JPH0677023A - Manufacture of anisotropic magnetic powder - Google Patents

Manufacture of anisotropic magnetic powder

Info

Publication number
JPH0677023A
JPH0677023A JP4229935A JP22993592A JPH0677023A JP H0677023 A JPH0677023 A JP H0677023A JP 4229935 A JP4229935 A JP 4229935A JP 22993592 A JP22993592 A JP 22993592A JP H0677023 A JPH0677023 A JP H0677023A
Authority
JP
Japan
Prior art keywords
powder
magnetic
particles
amorphous
anisotropic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4229935A
Other languages
Japanese (ja)
Other versions
JP3120585B2 (en
Inventor
Shigeo Takita
茂生 瀧田
Toshikazu Takeda
敏和 竹田
Yuichiro Hara
裕一郎 原
Eiji Okumura
英二 奥村
Masayuki Kato
雅之 加藤
Yutaka Matsumi
裕 松見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP04229935A priority Critical patent/JP3120585B2/en
Publication of JPH0677023A publication Critical patent/JPH0677023A/en
Application granted granted Critical
Publication of JP3120585B2 publication Critical patent/JP3120585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the manufacturing method for anisotropic magnetic powder, having excellent anisotropic magnetic properties, in which a molding and solidifying process can be simplified. CONSTITUTION:Capsule particles 3, having the non-magnetic oxide powder such as CuO and the like as slave particles 2, are formed using amorphous magnetic alloy powder containing isotropic amorphous substance as master particles 1. These cupsul particles 3 are treated under pressure while they are being heated (6). A current 8 is applied when the above-mentioned pressure- treatment is conducted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は異方性磁性粉末の製造方
法に係り、特に母粒子と該母粒子の周囲を覆う子粒子と
からなるカプセル粒子を使用した異方性磁性粉末の製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an anisotropic magnetic powder, and more particularly to a method for producing an anisotropic magnetic powder using capsule particles composed of mother particles and child particles surrounding the mother particles. Regarding

【0002】[0002]

【従来の技術】一般に、異方性磁石は、所要の原料粉を
混合し、これを所定の型内に充填して加圧し所望の形状
に圧粉成形した後、この成形体を真空又はAr等の不活
性ガス雰囲気に置換した焼結炉内で上記原料粉の融点以
下の温度で焼成固化することにより製造していた。
2. Description of the Related Art Generally, in an anisotropic magnet, required raw material powders are mixed, filled in a predetermined mold and pressed to form a desired shape. It was manufactured by firing and solidifying at a temperature equal to or lower than the melting point of the raw material powder in a sintering furnace replaced with an inert gas atmosphere such as.

【0003】この異方性磁石の製造に関連する技術とし
ては、特開昭55−80302号公報や、特開平1−1
35003号公報などに提案されている技術がある。
Techniques related to the production of this anisotropic magnet are disclosed in JP-A-55-80302 and JP-A-1-1.
There is a technique proposed in Japanese Patent No. 35003.

【0004】前者の特開昭55−80302号公報に開
示されている技術は、「非晶質磁性合金を所望の圧下率
で低温間圧延して圧延方向にほぼ直角な方向に磁化容易
軸を有し所望の大きさの磁気異方性を付与すること」を
要旨とする非晶質磁性合金の磁気特性の改質方法であ
る。
The former technique disclosed in Japanese Patent Application Laid-Open No. 55-80302 is described as follows: "Amorphous magnetic alloy is rolled at a desired reduction ratio at a low temperature and an easy axis of magnetization is formed in a direction substantially perpendicular to the rolling direction. The present invention is a method of modifying magnetic properties of an amorphous magnetic alloy, which is characterized by "having a desired magnetic anisotropy".

【0005】また、後者の特開平1−135003号公
報に開示されている技術は、「希土類元素(Nd,P
r,Ce,Dy等)と鉄(Fe)を主成分とするアモル
ファスを含む合金を300℃以上600℃以下の温度で
0.3〜10tonf/cm2 に加熱処理し、磁気異方
性をもたせたこと」を要旨とする磁気異方性永久磁石の
製造方法である。
Further, the latter technique disclosed in Japanese Patent Laid-Open No. 1-135003 describes "rare earth element (Nd, P
r, Ce, Dy, etc.) and an alloy containing an amorphous material containing iron (Fe) as main components at a temperature of 300 ° C. or higher and 600 ° C. or lower to 0.3 to 10 tonf / cm 2 to have magnetic anisotropy. It is a method of manufacturing a magnetic anisotropic permanent magnet.

【0006】[0006]

【発明が解決しようとする課題】ところで、従来の技術
にあっては、粉末による異方性磁石の成形固化方法に視
点を置いたものであって、粉末自体の製造方法について
はあまり論じられていなかった。従って、成形固化時に
異方性処理を行なわなければならず、成形固化工程が複
雑になるという問題があった。また、材料の多様化した
今日においては、異方性磁性を有する粉末に視点を置い
た技術開発も必要である。
By the way, the prior art is focused on a method of molding and solidifying an anisotropic magnet using powder, and a method of manufacturing the powder itself has been much discussed. There wasn't. Therefore, there has been a problem that an anisotropic treatment must be carried out at the time of molding and solidification, which complicates the molding and solidification process. In addition, in today's diversified materials, it is necessary to develop technology focusing on powders having anisotropic magnetism.

【0007】本発明の目的は、上記課題に鑑み、良好な
異方性磁性を有し、成形固化工程を簡単にすることがで
きる異方性磁性粉末の製造方法を提供することにある。
In view of the above problems, an object of the present invention is to provide a method for producing anisotropic magnetic powder having good anisotropic magnetism and capable of simplifying the molding and solidifying process.

【0008】[0008]

【課題を解決するための手段】上記目的を達成すべく本
発明に係る異方性磁性粉末の製造方法は、等方性のアモ
ルファスを含む非晶質磁性合金粉を母粒子とし、CuO
等の非磁性酸化物粉を子粒子とするカプセル粒子を形成
し、このカプセル粒子を加熱しながら加圧処理すると共
に、この加圧処理時に電流を印加して通電処理するよう
にしたものである。
In order to achieve the above object, the method for producing anisotropic magnetic powder according to the present invention is such that an amorphous magnetic alloy powder containing isotropic amorphous is used as a mother particle and CuO is used.
Capsule particles having non-magnetic oxide powder such as child particles are formed, and the capsule particles are subjected to a pressure treatment while being heated, and an electric current is applied during the pressure treatment to carry out an energization treatment. .

【0009】[0009]

【作用】上記構成によれば、等方性のアモルファスを含
む非晶質磁性合金粉を母粒子とし、CuO等の非磁性酸
化物粉を子粒子とするカプセル粒子を使用している。ま
た、このカプセル粒子は加熱されながら加圧処理され、
該加圧処理時に電流が印加されて通電処理される。
According to the above construction, the capsule particles having the amorphous magnetic alloy powder containing isotropic amorphous as the mother particles and the non-magnetic oxide powder such as CuO as the child particles are used. Also, the capsule particles are pressure-treated while being heated,
An electric current is applied at the time of the pressurizing process to energize the device.

【0010】従って、使用するアモルファスを含む非晶
質磁性合金粉は等方性であるが、加圧・通電処理により
再結晶化する。具体的には、加圧処理によるずれ応力が
直接の圧力となり、このずれ応力が異方性磁性を有する
粉末を製造できる主因となる。また、上記通電処理を施
すのは、ずれ応力に対して粉末を瞬時に適当な硬さにす
る必要があるからである。
Therefore, although the amorphous magnetic alloy powder containing the amorphous material used is isotropic, it is recrystallized by the pressurizing and energizing treatment. Specifically, the shear stress due to the pressurizing process becomes a direct pressure, and this shear stress is the main reason for manufacturing the powder having anisotropic magnetism. The above-mentioned energization treatment is performed because it is necessary to instantly make the powder have an appropriate hardness against the shear stress.

【0011】このようにして加圧処理方向に異方性を有
する磁性粉末を製造することができるものである。
In this way, a magnetic powder having anisotropy in the pressure treatment direction can be manufactured.

【0012】[0012]

【実施例】以下、本発明に係る異方性磁性粉末の製造方
法の好適一実施例を添付図面に基づいて詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the method for producing anisotropic magnetic powder according to the present invention will be described in detail below with reference to the accompanying drawings.

【0013】図1及び図2は、本実施例の異方性磁性粉
末の製造方法を示す概略図である。まず図1に示すよう
に、等方性のアモルファスを含む非晶質磁性合金粉を母
粒子1とし、非磁性酸化物粉を子粒子2とするカプセル
粒子3を形成する。このカプセル状態とは、周知の蒸
着,スパッタリング,ハイブリタイゼーション,ディピ
ング等を使用して、母粒子1の周囲を子粒子2で覆うも
のである。このようにカプセル状態にするには、母粒子
1の直径に対して子粒子2の直径を、例えば、十分の一
から二十分の一程度に小さく設定することが望ましい。
上記非晶質磁性合金粉には、例えば、非晶質磁性材料に
単ロール急冷法を用いて製造された急冷凝固系Nd−F
e−B磁性粉を用いる。この急冷凝固系磁性粉には、ア
モルファス磁性粉も含むものである。このアモルファス
も含むとは、急冷凝固系合金の微結晶はその列的規則性
が急冷によって準安定になっているので、材料組成によ
って非晶質になっているものも含む趣旨である。また、
上記非晶質磁性合金粉は強磁性を有しており、軟磁性で
はない。
1 and 2 are schematic views showing a method of manufacturing the anisotropic magnetic powder of this embodiment. First, as shown in FIG. 1, capsule particles 3 having an amorphous magnetic alloy powder containing isotropic amorphous as a mother particle 1 and a non-magnetic oxide powder as a child particle 2 are formed. In this capsule state, the mother particles 1 are covered with the child particles 2 by using known vapor deposition, sputtering, hybridization, dipping and the like. In order to make the capsule state as described above, it is desirable to set the diameter of the child particles 2 to be smaller than the diameter of the mother particles 1 to, for example, about 1/10 to 20/10.
The amorphous magnetic alloy powder may be, for example, a rapidly solidified Nd-F produced by using a single roll rapid cooling method for an amorphous magnetic material.
e-B magnetic powder is used. The rapidly solidified magnetic powder also includes amorphous magnetic powder. The phrase "including amorphous" is meant to include amorphous crystals depending on the material composition, because the columnar regularity of the crystallites of the rapidly solidified alloy is metastable due to rapid cooling. Also,
The amorphous magnetic alloy powder has ferromagnetism and is not soft magnetic.

【0014】一方、非磁性酸化物粉にはCuO等を使用
し、上記非晶質磁性合金粉に対して0.01〜5重量%
の割合になるようにする。
On the other hand, CuO or the like is used as the non-magnetic oxide powder, and 0.01 to 5% by weight based on the above amorphous magnetic alloy powder.
The ratio of.

【0015】次に、図2に示すように、上記カプセル粒
子3を加圧手段として双ローラ加圧装置4を使用して加
圧処理する。このとき、上記双ローラ加圧装置4の双ロ
ーラ5a,5bをこれに内臓した内部ヒータ6で加熱
し、200℃以上500℃以下に保持しておく。双ロー
ラ5a,5bの押付力は一方のローラ5aに具備された
ロードセル7を用いて管理する。また、双ローラ5a,
5bの間隙は上記カプセル粒子3の母粒子1の短径をd
とした場合、2/3d以下に設定する。
Next, as shown in FIG. 2, the capsule particles 3 are pressure-treated by using a twin roller pressure device 4 as a pressure means. At this time, the twin rollers 5a and 5b of the twin roller pressing device 4 are heated by the internal heater 6 incorporated therein and kept at 200 ° C. or higher and 500 ° C. or lower. The pressing force of the twin rollers 5a and 5b is controlled by using the load cell 7 provided on one roller 5a. Also, twin rollers 5a,
The gap 5b is defined by the minor axis of the mother particle 1 of the capsule particle 3 d.
In this case, set to 2 / 3d or less.

【0016】そして、双ローラ5a,5bの押付力を5
kg以上に設定して、当該双ローラ5a,5bの間に上
記カプセル粒子3を通過させる。このカプセル粒子3の
通過時に、双ローラ5a,5b間に通電機構8によりパ
ルス及び交直流を印加し、該カプセル粒子3を通電処理
(放電を含む)する。この通電条件は電源容量に起因す
るが、例えば、300A/cm2 〜1500A/cm2
とする。
Then, the pressing force of the twin rollers 5a and 5b is set to 5
The capsule particles 3 are allowed to pass between the twin rollers 5a and 5b by setting the pressure to be not less than kg. When the capsule particles 3 pass, a pulse and an alternating current are applied between the twin rollers 5a and 5b by the energizing mechanism 8 to energize the capsule particles 3 (including discharge). This energization condition depends on the power capacity, but is, for example, 300 A / cm 2 to 1500 A / cm 2.
And

【0017】このようにして製造された異方性磁性粉末
は、磁場中にて450℃〜850℃で焼結固化される
か、或いはプラスチックと混合して磁場中にて所望の形
状に成形されるものである。
The anisotropic magnetic powder thus produced is sintered and solidified in a magnetic field at 450 ° C. to 850 ° C., or is mixed with plastic and molded into a desired shape in a magnetic field. It is something.

【0018】次に、上記実施例における作用を述べる。Next, the operation of the above embodiment will be described.

【0019】上述したように、本実施例の異方性磁性粉
末の製造方法は、アモルファスを含む非晶質磁性合金粉
を母粒子1とし、CuO等の非磁性酸化物粉を子粒子2
とするカプセル粒子3を使用している。また、このカプ
セル粒子3は上記双ローラ加圧装置4の双ローラ5a,
5bにより加熱されながら加圧処理され、カプセル粒子
3の双ローラ5a,5b通過時に上記通電機構8により
パルス及び交直流が印加されて通電処理される。
As described above, according to the method for producing anisotropic magnetic powder of this embodiment, the amorphous magnetic alloy powder containing amorphous is used as the mother particle 1, and the non-magnetic oxide powder such as CuO is used as the child particle 2.
Capsule particles 3 are used. In addition, the capsule particles 3 are the twin rollers 5a of the twin roller pressing device 4,
While being heated by 5b, pressure treatment is performed, and when the capsule particles 3 pass through the twin rollers 5a and 5b, a pulse and an alternating direct current are applied by the energizing mechanism 8 to perform energization treatment.

【0020】従って、使用するアモルファスを含む非晶
質磁性合金粉は等方性であるが、上記双ローラ5a,5
bの回転方向にロール加圧し通電処理により再結晶化す
る。具体的には、双ローラ5a,5bによるずれ応力が
直接の圧力となり、このずれ応力が異方性磁性を有する
粉末を製造できる主因となる。また、上記通電処理を施
すのは、ずれ応力に対して粉末を瞬時に適当な硬さにす
る必要があるからである。
Therefore, although the amorphous magnetic alloy powder containing amorphous used is isotropic, the twin rollers 5a, 5
The roll is pressurized in the rotation direction of b and recrystallized by energization. Specifically, the shear stress caused by the twin rollers 5a and 5b is a direct pressure, and this shear stress is a main factor for producing the powder having anisotropic magnetism. The above-mentioned energization treatment is performed because it is necessary to instantly make the powder have an appropriate hardness against the shear stress.

【0021】このようにして上記双ローラ5a,5bの
回転方向に異方性を有する磁性粉末を製造することがで
き、本発明の異方性磁性粉末の製造方法によれば、(B
・H)max10であった最大エネルギ積を(B・H)
max13〜35のクリアランスにおいて異方性に対す
る制御性を持つことができる。
Thus, the magnetic powder having anisotropy in the rotating direction of the twin rollers 5a and 5b can be manufactured. According to the method for manufacturing anisotropic magnetic powder of the present invention, (B
・ H) The maximum energy product that was max10 is (B ・ H)
Anisotropy can be controlled in the clearance of max 13 to 35.

【0022】すなわち、粉末の成形固化時に異方性磁性
を持たせるのではなく、粉末自体が異方性磁性を有する
ので、成形固化工程が簡単なものとなる。また、断熱圧
縮を呈するので、成形体の熱処理は殆ど必要ない。
That is, since the powder itself has anisotropic magnetism, not the anisotropic magnetism when the powder is molded and solidified, the molding and solidification process is simplified. Further, since it exhibits adiabatic compression, heat treatment of the molded body is almost unnecessary.

【0023】尚、加圧手段は必ずしも双ローラ加圧装置
4である必要はなく、加圧部のクリアランスが一定に設
定され、且つカプセル粒子3が通過する相対速度が20
μm/min〜10μm/minに設定され、上述のよ
うな通電機構8を有していれば良い。
The pressurizing means does not necessarily have to be the twin roller pressurizing device 4, the clearance of the pressurizing part is set to be constant, and the relative speed at which the capsule particles 3 pass is 20.
It suffices that it is set to 10 μm / min to 10 μm / min and that it has the energizing mechanism 8 as described above.

【0024】[0024]

【発明の効果】以上述べたように、本発明に係る異方性
磁性粉末の製造方法によれば、良好な異方性磁性を有
し、成形固化工程を簡単にすることができるという優れ
た効果を発揮する。
As described above, the method for producing anisotropic magnetic powder according to the present invention is excellent in that it has good anisotropic magnetism and the molding and solidifying process can be simplified. Be effective.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る異方性磁性粉末の製造方法の一実
施例における母粒子と子粒子とのカプセル状態を示す概
略図である。
FIG. 1 is a schematic view showing a capsule state of mother particles and child particles in an example of the method for producing anisotropic magnetic powder according to the present invention.

【図2】本発明に係る異方性磁性粉末の製造方法の一実
施例における加圧・通電処理工程を示す概略図である。
FIG. 2 is a schematic view showing a pressurizing / energizing treatment step in one embodiment of the method for producing anisotropic magnetic powder according to the present invention.

【符号の説明】[Explanation of symbols]

1 母粒子 2 子粒子 3 カプセル粒子 1 Mother particle 2 Child particle 3 Capsule particle

フロントページの続き (72)発明者 奥村 英二 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 加藤 雅之 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 松見 裕 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内Front page continuation (72) Eiji Okumura Eiji Okumura, 8 Soil Shelf, Fujisawa City, Kanagawa Prefecture Isuzu Central Research Institute (72) Inventor, Masayuki Kato, 8 Soil Shelf, Fujisawa City, Kanagawa Prefecture Isuzu Central Research Institute (72) ) Inventor Hiroshi Matsumi 8 Tsutana, Fujisawa City, Kanagawa Prefecture Isuzu Central Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アモルファスを含む非晶質磁性合金粉を
母粒子とし、非磁性酸化物粉を子粒子とするカプセル粒
子を形成し、該カプセル粒子を加熱しながら加圧処理す
ると共に、該加圧処理時に電流を印加して通電処理する
ようにしたことを特徴とする異方性磁性粉末の製造方
法。
1. A capsule particle having amorphous magnetic alloy powder containing amorphous as a mother particle and non-magnetic oxide powder as a child particle is formed, and the capsule particle is subjected to pressure treatment while being heated, A method for producing anisotropic magnetic powder, characterized in that an electric current is applied during the pressure treatment to carry out an electric current treatment.
【請求項2】 前記非磁性酸化物粉がCuOからなる請
求項1に記載の異方性磁性粉末の製造方法。
2. The method for producing anisotropic magnetic powder according to claim 1, wherein the non-magnetic oxide powder is CuO.
JP04229935A 1992-08-28 1992-08-28 Method for producing anisotropic magnetic powder Expired - Fee Related JP3120585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04229935A JP3120585B2 (en) 1992-08-28 1992-08-28 Method for producing anisotropic magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04229935A JP3120585B2 (en) 1992-08-28 1992-08-28 Method for producing anisotropic magnetic powder

Publications (2)

Publication Number Publication Date
JPH0677023A true JPH0677023A (en) 1994-03-18
JP3120585B2 JP3120585B2 (en) 2000-12-25

Family

ID=16900035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04229935A Expired - Fee Related JP3120585B2 (en) 1992-08-28 1992-08-28 Method for producing anisotropic magnetic powder

Country Status (1)

Country Link
JP (1) JP3120585B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146388A (en) * 2015-02-06 2016-08-12 Tdk株式会社 Iron nitride magnetic powder and bond magnet including same
JP2016146387A (en) * 2015-02-06 2016-08-12 Tdk株式会社 Iron nitride magnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016146388A (en) * 2015-02-06 2016-08-12 Tdk株式会社 Iron nitride magnetic powder and bond magnet including same
JP2016146387A (en) * 2015-02-06 2016-08-12 Tdk株式会社 Iron nitride magnet

Also Published As

Publication number Publication date
JP3120585B2 (en) 2000-12-25

Similar Documents

Publication Publication Date Title
JPH03153006A (en) Permanent magnet and raw material therefor
JPH02298003A (en) Manufacture of rare-earth permanent magnet
JP2000348919A (en) Nanocomposite crystalline sintered magnet and manufacture of the same
JPH0677023A (en) Manufacture of anisotropic magnetic powder
JPH09316565A (en) Green compact of hard magnetic alloy and its production
JPH02250922A (en) Production of rare earth element-transition element -b magnet
JPH0831386B2 (en) Method for manufacturing anisotropic rare earth permanent magnet
JPH04147604A (en) Magnetic anisotropy magnet and manufacture thereof
JPS6318602A (en) Manufacture of permanent magnet of rare earth-iron system
JPS63116404A (en) Anisotropic magnet powder and manufacture thereof
JPH09263913A (en) Hard magnetic alloy compacted body and its production
JPH06112028A (en) Sintered magnet
JPH01261803A (en) Manufacture of rare-earth permanent magnet
JPS62276802A (en) Manufacture of rare earth magnet
US4966633A (en) Coercivity in hot worked iron-neodymium boron type permanent magnets
JPH1171645A (en) Hard magnetic alloy sintered compact and its production
Meira et al. PrFeB Based Alloys Obtained by Melt Spinning for the Production of Permanent Magnets
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JP3061808B2 (en) Method for producing Fe-BR-based permanent magnet
JP3125226B2 (en) Manufacturing method of rare earth metal-transition metal-boron based anisotropic sintered magnet
JPH02138706A (en) Anisotropic permanent magnet
KR100208221B1 (en) Method for thick film coating of permanent magnet in rare earth system
KR100229410B1 (en) Method of manufacturing over-quenched ribbons in rare earth system
JPH01119001A (en) Manufacture of permanent magnetic powder containing rare earth element
JPS6333801A (en) Nd-based alloy power for manufacturing anisotropic rare earth element plastic magnet and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees