凝固した
後、鏡面研磨を行なう方法がある。
For example, as disclosed in JP-A-62-290803, there is a method in which after sintering, the surface layer portion is melted and solidified by using a laser and then mirror-polished.

さらに気孔をできるだけ減らすために、焼結材料を再圧
縮、再焼結したり、あるいは熱間鍛造や熱間静水圧処理
するなどの方法が用いられている。
Further, in order to reduce the pores as much as possible, methods such as recompressing and re-sintering the sintered material, hot forging or hot isostatic pressing are used.

<発明が解決しようとする課題> しかし、前述のように焼結工程後、工程が増えることに
よって作業が複雑になり、さらに特別な装置が必要とな
り、粉末冶金法の有意性が損なわれる。
<Problems to be Solved by the Invention> However, as described above, the number of steps increases after the sintering step, which complicates the work, requires a special apparatus, and impairs the significance of the powder metallurgy method.

また溶融させることによって、表面が変形し、寸法精度
等に問題が生ずる。従って、このような溶融凝固し、表
面の組織を改良する手法は回避しなければならない。
Further, the melting causes the surface to be deformed, which causes a problem in dimensional accuracy and the like. Therefore, such a technique of melting and solidifying and improving the surface texture must be avoided.

<課題を解決するための手段> そこで本発明者らは種々の検討を重ねた結果、金属粉末
の焼結体において、気孔率が5%(面積率)以下、2μ
m以下の径を有する気孔が60%以上、かつ最大気孔径
が10μm以下であり、非金属介在物の含有量が1%以
下であることを特徴とする鏡面性に優れた焼結合金を提
供する。
<Means for Solving the Problem> Then, as a result of various studies by the present inventors, the sintered body of the metal powder has a porosity of 5% (area ratio) or less, 2 μm or less.
Provided is a sintered alloy having excellent specularity, characterized in that the pores having a diameter of m or less are 60% or more, the maximum pore diameter is 10 μm or less, and the content of nonmetallic inclusions is 1% or less. To do.

前記焼結合金は、オーステナイト系もしくはフェライト
系のステンレス鋼組成のものであっても、あるいはNi
0.5〜50重量%および残部Feを含有するものであ
ってもよい。
The sintered alloy may have an austenitic or ferritic stainless steel composition, or Ni
It may contain 0.5 to 50% by weight and the balance Fe.

また、本発明は原料として、平均粒径15μm以下であ
り、非金属介在物の含有量が1%以下であるオーステナ
イト系もしくはフェライト系ステンレス鋼粉を用い、該
鋼粉に結合材を添加し、混合、成形した後、この成形体
中の結合剤を非酸化性雰囲気下で加熱除去し、続いて1
050〜1350℃の温度、0.1Torr以下の減圧
下で焼結後1250から1350℃の温度、非酸化性雰
囲気下で焼結し、該素材を研磨する鏡面性に優れた焼結
合金の製造方法を提供する。
Further, in the present invention, austenitic or ferritic stainless steel powder having an average particle size of 15 μm or less and a content of non-metallic inclusions of 1% or less is used as a raw material, and a binder is added to the steel powder, After mixing and molding, the binder in the molded body is removed by heating in a non-oxidizing atmosphere, and then 1
Manufacture of a sintered alloy having excellent specularity, which is sintered at a temperature of 050 to 1350 ° C. under a reduced pressure of 0.1 Torr or less and then sintered at a temperature of 1250 to 1350 ° C. in a non-oxidizing atmosphere to polish the material. Provide a way.

本発明はさらに、原料として平均粒径15μm以下であ
り、かつ主成分としてNi、0.5〜50重量%、およ
び残部Feを含有し非金属介在物の含有量が1%以下で
ある金属粉末を用い、該金属粉末に結合材を添加し、混
合、成形後この成形体中の結合剤を非酸化性雰囲気中で
加熱除去し、続いて温度1100〜1300℃下、還元
性雰囲気下で焼結後、該素材を研磨する鏡面性に優れた
焼結合金の製造方法を提供する。
The present invention further provides a metal powder having an average particle size of 15 μm or less as a raw material, and containing Ni as a main component, 0.5 to 50% by weight, and the balance Fe, and the content of nonmetallic inclusions being 1% or less. , A binder is added to the metal powder, and after mixing and molding, the binder in the molded body is removed by heating in a non-oxidizing atmosphere, followed by firing at a temperature of 1100 to 1300 ° C. in a reducing atmosphere. Provided is a method for producing a sintered alloy having excellent specularity for polishing the raw material after binding.

以下、本発明について詳細に説明する。Hereinafter, the present invention will be described in detail.

本発明において主目的である鏡面性に最も影響をおよぼ
すのは面積あたりの気孔率である。
The porosity per area has the greatest effect on the specularity, which is the main object of the present invention.

つまり、気孔は少ない程鏡面性は向上するが、粉末冶金
法で製造される焼結合金に気孔が残留するのは周知の通
りである。
That is, as the number of pores is smaller, the specularity is improved, but it is well known that the pores remain in the sintered alloy produced by the powder metallurgy method.

本発明において気孔率は5%以下と規定した。気孔率が
5%を越えた場合には、気孔の総数が増すばかりでな
く、最大気孔径も大となり、さらに気孔の形状も円形か
ら角ばったものや不規則状へと不均一な形状を示し、そ
の結果鏡面性を低下させる。
In the present invention, the porosity is defined as 5% or less. When the porosity exceeds 5%, not only the total number of pores increases, but also the maximum pore diameter increases, and the shape of the pores shows a non-uniform shape from circular to angular or irregular. As a result, the specularity is lowered.

次に、本発明において、最大気孔径は10μm以下と規
定した。最大気孔径が10μmを超えると、焼結体を研
磨することによって気孔の部分だけが優先的に研磨さ
れ、研磨後表面がうねりを生ずることになり、その結果
反射率が低下し、鏡面性が劣る。
Next, in the present invention, the maximum pore diameter is defined as 10 μm or less. When the maximum pore diameter exceeds 10 μm, only the pores are preferentially polished by polishing the sintered body, and the surface becomes waviness after polishing. As a result, the reflectance is lowered and the mirror surface property is deteriorated. Inferior.

また、気孔分布において2μm以下の径を有する気孔が
60%以上と規定した。気孔はその径が小さくなる程球
状化することは実験によって確認しており、2μm以下
ではほぼ球形をしている。したがって、研磨面から気孔
の底までの深さは2μm以下である。鏡面性は光の反射
具合に左右されるが、2μmを超えた深さをもつ凹凸表
面の鏡面性は低下する。
Further, in the pore distribution, 60% or more of the pores having a diameter of 2 μm or less were defined. It has been confirmed by experiments that the pores become spherical as the diameter becomes smaller, and the pores are almost spherical at 2 μm or less. Therefore, the depth from the polished surface to the bottom of the pores is 2 μm or less. The specularity depends on how light is reflected, but the specularity of the uneven surface having a depth exceeding 2 μm is deteriorated.

さらに、2μm以下の径の気孔が全気孔数の60%未満
では所望の鏡面性が得られないため、下限をそのように
規定した。
Furthermore, if the pores with a diameter of 2 μm or less are less than 60% of the total number of pores, the desired specularity cannot be obtained, so the lower limit is specified as such.

ただし、本発明において気孔径とは次式によって算出さ
れたDをいう。
However, in the present invention, the pore diameter means D calculated by the following equation.

ここでS:気孔断面積 また、金属粉末製造時に混入したり、あるいは原料粉末
そのものにはじめから含有していると思われる非金属介
在物は、光の反射率が金属組織のそれと異なるため不可
避的存在量として上限を1%とした。1%超の場合、所
望の鏡面性が得られない。望ましくは0.5%以下であ
る。
Here, S: pore cross-sectional area In addition, non-metallic inclusions that are likely to be mixed during the production of the metal powder or contained in the raw material powder itself are inevitable because the light reflectance is different from that of the metal structure. The upper limit of the existing amount was 1%. If it exceeds 1%, the desired specularity cannot be obtained. It is preferably 0.5% or less.

次に本発明の焼結合金の製造方法に従って説明する。Next, the method for producing a sintered alloy of the present invention will be described.

本発明に原料として用いる金属粉末は、特に限定されな
い。例えば、Fe−Ni系、ステンレス鋼等が挙げられ
る。
The metal powder used as a raw material in the present invention is not particularly limited. For example, Fe-Ni system, stainless steel, etc. are mentioned.

一般的な金属粉末を用いる場合、前記金属粉末は、平均
粒径15μm以下、非金属介在物が1%以下のものを用
い、前記粉末に結合剤を混合し、成形後この成形体中の
結合剤を非酸化性雰囲気中で加熱して除去し、続いて焼
結後該焼結体を研磨して得ることができる。
When a general metal powder is used, the metal powder having an average particle size of 15 μm or less and non-metallic inclusions of 1% or less is used, a binder is mixed with the powder, and after the molding, the bonding in the molded body is performed. The agent can be obtained by heating and removing the agent in a non-oxidizing atmosphere, followed by sintering and then polishing the sintered body.

なお、本発明において、前述した成分組成を有する金属
粉末は、有機バインダと混合して成形用コンパウンドと
する。
In the present invention, the metal powder having the above-mentioned component composition is mixed with an organic binder to form a molding compound.

ここで、用いる有機バインダは、熱可塑性樹脂類または
ワックス類あるいはその混合物を主体とし、他に可塑
剤、潤滑剤および脱脂促進剤などを添加することができ
る。
The organic binder used here is mainly composed of thermoplastic resins, waxes, or a mixture thereof, and may further contain a plasticizer, a lubricant, a degreasing accelerator, and the like.

熱可塑性樹脂としては、アクリル系、ポリエチレン系、
ポリプロピレン系およびポリスチレン系等の1種あるい
は2種以上の混合物が選択でき、 ワックス類としては密ろう、木ろう、モンタンワックス
等に代表されるような天然ろうおよび低分子ポリエチレ
ン、ミクロクリスタリンワックス、パラフィンワックス
等に代表されるような合成ろうから選ばれる1種あるい
は2種以上を選択して使用できる。
As the thermoplastic resin, acrylic type, polyethylene type,
One type or a mixture of two or more types such as polypropylene type and polystyrene type can be selected. As waxes, natural waxes such as beeswax, wood wax, montan wax and low molecular weight polyethylene, microcrystalline wax, paraffin, etc. One kind or two or more kinds selected from synthetic waxes represented by wax and the like can be selected and used.

可塑剤は、主体となる樹脂類あるいはワックス類との組
合せによって選択しフタル酸ジ−2−エチルヘキシル
(DOP)、フタル酸ジ−エチル(DEP)、フタル酸
ジ−n−ブチル(DHP)等を使用できる。
The plasticizer is selected according to the combination with the main resin or wax, and is selected from di-2-ethylhexyl phthalate (DOP), di-ethyl phthalate (DEP), di-n-butyl phthalate (DHP) and the like. Can be used.

潤滑剤としては、高級脂肪酸、脂肪酸アミド、脂肪酸エ
ステル等を使用でき、場合によってはワックス類を潤滑
剤として兼用する。
As the lubricant, higher fatty acid, fatty acid amide, fatty acid ester or the like can be used, and waxes are also used as the lubricant in some cases.

また、脱脂を促進することを目的に、樟脳等のような昇
華性物質を添加することもできる。
Further, a sublimable substance such as camphor can be added for the purpose of promoting degreasing.

もちろん本発明において、これらの有機バインダに限定
されるものではなく、またその量も、成形法によって異
なる。
Of course, the present invention is not limited to these organic binders, and the amount thereof also varies depending on the molding method.

成形機は従来の金型プレス機の他に押出成形機や粉末圧
延機、射出形成機などが使用される。
As the molding machine, an extrusion molding machine, a powder rolling machine, an injection molding machine or the like is used in addition to the conventional die pressing machine.

結合剤の配合量は通常の金型プレスでは0.5〜3.0
重量%ほどであるが、複雑形状の製品を成形できる射出
成形法では10重量%程の結合剤を要する。成形後、結
合剤を除去するために、非酸化性雰囲気中で一定速度で
昇温、保持する。この時の昇温速度を速くし過ぎると製
品に割れや膨れが生じるため5℃/h〜20℃/hで昇
温する。
The compounding amount of the binder is 0.5 to 3.0 in a normal die press.
The amount of the binder is about 10% by weight, but the injection molding method capable of molding a product having a complicated shape requires about 10% by weight of the binder. After molding, in order to remove the binder, the temperature is raised and maintained at a constant rate in a non-oxidizing atmosphere. If the heating rate at this time is too fast, the product will crack or swell, so the temperature is raised at 5 ° C / h to 20 ° C / h.

なお、金属粉末がステンレス鋼組成である場合には、酸
素と親和力の強いCr元素を含むために0.1Torr
以下の減圧下で焼結する必要があるが、Fe−Ni合金
等の場合には、還元性雰囲気中で焼結することが可能で
ある。
When the metal powder has a stainless steel composition, it contains 0.1 Torr because it contains a Cr element having a strong affinity with oxygen.
It is necessary to sinter under the following reduced pressure, but in the case of Fe-Ni alloy or the like, it is possible to sinter in a reducing atmosphere.

ステンレス鋼の場合、鏡面性が要求される場合には、も
ちろんその材質的特性として耐食性も優れていつことが
必要である。Cr元素は耐食性向上に最も効果がある
が、Crの蒸気圧が高いことから、真空焼結において真
空度によってはCrが蒸発して表面Cr濃度が著しく低
下する。そこで、Cr蒸発を抑制し、Cr濃度分布を不
均一化させないようにすることが肝要である。これは本
発明において低温度での真空焼結およびその後の高温焼
結によって達成される。
In the case of stainless steel, when mirror surface properties are required, it is of course necessary that the material properties also have excellent corrosion resistance. Although Cr element is most effective in improving the corrosion resistance, since the vapor pressure of Cr is high, Cr evaporates and the surface Cr concentration remarkably decreases in vacuum sintering depending on the degree of vacuum. Therefore, it is important to suppress Cr evaporation and prevent the Cr concentration distribution from becoming non-uniform. This is achieved in the present invention by vacuum sintering at low temperature followed by high temperature sintering.

また、酸素と結合し易いため、粉末表面が酸化物で覆わ
れており、原子の拡散が遮られて緻密化が容易に進まな
い。即ち、Cr系酸化物を還元する必要があり、これを
容易に進めるために0.1Torr以下の減圧下で焼結
する。
Further, since it is easy to combine with oxygen, the powder surface is covered with an oxide, diffusion of atoms is blocked, and densification does not proceed easily. That is, it is necessary to reduce the Cr-based oxide, and in order to facilitate this, sintering is performed under a reduced pressure of 0.1 Torr or less.

0.1Torrを超えると、Cr系酸化物の還元反応が
進み難くなるため不適である。
When it exceeds 0.1 Torr, the reduction reaction of the Cr-based oxide is difficult to proceed, which is not suitable.

また、真空焼結温度の温度範囲は、1050〜1350
℃としたのは、1050℃より低い温度では、Cr系酸
化物の還元が十分なされないため、酸化物が残留し、そ
の後の焼結を阻害する。従って、下限を1050℃とし
た。一方、1350℃を超えて焼結した場合、Crの表
面からの蒸発量が大きくなり濃度分布が不均一になるば
かりでなく、液相が出現して形状を崩すなどの欠陥が見
られる。よって上限を1350℃とした。
The temperature range of the vacuum sintering temperature is 1050 to 1350.
Since the Cr-based oxide is not sufficiently reduced at a temperature lower than 1050 ° C., the oxide remains and hinders subsequent sintering. Therefore, the lower limit is set to 1050 ° C. On the other hand, when the temperature exceeds 1350 ° C., not only the amount of evaporation from the surface of Cr becomes large and the concentration distribution becomes nonuniform, but also defects such as appearance of liquid phase and collapse of shape are observed. Therefore, the upper limit was set to 1350 ° C.

続いて、高密度化および拡散による合金元素の均一化を
達成するために非酸化性雰囲気中、1250〜1350
℃で焼結するのがよい。前段階の低温の真空焼結で粒子
同士の接触点ができ、焼結が始まるが、さらに高温にす
ることによって拡散を促進させて焼結を進め、残留気孔
の微細化と球状化を図る。雰囲気を非酸化性としたのは
1250℃以上の高温でのCr蒸発を抑制するためであ
る。
Subsequently, in order to achieve the densification and homogenization of the alloying elements by diffusion, 1250 to 1350 in a non-oxidizing atmosphere.
It is better to sinter at ° C. The low-temperature vacuum sintering in the previous stage creates contact points between the particles, and the sintering begins, but further raising the temperature promotes diffusion to promote the sintering, thereby making residual pores finer and spherical. The atmosphere is made non-oxidizing in order to suppress Cr evaporation at a high temperature of 1250 ° C. or higher.

なお、ここで非酸化性雰囲気に用いるガスはAr、H
e、N等の不活性ガス、H、CO、CH、C
等の還元ガス、または燃焼排ガス等である。
The gases used for the non-oxidizing atmosphere are Ar and H.
e, inert gas such as N 2 , H 2 , CO, CH 4 , C 3 H
It is a reducing gas such as 8 or a combustion exhaust gas.

1250〜1350℃の範囲で焼結するのは1250℃
より低い温度では元素の拡散が遅いので密度上昇が得ら
れない。1350℃を超えると液相が出現し、形状が崩
れたり、脆化相を残すことによる強度の低下を招くこと
になる。このため、1250℃以上、上限を1350℃
以下とするのが好適である。
Sintering in the range of 1250 to 1350 ° C is 1250 ° C
At lower temperatures the density increase cannot be obtained due to the slow diffusion of the elements. When the temperature exceeds 1350 ° C, a liquid phase appears, the shape collapses, and the embrittlement phase remains, resulting in a decrease in strength. For this reason, 1250 ° C or higher, the upper limit is 1350 ° C
The following is preferable.

Fe−Ni系の場合は、難還元性元素を含有しないた
め、工業的に用いられる還元性雰囲気を用いることによ
って焼結が進む。しかし、結合剤が完全に除去されずに
残っているため、不純物として最終焼結体に悪影響を及
ぼす。そのために、湿水素雰囲気、露点0〜30℃で保
持後乾燥雰囲気に変えることが望ましい。
In the case of the Fe-Ni system, since it does not contain the non-reducing element, the sintering proceeds by using the industrially used reducing atmosphere. However, since the binder remains without being completely removed, it adversely affects the final sintered body as an impurity. For this reason, it is desirable to change to a wet hydrogen atmosphere and a dry atmosphere after holding at a dew point of 0 to 30 ° C.

Fe−Ni系の焼結温度は1100〜1300℃で行な
うのがよい。1100℃未満では拡散速度が遅く、十分
な鏡面性が得られるような気孔分布を示さないので以下
は不適である。
The sintering temperature of the Fe—Ni system is preferably 1100 to 1300 ° C. If the temperature is lower than 1100 ° C., the diffusion rate is slow and the pore distribution that gives sufficient specularity is not exhibited, so the following is not suitable.

一方、1300℃を超えた焼結温度は工業的な雰囲気焼
結炉では発熱体、および耐火物の消耗が激しく、経済的
に不利である。さらに、気孔の分布についてはそれを超
えた温度でも著しい効果がみられないことから、130
0℃以下が好ましい。
On the other hand, a sintering temperature of higher than 1300 ° C is economically disadvantageous because a heating element and a refractory material are heavily consumed in an industrial atmosphere sintering furnace. Furthermore, regarding the distribution of pores, no remarkable effect is observed even at a temperature exceeding that, so
It is preferably 0 ° C or lower.

次に、上述の方法で得られた焼結体を研磨することによ
って、鏡面性に優れた焼結合金が得られる。研磨方法と
しては、バレル研磨あるいはバフ研磨等があるが、好ま
しくはバレル研磨後、バフ研磨するとより一層の鏡面性
が向上する。
Next, the sintered body obtained by the above method is polished to obtain a sintered alloy having excellent mirror surface properties. The polishing method includes barrel polishing and buff polishing, but preferably buff polishing after barrel polishing further improves the mirror surface property.

<実施例> 以下に実施例に基づいて本発明を具体的に説明する。<Examples> The present invention will be specifically described below based on Examples.

(実施例1〜3、比較例1〜3) 原料粉末として、オーステナイト系ステンレス鋼組成の
(SUS316組成)の水アトマイズ鋼粉を用意し、分
級によって平均粒径を5.0μm〜20μmに調整し
た。これに熱可塑性樹脂とワックスとを混合し、加圧ニ
ーダを用いて混練した。この時の混合比は重量比で9:
1とした。これを射出成形機を用いて長さ40mm、幅2
0mm、厚さ3mmの直方体に成形した。次に、窒素雰囲気
中で昇温速度10℃/hで600℃まで加熱、結合剤を
除去した。それを真空中(<10-3Torr)1150
℃で1時間以上焼結し、続いてArガス雰囲気中130
0℃で2時間保持した。
(Examples 1 to 3 and Comparative Examples 1 to 3) As the raw material powder, water atomized steel powder of (SUS316 composition) having an austenitic stainless steel composition was prepared, and the average particle size was adjusted to 5.0 μm to 20 μm by classification. . A thermoplastic resin and a wax were mixed with this and kneaded using a pressure kneader. The mixing ratio at this time is 9: by weight.
It was set to 1. Using an injection molding machine, this is 40 mm long and 2 width wide.
It was molded into a rectangular parallelepiped having a thickness of 0 mm and a thickness of 3 mm. Next, the binder was removed by heating to 600 ° C. at a temperature rising rate of 10 ° C./h in a nitrogen atmosphere. In vacuum (<10 -3 Torr) 1150
Sintering at ℃ for 1 hour or more, and then in Ar gas atmosphere 130
Hold at 0 ° C. for 2 hours.

この焼結体表面をバフ研磨し、鏡面仕上げされた表面を
画像処理によって気孔率、および気孔径を測定した。ま
た、バフ研磨した表面を光沢度計を用いて鏡面性を評価
した。
The surface of this sintered body was buffed and the mirror-finished surface was subjected to image processing to measure the porosity and the pore diameter. Further, the buffed surface was evaluated for specularity using a gloss meter.

そして、光沢度計のスケールの読みから鏡面性をA,
B、Cの3段階とした。
Then, from the reading of the scale of the gloss meter, the specularity is A,
There are 3 levels of B and C.

なお、Aは溶製材の鏡面性の90%以上、Bは溶製材の
鏡面性の80〜90%、Cは溶製材の鏡面性の80%以
下である。
A is 90% or more of the specularity of the ingot, B is 80 to 90% of the specularity of the ingot, and C is 80% or less of the specularity of the ingot.

その結果を第1表に示す。The results are shown in Table 1.

実施例1〜3に示すように、原料粉の平均粒径が15μ
m以下、気孔径2μm以下が60%以上、10μm以上
の気孔が全くなく、介在物比率が1%以下と良好である
ため、光沢度計による鏡面性の評価は、いずれもAで優
れた特性を示した。
As shown in Examples 1 to 3, the average particle size of the raw material powder is 15 μm.
m or less and pore diameter 2 μm or less is 60% or more, there are no pores of 10 μm or more, and the inclusion ratio is 1% or less, which is good. showed that.

一方、比較例1〜2は、平均粒径として20μmの粉末
を用いており、最大気孔径が10μm以上で気孔率も5
%を超え、その分布も広く、鏡面性の著しく劣る結果で
あった。
On the other hand, Comparative Examples 1 and 2 use powder having an average particle size of 20 μm, the maximum pore size is 10 μm or more, and the porosity is 5 as well.
%, The distribution was wide and the specularity was extremely poor.

また、比較例3は介在物が1.2%と高く、焼結が阻害
されたことも加わり、気孔の収縮も不十分となり、2の
焼結体の鏡面性が低下したと考えられる。
Further, in Comparative Example 3, inclusions were as high as 1.2%, and the fact that sintering was hindered also contributed to insufficient shrinkage of pores, and it is considered that the specularity of the sintered body 2 deteriorated.

(実施例4、5、比較例4、5) 原料粉末として水アトマイズ鉄粉を分級によって平均粒
径5.0〜18.0μmに調整し、これにカルボニルN
i粉(平均粒径:8μm)を2重量%添加し、実施例1
〜3と同様な方法で成形し、脱結合剤処理した。そし
て、1250℃で水素雰囲気中で2時間焼結した。その
後、焼結体をバフ研磨し、実施例1〜3と同様に気孔
率、気孔径、鏡面性を調べた。
(Examples 4 and 5, Comparative Examples 4 and 5) Water atomized iron powder as a raw material powder was adjusted to an average particle size of 5.0 to 18.0 μm by classification, and carbonyl N was added thereto.
2% by weight of i powder (average particle size: 8 μm) was added, and
Molded in the same manner as in ~ 3 and treated with a debinding agent. Then, it was sintered at 1250 ° C. in a hydrogen atmosphere for 2 hours. After that, the sintered body was buffed, and the porosity, pore diameter, and specularity were examined in the same manner as in Examples 1 to 3.

その結果を第2表に示す。The results are shown in Table 2.

実施例4、5はいずれも原料粉末の平均粒径が5.0、
8.0μmと微粉であるため、優れた焼結性を示し、残
留気孔も2μm以下が非常に多く、さらに非金属介在物
が0.1%と少ない。その結果、優れた鏡面性を示す焼
結体が得られた。
In each of Examples 4 and 5, the average particle size of the raw material powder was 5.0,
Since it is a fine powder of 8.0 μm, it exhibits excellent sinterability, very few residual pores are 2 μm or less, and the nonmetallic inclusions are as small as 0.1%. As a result, a sintered body having excellent specularity was obtained.

一方、比較例4は原料粉末が5.0μmと微粉である
が、非金属介在物の比率が1.8%と高いため焼結が進
み難くなり、気孔分布はブロードになった。その結果、
鏡面性に劣る焼結体となったと考えられる。
On the other hand, in Comparative Example 4, the raw material powder was a fine powder of 5.0 μm, but since the ratio of non-metallic inclusions was as high as 1.8%, it was difficult to proceed with sintering, and the pore distribution became broad. as a result,
It is considered that the sintered body became inferior in specularity.

比較例5は原料粉が18μmと粗いため、焼結が進み難
くなり、気孔率が6.4%と高く、気孔分布もブロード
な焼結体が得られた。さらに、最大気孔径も10μm以
上となったために、鏡面性は低下したと考えられる。
In Comparative Example 5, since the raw material powder was as coarse as 18 μm, it was difficult to proceed with sintering, the porosity was as high as 6.4%, and a sintered body having a broad pore distribution was obtained. Further, it is considered that the specularity was lowered because the maximum pore diameter was 10 μm or more.

<発明の効果> 本発明は、特定の表面処理工程を施さずに、通常の固相
焼結によって、気孔率が5%以下、2μm以下の気孔が
60%以上で最大気孔径が10μm以下、介在物1%以
下である鏡面仕上げに適した焼結合金およびその製造方
法を提供するものである。
<Effects of the Invention> The present invention has a porosity of 5% or less, 2 μm or less pores of 60% or more, and a maximum pore diameter of 10 μm or less by ordinary solid phase sintering without performing a specific surface treatment step. It is intended to provide a sintered alloy having 1% or less of inclusions, which is suitable for mirror finishing, and a method for producing the same.

これにより、本発明は鏡面性が要求される装飾用外装部
品等の歩留りの向上、およびその部品の適用範囲の拡大
が期待される。
As a result, the present invention is expected to improve the yield of decorative exterior parts and the like which are required to have a mirror surface property and to expand the range of application of the parts.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大坪 宏 千葉県千葉市川崎町1番地 川崎製鉄株式 会社技術研究本部内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroshi Otsubo 1 Kawasaki-cho, Chiba-shi, Chiba Kawasaki Steel Co., Ltd. Technical Research Division

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】金属粉末の焼結体において、気孔率が5%
(面積率)以下、2μm以下の径を有する気孔が60%
以上、かつ最大気孔径が10μm以下であり、非金属介
在物の含有量が1%以下であることを特徴とする鏡面性
に優れた焼結合金。
1. A sintered body of metal powder having a porosity of 5%.
(Area ratio) or less 60% of pores having a diameter of 2 μm or less
Above, the maximum pore diameter is 10 μm or less, and the content of non-metallic inclusions is 1% or less, a sintered alloy having excellent mirror surface properties.
【請求項2】前記焼結合金がオーステナイト系もしくは
フェライト系ステンレス鋼組成である請求項1記載の鏡
面性に優れた焼結合金鋼。
2. A sintered alloy steel having excellent specularity according to claim 1, wherein the sintered alloy has an austenitic or ferritic stainless steel composition.
【請求項3】前記焼結合金がNi、0.5〜50重量
%、および残部Feを含有する組成である請求項1記載
の鏡面性に優れた焼結合金鋼。
3. A sintered alloy steel having excellent specularity according to claim 1, wherein the sintered alloy has a composition containing Ni, 0.5 to 50% by weight, and the balance Fe.
【請求項4】原料として、平均粒径15μm以下であ
り、非金属介在物の含有量が1%以下であるオーステナ
イト系もしくはフェライト系ステンレス鋼粉を用い、 該鋼粉に結合材を添加し、混合、成形した後、この成形
体中の結合剤を非酸化性雰囲気下で加熱除去し、続いて
1050〜1350℃の温度、0.1Torr以下の減
圧下で焼結し、その後、1250〜1350℃の温度、
非酸化性雰囲気下で焼結し、該素材を研磨することを特
徴とする鏡面性に優れた焼結合金の製造方法。
4. An austenitic or ferritic stainless steel powder having an average particle size of 15 μm or less and a content of non-metallic inclusions of 1% or less is used as a raw material, and a binder is added to the steel powder. After mixing and molding, the binder in this molded body is removed by heating under a non-oxidizing atmosphere, followed by sintering at a temperature of 1050 to 1350 ° C. and a reduced pressure of 0.1 Torr or less, and then 1250 to 1350. ℃ temperature,
A method for producing a sintered alloy having excellent specularity, which comprises sintering the material in a non-oxidizing atmosphere and polishing the material.
【請求項5】原料として平均粒径15μm以下であり、
かつ主成分としてNi、0.5〜50重量%、および残
部Feを含有し、非金属介在物の含有量が1%以下であ
る金属粉末を用い、該金属粉末に結合材を添加し、混
合、成形後この成形体中の結合剤を非酸化性雰囲気中で
加熱除去し、続いて温度1100〜1300℃下、還元
性雰囲気下で焼結後、該素材を研磨することを特徴とす
る鏡面性に優れた焼結合金の製造方法。
5. A raw material having an average particle size of 15 μm or less,
A metal powder containing Ni, 0.5 to 50% by weight as the main component, and the balance Fe and containing 1% or less of non-metallic inclusions is used, and a binder is added to the metal powder and mixed. After molding, the binder in the molded body is removed by heating in a non-oxidizing atmosphere, and subsequently, the material is polished after sintering in a reducing atmosphere at a temperature of 1100 to 1300 ° C., and then the material is polished. Method for producing a sintered alloy having excellent properties.
JP63206722A 1988-08-20 1988-08-20 Sintered alloy with excellent specularity and method for producing the same Expired - Fee Related JPH068490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63206722A JPH068490B2 (en) 1988-08-20 1988-08-20 Sintered alloy with excellent specularity and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63206722A JPH068490B2 (en) 1988-08-20 1988-08-20 Sintered alloy with excellent specularity and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0257666A JPH0257666A (en) 1990-02-27
JPH068490B2 true JPH068490B2 (en) 1994-02-02

Family

ID=16528023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63206722A Expired - Fee Related JPH068490B2 (en) 1988-08-20 1988-08-20 Sintered alloy with excellent specularity and method for producing the same

Country Status (1)

Country Link
JP (1) JPH068490B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153091A (en) * 1997-09-18 1999-06-08 Matsushita Electric Ind Co Ltd Slide member and refrigeration compressor using the slide member
KR20070112411A (en) * 2005-03-29 2007-11-23 쿄세라 코포레이션 Reflective member, light-emitting device using same and illuminating device
JP5423086B2 (en) * 2009-03-24 2014-02-19 セイコーエプソン株式会社 Metal powder and sintered body

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4910772A (en) * 1972-05-26 1974-01-30
JPS4975406A (en) * 1972-11-24 1974-07-22
JPS5032013A (en) * 1973-07-24 1975-03-28
US3888636A (en) * 1971-02-01 1975-06-10 Us Health High density, high ductility, high strength tungsten-nickel-iron alloy & process of making therefor
JPS5160608A (en) * 1974-09-26 1976-05-26 Jei Haaueru Chaaruzu
JPS51139508A (en) * 1975-04-30 1976-12-01 Jieimuzu Dein Richiyaado Method of producing metallic product from metallic powder
US4062678A (en) * 1974-01-17 1977-12-13 Cabot Corporation Powder metallurgy compacts and products of high performance alloys
JPS5426908A (en) * 1977-08-03 1979-02-28 Toshiba Corp Preparation of sintered product of corrosion-resisting alloy
JPS54141308A (en) * 1978-04-26 1979-11-02 Kobe Steel Ltd Forging method for steel powder
US4299629A (en) * 1979-06-01 1981-11-10 Goetze Ag Metal powder mixtures, sintered article produced therefrom and process for producing same
JPS5716103A (en) * 1980-01-14 1982-01-27 Uitetsuku Keiman Patentsu Ltd Production of parts from particulate substance
JPS5792104A (en) * 1980-11-29 1982-06-08 Daido Steel Co Ltd Sintered metallic article and its production
JPS58126901A (en) * 1982-01-21 1983-07-28 株式会社ウイテック ジャパン Removal of binder from green body
JPS58153702A (en) * 1982-03-05 1983-09-12 株式会社ウイテック ジャパン Formation of molded alloy parts from metal particle or chemical particle of alloy components
JPS59229403A (en) * 1983-06-08 1984-12-22 Mitsubishi Metal Corp Production of sintered metallic member and binder for injection molding
JPS60197851A (en) * 1984-03-19 1985-10-07 Toyota Motor Corp Member for valve mechanism system of internal- combustion chamber
US4591482A (en) * 1985-08-29 1986-05-27 Gorham International, Inc. Pressure assisted sinter process
JPS61130403A (en) * 1984-11-28 1986-06-18 Hitachi Metals Ltd Sintering method of high-density material
JPS61130406A (en) * 1984-11-28 1986-06-18 Hitachi Metals Ltd Production of atomized iron powder or steel powder
JPS61238943A (en) * 1985-04-15 1986-10-24 Kobe Steel Ltd High-strength non-magnetic steel excelling in rust resistance
JPS6237302A (en) * 1985-04-26 1987-02-18 Hitachi Metals Ltd Production of metallic or alloy article
JPS62280304A (en) * 1986-05-30 1987-12-05 Seiko Instr & Electronics Ltd External ornamental parts
JPS62283875A (en) * 1986-02-14 1987-12-09 株式会社 ウイテツクジヤパン Manufacture of sintered body of particulate material
JPS62290803A (en) * 1986-06-09 1987-12-17 Seiko Instr & Electronics Ltd Production of external parts for wrist watch
JPS6331480A (en) * 1986-07-23 1988-02-10 Canon Inc Ultrasonic motor
JPS63183103A (en) * 1987-01-26 1988-07-28 Chugai Ro Kogyo Kaisha Ltd Sintering method for injection molding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6483640A (en) * 1987-09-22 1989-03-29 Toyota Motor Corp Manufacture of sintered alloy having excellent high temperature wear resistance

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3888636A (en) * 1971-02-01 1975-06-10 Us Health High density, high ductility, high strength tungsten-nickel-iron alloy & process of making therefor
JPS4910772A (en) * 1972-05-26 1974-01-30
JPS4975406A (en) * 1972-11-24 1974-07-22
JPS5032013A (en) * 1973-07-24 1975-03-28
US4062678A (en) * 1974-01-17 1977-12-13 Cabot Corporation Powder metallurgy compacts and products of high performance alloys
JPS5160608A (en) * 1974-09-26 1976-05-26 Jei Haaueru Chaaruzu
JPS51139508A (en) * 1975-04-30 1976-12-01 Jieimuzu Dein Richiyaado Method of producing metallic product from metallic powder
JPS5426908A (en) * 1977-08-03 1979-02-28 Toshiba Corp Preparation of sintered product of corrosion-resisting alloy
JPS54141308A (en) * 1978-04-26 1979-11-02 Kobe Steel Ltd Forging method for steel powder
US4299629A (en) * 1979-06-01 1981-11-10 Goetze Ag Metal powder mixtures, sintered article produced therefrom and process for producing same
JPS5716103A (en) * 1980-01-14 1982-01-27 Uitetsuku Keiman Patentsu Ltd Production of parts from particulate substance
JPS5792104A (en) * 1980-11-29 1982-06-08 Daido Steel Co Ltd Sintered metallic article and its production
JPS58126901A (en) * 1982-01-21 1983-07-28 株式会社ウイテック ジャパン Removal of binder from green body
JPS58153702A (en) * 1982-03-05 1983-09-12 株式会社ウイテック ジャパン Formation of molded alloy parts from metal particle or chemical particle of alloy components
JPS59229403A (en) * 1983-06-08 1984-12-22 Mitsubishi Metal Corp Production of sintered metallic member and binder for injection molding
JPS60197851A (en) * 1984-03-19 1985-10-07 Toyota Motor Corp Member for valve mechanism system of internal- combustion chamber
JPS61130403A (en) * 1984-11-28 1986-06-18 Hitachi Metals Ltd Sintering method of high-density material
JPS61130406A (en) * 1984-11-28 1986-06-18 Hitachi Metals Ltd Production of atomized iron powder or steel powder
JPS61238943A (en) * 1985-04-15 1986-10-24 Kobe Steel Ltd High-strength non-magnetic steel excelling in rust resistance
JPS6237302A (en) * 1985-04-26 1987-02-18 Hitachi Metals Ltd Production of metallic or alloy article
US4591482A (en) * 1985-08-29 1986-05-27 Gorham International, Inc. Pressure assisted sinter process
JPS62283875A (en) * 1986-02-14 1987-12-09 株式会社 ウイテツクジヤパン Manufacture of sintered body of particulate material
JPS62280304A (en) * 1986-05-30 1987-12-05 Seiko Instr & Electronics Ltd External ornamental parts
JPS62290803A (en) * 1986-06-09 1987-12-17 Seiko Instr & Electronics Ltd Production of external parts for wrist watch
JPS6331480A (en) * 1986-07-23 1988-02-10 Canon Inc Ultrasonic motor
JPS63183103A (en) * 1987-01-26 1988-07-28 Chugai Ro Kogyo Kaisha Ltd Sintering method for injection molding

Also Published As

Publication number Publication date
JPH0257666A (en) 1990-02-27

Similar Documents

Publication Publication Date Title
EP0378702B1 (en) Sintered alloy steel with excellent corrosion resistance and process for its production
EP0356131B1 (en) Sintered bodies and production process thereof
EP0379583B1 (en) SINTERED MAGNETIC Fe-Co MATERIAL AND PROCESS FOR ITS PRODUCTION
KR920003625B1 (en) Starting material for injection molding of metal powder method of producing sintered parts
KR930002522B1 (en) Process for removal of oil of injection molding
JP2002531693A (en) Hard sintered compact having nickel- and cobalt-free, nitrogen-containing steel as binder for hard phase
JP2003166003A (en) Stainless steel powder for sintering, granulated powder for manufacturing sintered stainless steel, and sintered stainless steel
JPH0215139A (en) Ticn-base cermet and its manufacture
JPH068490B2 (en) Sintered alloy with excellent specularity and method for producing the same
JP2000017301A (en) Production of high density titanium sintered compact
JP5470955B2 (en) Metal powder and sintered body
JP5423086B2 (en) Metal powder and sintered body
JPH0637643B2 (en) Injection molding composition
JPH0257605A (en) Production of sintered alloy having excellent dimensional precision
JPH11315304A (en) Manufacture of sintered body
JPH0225501A (en) Stainless steel powder for injection forming and production of compound for injection forming and stainless steel sintered body
JPH02290901A (en) Metal fine powder for compacting and manufacture of sintered body thereof
KR930006442B1 (en) Sintered fe-co type magnetic materials
JP2922248B2 (en) Manufacturing method of sintered alloy with excellent corrosion resistance
JP3366696B2 (en) Manufacturing method of high strength cermet
JP3000641B2 (en) Manufacturing method of cemented carbide or cermet alloy
JPH0717983B2 (en) Method for producing high nitrogen stainless steel sintered body
JPH0689369B2 (en) Binder composition for injection molding
CA2000034A1 (en) Corrosion-resistant sintered alloy steels and method for making same
JPH10140209A (en) Production of cemented carbide by injection molding

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees