JPH0684624A - Rare earth metal-iron-boron based powder for anisotropic permanent magnet and production thereof - Google Patents

Rare earth metal-iron-boron based powder for anisotropic permanent magnet and production thereof

Info

Publication number
JPH0684624A
JPH0684624A JP4238299A JP23829992A JPH0684624A JP H0684624 A JPH0684624 A JP H0684624A JP 4238299 A JP4238299 A JP 4238299A JP 23829992 A JP23829992 A JP 23829992A JP H0684624 A JPH0684624 A JP H0684624A
Authority
JP
Japan
Prior art keywords
iron
rare earth
permanent magnet
earth metal
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4238299A
Other languages
Japanese (ja)
Other versions
JP3213638B2 (en
Inventor
Kazuhiko Yamamoto
山本  和彦
Yuichi Miyake
裕一 三宅
Tsutomu Okada
力 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santoku Corp
Original Assignee
Santoku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP23829992A priority Critical patent/JP3213638B2/en
Application filed by Santoku Corp filed Critical Santoku Corp
Priority to US08/017,043 priority patent/US5383978A/en
Priority to EP93102276A priority patent/EP0556751B1/en
Priority to AT93102276T priority patent/ATE167239T1/en
Priority to DE69318998T priority patent/DE69318998T2/en
Priority to KR1019930002058A priority patent/KR0131333B1/en
Publication of JPH0684624A publication Critical patent/JPH0684624A/en
Priority to US08/626,157 priority patent/US5630885A/en
Priority to US08/636,905 priority patent/US5656100A/en
Priority to US08/636,772 priority patent/US5674327A/en
Application granted granted Critical
Publication of JP3213638B2 publication Critical patent/JP3213638B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a powder material for permanent magnet having high anisotropy and excellent magnet characteristics by subjecting a rare earth-iron- boron based alloy ingot for permanent magnet, containing specified vol.% or more of crystal having specified particle size, to hydrogenation. CONSTITUTION:A rare earth-iron-boron based alloy ingot containing 90vol.% or more of crystal having particle size of 0.1-50mum in short axis direction and 0.1-100mum in long axis direction is employed as a material for permanent magnet. The alloy ingot is subjected to hydrogenation to produce a rare earth-iron- boron based powder for anisotropic permanent magnet. This powder exhibits high anisotropy and quite excellent magnet characteristics and thereby employed as a material for resin magnet or bond magnet. Furthermore, the powder for anisotropic permanent magnet having excellent characteristics can be produced easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁石特性に優れた希土
類金属−鉄−ボロン系異方性永久磁石用粉末及びその製
造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rare earth metal-iron-boron anisotropic anisotropic permanent magnet powder having excellent magnet characteristics and a method for producing the same.

【0002】[0002]

【従来の技術】従来、永久磁石用合金鋳塊は、溶融した
合金を金型に鋳造する金型鋳造法により製造されている
のが一般的である。しかし該金型鋳造法により合金溶融
物を凝固させる場合、合金溶融物の抜熱過程において、
抜熱初期では鋳型伝熱律速であるが、凝固が進行する
と、鋳型−凝固相間及び凝固相における伝熱が抜熱律速
となり、金型冷却能を向上させても鋳塊内部と鋳型近傍
の鋳塊では、冷却条件が異なり、特に鋳塊厚が厚いほど
このような現象が生じる。このように鋳塊の内部と表面
付近での冷却条件の相違が大きい場合には、特に磁石組
成における高残留磁束密度側の鋳造組織に、初晶γ−F
eが多く存在し、このため鋳塊の中央部に粒径10〜1
00μmのα−Feが残存し、同時に主相を取り巻く希
土類金属に富んだ相の大きさも大きくなる。
2. Description of the Related Art Conventionally, alloy ingots for permanent magnets are generally produced by a die casting method in which a molten alloy is cast in a die. However, when solidifying the alloy melt by the die casting method, in the heat removal process of the alloy melt,
In the initial stage of heat removal, the heat transfer rate is controlled by the mold, but when solidification proceeds, heat transfer between the mold and the solidification phase and in the solidification phase becomes heat control, and even if the mold cooling capacity is improved, the casting inside the ingot and in the vicinity of the mold In the ingot, the cooling conditions are different, and such a phenomenon occurs especially when the ingot thickness is large. When there is a large difference in the cooling conditions between the inside of the ingot and the vicinity of the surface as described above, the primary structure γ-F,
There is a large amount of e, and for this reason the grain size is 10 to 1 in the center of the ingot.
00 μm of α-Fe remains, and at the same time, the size of the rare earth metal-rich phase surrounding the main phase also increases.

【0003】また前記金型鋳造法により得られる鋳塊組
織中に、短軸方向0.1〜50μm、長軸方向0.1〜
100μmの結晶粒径を有する結晶が存在することが知
られているが、該結晶の含有率は、僅かであって、磁石
特性に良好な影響を及ぼすには至っていない。
Further, in the ingot structure obtained by the die casting method, the minor axis direction is 0.1 to 50 μm, and the major axis direction is 0.1 to 50 μm.
It is known that there is a crystal having a crystal grain size of 100 μm, but the content of the crystal is small and has not yet exerted a good influence on the magnet characteristics.

【0004】一方、磁石粉末製造工程における均質化処
理過程においては、通常、1000℃付近で均質化処理
されるが、前記金型鋳造法で得られる鋳塊の場合には、
粒径の大きいα−Fe及び希土類金属に富んだ大きな相
を含有するので、均質化が困難であり、またその後の水
素化処理による再結晶化の際に、異方化しにくく、最終
的に得られる永久磁石の磁気特性が低下するという欠点
がある。
On the other hand, in the homogenization treatment process in the magnet powder manufacturing process, the homogenization treatment is usually performed at around 1000 ° C., but in the case of the ingot obtained by the die casting method,
Since it contains α-Fe having a large particle size and a large phase rich in rare earth metal, it is difficult to homogenize it, and it is difficult to be anisotropic during the recrystallization by the subsequent hydrotreatment, so that it is finally obtained. However, there is a drawback that the magnetic characteristics of the permanent magnets are deteriorated.

【0005】さらに、希土類金属元素、コバルト及び必
要に応じて、鉄、銅、ジルコニウムを添加し、ルツボ中
で溶解させた後、双ロール、単ロール、双ベルト等を組
み合わせたストリップキャスティング法等で0.01〜
5mmの厚さとなるように凝固させる希土類金属磁石用
合金の製造法が提案されている。
Further, a rare earth metal element, cobalt and, if necessary, iron, copper and zirconium are added and dissolved in a crucible, and then a strip casting method in which twin rolls, single rolls, twin belts and the like are combined is used. 0.01 ~
A method for producing an alloy for rare earth metal magnets, which is solidified to have a thickness of 5 mm, has been proposed.

【0006】該方法では、金型鋳造法に比して組成の均
一な鋳塊が得られるが、原料成分が、希土類金属元素、
コバルト及び必要に応じて、鉄、銅、ジルコニウムを組
み合わせた成分であるために、前記ストリップキャステ
ィング法による磁石性能の向上が充分に得られない等の
問題がある。
According to this method, an ingot having a uniform composition can be obtained as compared with the die casting method, but the raw material component is a rare earth metal element,
Since cobalt and, if necessary, a combination of iron, copper, and zirconium are components, there is a problem in that the magnet performance cannot be sufficiently improved by the strip casting method.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、高い
異方性を示し、且つ永久磁石の特性に最も良い影響を与
える結晶組織を有する希土類金属−鉄−ボロン系異方性
永久磁石用粉末及びその製造法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a rare earth metal-iron-boron-based anisotropic permanent magnet having a high anisotropy and a crystal structure that most affects the properties of the permanent magnet. To provide a powder and a manufacturing method thereof.

【0008】[0008]

【課題を解決するための手段】本発明によれば、短軸方
向0.1〜50μm、長軸方向0.1〜100μmの結
晶粒径を有する結晶を90容量%以上含有する希土類金
属−鉄−ボロン系永久磁石用合金鋳塊又は該合金の主相
結晶粒内に、包晶核である粒径10μm未満のα−Fe
及び/又はγ−Feが微細分散されてなる永久磁石用合
金鋳塊を、必要に応じて均質化した後、水素化処理して
得られる希土類金属−鉄−ボロン系異方性永久磁石用粉
末が提供される。
According to the present invention, a rare earth metal-iron containing 90% by volume or more of crystals having a crystal grain size of 0.1 to 50 μm in the minor axis direction and 0.1 to 100 μm in the major axis direction. Α-Fe having a grain size of less than 10 μm, which is a peritectic nucleus, in the alloy ingot for a boron-based permanent magnet or in the main phase crystal grains of the alloy.
And / or rare earth metal-iron-boron-based anisotropic permanent magnet powder obtained by homogenizing the alloy ingot for permanent magnet in which γ-Fe is finely dispersed, if necessary, and then hydrotreating. Will be provided.

【0009】また本発明によれば、希土類金属−鉄−ボ
ロン系合金溶融物を冷却速度10〜1000℃/秒、過
冷度10〜500℃の冷却条件下で均一に凝固させて製
造した希土類金属−鉄−ボロン系永久磁石用合金鋳塊
に、水素雰囲気中で水素原子を侵入及び放出させ、再結
晶化させた後、粉砕する水素化処理を行うことを特徴と
する希土類金属−鉄−ボロン系異方性永久磁石用粉末の
製造法が提供される。
Further, according to the present invention, the rare earth metal-iron-boron alloy melt is uniformly solidified under cooling conditions of a cooling rate of 10 to 1000 ° C./sec and a supercooling degree of 10 to 500 ° C. Metal-iron-boron-based alloy ingots for permanent magnets are characterized by performing hydrogenation treatment by injecting and releasing hydrogen atoms in a hydrogen atmosphere, recrystallizing, and then crushing. A method for producing a powder for an anisotropic boron permanent magnet is provided.

【0010】以下本発明を更に詳細に説明する。The present invention will be described in more detail below.

【0011】本発明の希土類金属−鉄−ボロン系異方性
永久磁石用粉末(以下、異方性永久磁石用粉末1と称
す)は、短軸方向0.1〜50μm、長軸方向0.1〜
100μmの結晶粒径を有する結晶を90容量%以上、
好ましくは98容量%以上含有する希土類金属−鉄−ボ
ロン系合金鋳塊(以下、合金鋳塊2と称す)を水素化処
理して得られる希土類金属−鉄−ボロン系異方性永久磁
石用粉末であって、その粉末粒径は、200〜400μ
mであるのが好ましい。前記合金鋳塊2は、特に、主相
結晶粒内に包晶核として通常含有されるα−Fe及び/
又はγ−Feが全く含有されていないのが好ましく、ま
た該α−Fe及び/又はγ−Feを含有する場合には、
該α−Fe及び/又はγ−Feの粒径が10μm未満で
あり、且つ微細分散されているのが好ましい。この際前
記特定の結晶粒径を有する結晶の含有割合が、90容量
%未満の場合には、得られる合金鋳塊に優れた磁石特性
を付与できず、目的とする異方性永久磁石用粉末1が得
られない。また短軸方向及び長軸方向の長さが前記範囲
外である場合、若しくは該α−Fe及び/又はγ−Fe
の粒径が10μm以上であり、且つ微細分散されていな
い場合には、永久磁石用粉末製造工程における均質化処
理の際に、均質化時間が長くなり、更に最終の磁石粉末
の磁気特性が低くなるので好ましくない。また前記合金
鋳塊2の厚さは、0.05〜15mmの範囲であるのが
好ましい。厚さが15mmを超える場合には、所望の結
晶組織とするための後述する製造法が困難となるので好
ましくない。
The rare earth metal-iron-boron-based anisotropic permanent magnet powder of the present invention (hereinafter referred to as anisotropic permanent magnet powder 1) has a minor axis direction of 0.1 to 50 μm and a major axis direction of 0.1. 1 to
90% by volume or more of crystals having a crystal grain size of 100 μm,
Preferably, a rare earth metal-iron-boron-based anisotropic permanent magnet powder obtained by hydrotreating a rare earth metal-iron-boron-based alloy ingot (hereinafter referred to as alloy ingot 2) containing 98% by volume or more. And the particle size of the powder is 200 to 400 μm.
It is preferably m. The alloy ingot 2 has, in particular, α-Fe and // which are usually contained as peritectic nuclei in the main phase crystal grains.
Or preferably contains no γ-Fe, and in the case of containing the α-Fe and / or γ-Fe,
The particle size of the α-Fe and / or γ-Fe is preferably less than 10 μm and finely dispersed. At this time, if the content ratio of the crystals having the specific crystal grain size is less than 90% by volume, excellent alloy properties cannot be imparted to the obtained alloy ingot, and the target anisotropic permanent magnet powder is obtained. I can't get 1. When the lengths in the minor axis direction and the major axis direction are out of the above range, or the α-Fe and / or γ-Fe
If the particle size is 10 μm or more and is not finely dispersed, the homogenization time in the homogenization process in the permanent magnet powder manufacturing process becomes long, and the magnetic properties of the final magnet powder are low. Therefore, it is not preferable. Further, the thickness of the alloy ingot 2 is preferably in the range of 0.05 to 15 mm. When the thickness exceeds 15 mm, the manufacturing method described later for obtaining a desired crystal structure becomes difficult, which is not preferable.

【0012】前記異方性永久磁石用粉末1に用いる前記
合金鋳塊2を形成する原料成分は、希土類金属−鉄−ボ
ロン系であれば特に限定されるものではなく、通常製造
の際に不可避的に含まれる他の不純物成分を含んでいて
も良い。また希土類金属は、単体でも混合物であっても
良い。該希土類金属と、ボロンと、鉄との配合割合は、
通常の永久磁石用合金での配合割合と同様で良く、好ま
しくは重量比で、25〜40:0.5〜2.0:残量で
あるのが好ましい。
The raw material components forming the alloy ingot 2 used for the anisotropic permanent magnet powder 1 are not particularly limited as long as they are a rare earth metal-iron-boron system, and they are unavoidable during normal production. It may also contain other impurity components that are inherently contained. The rare earth metal may be a single substance or a mixture. The mixing ratio of the rare earth metal, boron, and iron is
It may be the same as the compounding ratio in the usual alloy for permanent magnets, preferably 25 to 40: 0.5 to 2.0: remaining amount by weight.

【0013】本発明の製造方法では、まず希土類金属−
鉄−ボロン系合金溶融物を、冷却速度10〜1000℃
/秒、好ましくは100〜1000℃/秒、過冷度10
〜500℃、好ましくは200〜500℃の冷却条件下
で均一に凝固させ、前記合金鋳塊2を得、次いで水素雰
囲気中で前記合金鋳塊2に水素原子を侵入及び放出させ
ることにより主相結晶等を再結晶化させた後、粉砕する
水素化処理を行うことを特徴とする。
In the production method of the present invention, first, a rare earth metal-
Cool the iron-boron alloy melt at a cooling rate of 10 to 1000 ° C.
/ Sec, preferably 100 to 1000 ° C / sec, supercooling degree 10
To 500 ° C., preferably 200 to 500 ° C., to uniformly solidify to obtain the alloy ingot 2 and then to inject and release hydrogen atoms into the alloy ingot 2 in a hydrogen atmosphere to form a main phase. The present invention is characterized in that after recrystallizing crystals and the like, hydrogenation treatment of crushing is performed.

【0014】この際過冷度とは、(合金の融点)−(合
金溶融物の実際の温度)の値であって、冷却速度と相関
関係を有する。冷却速度及び過冷度が前記必須範囲外の
場合には、所望の組織を有する合金鋳塊が得られない。
In this case, the degree of supercooling is a value of (melting point of alloy)-(actual temperature of alloy melt) and has a correlation with a cooling rate. If the cooling rate and the degree of supercooling are outside the above-mentioned essential ranges, an alloy ingot having a desired structure cannot be obtained.

【0015】本発明の製造方法を更に具体的に説明する
と、例えばまず、真空溶融法、高周波溶融法等により、
好ましくはるつぼ等を用いて、不活性ガス雰囲気下、希
土類金属−鉄−ボロン系合金を溶融物とした後、該溶融
物を、例えば、単ロール、双ロール又は円板上等におい
て、前記条件下、好ましくは連続的に凝固させる等のス
トリップキャスティング法を用いた方法等により、所望
の結晶組織を有する永久磁石用合金鋳塊2を得る。即
ち、ストリップキャスティング法等で凝固させる場合に
は、合金鋳塊の厚さを、好ましくは0.05〜15mm
の範囲となるように、鋳造温度及び注湯速度等を適宜選
択し、前記条件下処理するのが最も容易な方法である。
次いで、得られた永久磁石用合金鋳塊2に、水素原子を
侵入及び放出させ再結晶化させるために、例えば1〜1
0mm角程度に粉砕し、好ましくは5〜50時間、90
0〜1100℃にて、均質化処理を行った後、好ましく
は1気圧の水素雰囲気中において、800〜850℃で
2〜5時間保持した後、10~2〜10~3Torrにまで急速
脱気し、急冷する方法等により行うことができ、次に再
結晶化した前記永久磁石用合金鋳塊を好ましくは200
〜400μmまで粉砕する方法等により、異方性永久磁
石用粉末1を得ることができる。
The production method of the present invention will be described in more detail. First, for example, by a vacuum melting method, a high frequency melting method, or the like,
Preferably using a crucible or the like, under an inert gas atmosphere, after making a rare earth metal-iron-boron alloy into a melt, the melt is, for example, on a single roll, twin rolls or on a disc, etc., under the above conditions. The alloy ingot 2 for a permanent magnet having a desired crystal structure is obtained by a method using a strip casting method such as a continuous solidification, preferably under continuous solidification. That is, when solidified by a strip casting method or the like, the thickness of the alloy ingot is preferably 0.05 to 15 mm.
The easiest method is to appropriately select the casting temperature, the pouring speed, etc. so that the above range is satisfied and to perform the treatment under the above conditions.
Next, in order to inject and release hydrogen atoms into the obtained alloy ingot for permanent magnet 2 for recrystallization, for example, 1 to 1
Grind to about 0 mm square, preferably 5 to 50 hours, 90
After performing homogenization treatment at 0 to 1100 ° C., preferably in a hydrogen atmosphere at 1 atm and holding at 800 to 850 ° C. for 2 to 5 hours, and then rapidly desorbing to 10 to 2 to 10 to 3 Torr. The alloy ingot for permanent magnet may be recrystallized.
The powder 1 for anisotropic permanent magnets can be obtained by, for example, a method of pulverizing to 400 μm.

【0016】前記異方性永久磁石用粉末1は、通常の磁
石製造法により、例えば樹脂磁石、ボンド磁石等とする
ことができる。
The anisotropic permanent magnet powder 1 can be made into, for example, a resin magnet, a bonded magnet, etc. by a usual magnet manufacturing method.

【0017】[0017]

【発明の効果】本発明の希土類金属−鉄−ボロン系異方
性永久磁石用粉末は、短軸方向0.1〜50μm、長軸
方向0.1〜100μmの結晶粒径を有する結晶を特定
量含有し、均質化処理性、結晶配向性等に優れる希土類
金属−鉄−ボロン系永久磁石用合金鋳塊を水素化処理し
て得られる粉末であり、高い異方性を示し、磁石特性が
極めて優れており、樹脂磁石、ボンド磁石等の永久磁石
用原料として有用である。また本発明の製造方法では、
前記優れた特性を有する異方性永久磁石用粉末を容易に
得ることができる。
INDUSTRIAL APPLICABILITY The rare earth metal-iron-boron-based anisotropic permanent magnet powder of the present invention specifies crystals having a crystal grain size of 0.1 to 50 μm in the minor axis direction and 0.1 to 100 μm in the major axis direction. Content, homogenization processability, is a powder obtained by hydrogenating a rare earth metal-iron-boron-based alloy ingot for permanent magnets excellent in crystal orientation, etc., showing high anisotropy, and magnet characteristics It is extremely excellent and is useful as a raw material for permanent magnets such as resin magnets and bond magnets. Further, in the manufacturing method of the present invention,
It is possible to easily obtain the anisotropic permanent magnet powder having the excellent properties.

【0018】[0018]

【実施例】以下本発明を実施例及び比較例により更に詳
細に説明するが、本発明はこれらに限定されるものでは
ない。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

【0019】[0019]

【実施例1】ネオジム14原子%、ボロン6原子%、鉄
80原子%からなる各金属元素を配合した合金を、アル
ゴンガス雰囲気中で、アルミナるつぼを使用して高周波
溶融法により溶融物とした。次いで、得られた溶融物の
温度を1350℃に保持した後、図1に示す装置を用い
て以下の方法に従って永久磁石用合金鋳塊を得た。得ら
れた合金鋳塊を組織分析した結果を表1に示す。
Example 1 An alloy in which each metal element consisting of 14 atom% neodymium, 6 atom% boron, and 80 atom% iron was blended into a melt by an induction melting method using an alumina crucible in an argon gas atmosphere. . Then, after the temperature of the obtained melt was maintained at 1350 ° C., an alloy ingot for permanent magnet was obtained by the following method using the apparatus shown in FIG. Table 1 shows the results of structural analysis of the obtained alloy ingot.

【0020】図1は、単ロールを用いたストリップキャ
スト法により永久磁石用合金鋳塊を製造するための概略
図であって、1は前記高周波溶融法により溶融した溶融
物の入ったるつぼである。1350℃に保持された溶融
物2を、タンディッシュ3上に連続的に流し込み、次い
で約1m/sで回転するロール4上において、冷却速度
500℃/秒、過冷度200℃の冷却条件となるように
急冷凝固させ、ロール4の回転方向に連続的に溶融物2
を落下させて、厚さ0.2〜0.4mmの合金鋳塊5を
製造した。
FIG. 1 is a schematic view for producing an alloy ingot for a permanent magnet by a strip casting method using a single roll, and 1 is a crucible containing a melt melted by the high frequency melting method. . The melt 2 held at 1350 ° C. was continuously poured onto the tundish 3, and then on a roll 4 rotating at about 1 m / s, cooling conditions of a cooling rate of 500 ° C./sec and a supercooling degree of 200 ° C. So that the melt 2 is continuously solidified in the rotation direction of the roll 4.
Was dropped to produce an alloy ingot 5 having a thickness of 0.2 to 0.4 mm.

【0021】得られた合金鋳塊5を5mm角に粉砕し、
1000℃にて、40時間均質化処理を行い、処理開始
後5、10、15、20、40時間のα−Feの面積率
を走査型電子顕微鏡による像から画像解析により測定し
た。結果を表2に示す。また同走査型電子顕微鏡により
結晶粒径を測定したところ、10時間均質化処理を行っ
た際の長軸方向の平均結晶粒径は60μmであった。
The obtained alloy ingot 5 was crushed into 5 mm square,
The homogenization treatment was performed at 1000 ° C. for 40 hours, and the area ratio of α-Fe at 5, 10, 15, 20, and 40 hours after the start of the treatment was measured by image analysis from an image by a scanning electron microscope. The results are shown in Table 2. When the crystal grain size was measured by the same scanning electron microscope, the average crystal grain size in the major axis direction after 60-hour homogenization treatment was 60 μm.

【0022】次いで均質化処理を行った合金鋳塊を真空
加熱炉に入れ、1気圧の水素雰囲気中で820℃にて3
時間保持した後、2分以内に10~2Torrまで脱気し、冷
却容器に移し急冷した。処理後の合金鋳塊を容器から取
り出し、平均粒径300μmに粉砕し、15kOeの磁
場中にて0.5t/cm2の圧力をかけ、一軸圧縮によ
り圧粉体を成形した。該圧粉体の結晶配向度をX線回折
により測定し、下記式数1に従って、配向度Fを算出
し、さらに磁気特性を測定した。結晶配向度を表3に、
磁気特性を表4に示す。
Next, the alloy ingot subjected to the homogenization treatment is placed in a vacuum heating furnace and heated at 820 ° C. for 3 hours in a hydrogen atmosphere at 1 atm.
After holding for a period of time, the mixture was degassed to 10 to 2 Torr within 2 minutes, transferred to a cooling container and rapidly cooled. The alloy ingot after the treatment was taken out of the container, crushed to an average particle size of 300 μm, and a pressure of 0.5 t / cm 2 was applied in a magnetic field of 15 kOe to form a green compact by uniaxial compression. The degree of crystal orientation of the green compact was measured by X-ray diffraction, the degree of orientation F was calculated according to the following equation 1, and the magnetic characteristics were measured. The crystal orientation is shown in Table 3,
The magnetic properties are shown in Table 4.

【0023】[0023]

【数1】 [Equation 1]

【0024】[0024]

【比較例1】実施例1で製造した合金溶融物を、高周波
溶融法により溶解し、金型鋳造法により厚さ25mmの
永久磁石用合金鋳塊を得た。得られた合金鋳塊を実施例
1と同様に分析した。合金鋳塊の分析結果を表1に示
す。
Comparative Example 1 The alloy melt produced in Example 1 was melted by a high frequency melting method, and a 25 mm thick alloy ingot for permanent magnet was obtained by a die casting method. The obtained alloy ingot was analyzed in the same manner as in Example 1. Table 1 shows the analysis results of the alloy ingot.

【0025】得られた合金鋳塊を実施例1と同様に均質
化処理を行い、α−Feの面積率を測定した。結果を表
2に示す。また実施例1と同様に10時間均質化処理を
行った際の結晶粒径を測定したところ、長軸方向の平均
結晶粒径は220μmであった。
The obtained alloy ingot was homogenized in the same manner as in Example 1 and the area ratio of α-Fe was measured. The results are shown in Table 2. Further, when the crystal grain size when the homogenization treatment was performed for 10 hours was measured in the same manner as in Example 1, the average crystal grain size in the major axis direction was 220 μm.

【0026】次いで、実施例1と同様に水素化処理を行
い、粉砕し、得られた粉末の結晶配向度及び磁気特性を
測定した。結晶配向度を表3に、磁気特性を表4に示
す。
Then, hydrogenation treatment was carried out in the same manner as in Example 1, and the powder was pulverized, and the crystal orientation degree and magnetic characteristics of the obtained powder were measured. The crystal orientation is shown in Table 3 and the magnetic properties are shown in Table 4.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【表3】 [Table 3]

【0030】[0030]

【表4】 [Table 4]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例1で用いたストリップキャスト
法により永久磁石用合金鋳塊を製造する際の概略図であ
る。
FIG. 1 is a schematic diagram when manufacturing an alloy ingot for a permanent magnet by the strip casting method used in Example 1.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01F 1/053

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 短軸方向0.1〜50μm、長軸方向
0.1〜100μmの結晶粒径を有する結晶を90容量
%以上含有する希土類金属−鉄−ボロン系永久磁石用合
金鋳塊を水素化処理して得られる希土類金属−鉄−ボロ
ン系異方性永久磁石用粉末。
1. A rare earth metal-iron-boron-based alloy ingot for permanent magnet, containing 90% by volume or more of crystals having a crystal grain size of 0.1 to 50 μm in the minor axis direction and 0.1 to 100 μm in the major axis direction. Rare earth metal-iron-boron-based anisotropic permanent magnet powder obtained by hydrogenation.
【請求項2】 前記希土類金属−鉄−ボロン系永久磁石
用合金鋳塊が、主相結晶粒内に、包晶核である粒径10
μm未満のα−Fe及び/又はγ−Feを微細分散して
いることを特徴とする請求項1記載の希土類金属−鉄−
ボロン系異方性永久磁石用粉末。
2. The rare-earth metal-iron-boron-based alloy ingot for permanent magnet has a grain size of 10 peritectic nuclei in main phase grains.
The rare earth metal-iron- according to claim 1, characterized in that α-Fe and / or γ-Fe of less than μm are finely dispersed.
Boron-based anisotropic permanent magnet powder.
【請求項3】 希土類金属−鉄−ボロン系合金溶融物を
冷却速度10〜1000℃/秒、過冷度10〜500℃
の冷却条件下で均一に凝固させて製造した希土類金属−
鉄−ボロン系永久磁石用合金鋳塊に、水素雰囲気中で水
素原子を侵入及び放出させ、再結晶化させた後、粉砕す
る水素化処理を行うことを特徴とする希土類金属−鉄−
ボロン系異方性永久磁石用粉末の製造法。
3. A rare earth metal-iron-boron alloy melt is cooled at a rate of 10 to 1000 ° C./sec and a degree of supercooling is 10 to 500 ° C.
Rare earth metal produced by uniform solidification under cooling conditions of
A rare earth metal-iron-characterized in that an iron-boron-based alloy ingot for permanent magnets is subjected to hydrogenation treatment by injecting and releasing hydrogen atoms in a hydrogen atmosphere, recrystallizing, and then pulverizing.
A method for producing powder for anisotropic boron permanent magnets.
JP23829992A 1992-02-15 1992-09-07 Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet Expired - Lifetime JP3213638B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP23829992A JP3213638B2 (en) 1992-09-07 1992-09-07 Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet
EP93102276A EP0556751B1 (en) 1992-02-15 1993-02-12 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
AT93102276T ATE167239T1 (en) 1992-02-15 1993-02-12 ALLOY BLOCK FOR A PERMANENT MAGNET, ANISOTROPIC POWDER FOR A PERMANENT MAGNET, METHOD FOR PRODUCING THE SAME AND PERMANENT MAGNET
DE69318998T DE69318998T2 (en) 1992-02-15 1993-02-12 Alloy block for a permanent magnet, anisotropic powder for a permanent magnet, process for producing such a magnet and permanent magnet
US08/017,043 US5383978A (en) 1992-02-15 1993-02-12 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
KR1019930002058A KR0131333B1 (en) 1992-02-15 1993-02-15 Alloy ingot for permanent magnet, antisotropic powders for permanent magnet, method for producing same and permanent magnet
US08/626,157 US5630885A (en) 1992-02-15 1996-04-04 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
US08/636,905 US5656100A (en) 1992-02-15 1996-04-18 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet
US08/636,772 US5674327A (en) 1992-02-15 1996-04-19 Alloy ingot for permanent magnet, anisotropic powders for permanent magnet, method for producing same and permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23829992A JP3213638B2 (en) 1992-09-07 1992-09-07 Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2000314786A Division JP3278431B2 (en) 2000-10-16 2000-10-16 Rare earth metal-iron-boron anisotropic permanent magnet powder

Publications (2)

Publication Number Publication Date
JPH0684624A true JPH0684624A (en) 1994-03-25
JP3213638B2 JP3213638B2 (en) 2001-10-02

Family

ID=17028136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23829992A Expired - Lifetime JP3213638B2 (en) 1992-02-15 1992-09-07 Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet

Country Status (1)

Country Link
JP (1) JP3213638B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149395A (en) * 2015-02-10 2016-08-18 Tdk株式会社 R-t-b series sintered magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016149395A (en) * 2015-02-10 2016-08-18 Tdk株式会社 R-t-b series sintered magnet

Also Published As

Publication number Publication date
JP3213638B2 (en) 2001-10-02

Similar Documents

Publication Publication Date Title
KR0131333B1 (en) Alloy ingot for permanent magnet, antisotropic powders for permanent magnet, method for producing same and permanent magnet
US6773517B2 (en) Rare-earth alloy, rate-earth sintered magnet, and methods of manufacturing
JP2639609B2 (en) Alloy ingot for permanent magnet and method for producing the same
EP0632471B1 (en) Process of preparing a permanent magnet containing rare earth metal, boron and iron
JPH1036949A (en) Alloy for rare earth magnet and its production
US5690752A (en) Permanent magnet containing rare earth metal, boron and iron
JP3505261B2 (en) Sm-Co permanent magnet material, permanent magnet and method for producing the same
JPH06151132A (en) Manufacture of powder of anisotropic magnet material and manufacture of magnet using anisotropic magnet material powder obtained by same manufacture
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
US7338566B2 (en) Alloy for sm-co based magnet, method for production thereof, sintered magnet and bonded magnet
JP3278431B2 (en) Rare earth metal-iron-boron anisotropic permanent magnet powder
JP3299630B2 (en) Manufacturing method of permanent magnet
JP3213638B2 (en) Method for producing powder for rare earth metal-iron-boron based anisotropic permanent magnet
JP3455552B2 (en) Method for producing rare earth metal-iron binary alloy ingot for permanent magnet
JPH07109504A (en) Production of raw powder for anisotropic bond magnet
JP3548568B2 (en) Method for producing rare earth metal-iron based permanent magnet alloy containing nitrogen atom
JP2660917B2 (en) Rare earth magnet manufacturing method
JPH0757910A (en) Production of anisotropic magnetic powder and anisotropic bond magnet
JP2002155347A (en) Rare earth alloy, its manufacturing method and method for manufacturing rare earth sintered magnet
JPH0533076A (en) Rare earth permanent magnet alloy and its production
JP2002083706A (en) Method for manufacturing magnet powder for rare earth bonded magnet
JPH08330117A (en) Cast piece for r-fe-b-c magnet alloy with excellent corrosion resistance and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070719

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080719

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090719

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100719

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110719

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120719

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130719

Year of fee payment: 12