KR100208221B1 - Method for thick film coating of permanent magnet in rare earth system - Google Patents

Method for thick film coating of permanent magnet in rare earth system Download PDF

Info

Publication number
KR100208221B1
KR100208221B1 KR1019960081271A KR19960081271A KR100208221B1 KR 100208221 B1 KR100208221 B1 KR 100208221B1 KR 1019960081271 A KR1019960081271 A KR 1019960081271A KR 19960081271 A KR19960081271 A KR 19960081271A KR 100208221 B1 KR100208221 B1 KR 100208221B1
Authority
KR
South Korea
Prior art keywords
permanent magnet
rare earth
thick film
earth permanent
low temperature
Prior art date
Application number
KR1019960081271A
Other languages
Korean (ko)
Other versions
KR19980061893A (en
Inventor
오승택
Original Assignee
오상수
만도기계주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오상수, 만도기계주식회사 filed Critical 오상수
Priority to KR1019960081271A priority Critical patent/KR100208221B1/en
Publication of KR19980061893A publication Critical patent/KR19980061893A/en
Application granted granted Critical
Publication of KR100208221B1 publication Critical patent/KR100208221B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/0551Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

본 발명은 희토류계 영구자석 분말을 저온상태를 유지하면서 이종재질의 모재에 후막 코팅할 수 있도록 하므로써 자동차의 센서류에 응용할 수 있는 희토류계 영구자석 후막 코팅방법에 관한 것이다.The present invention relates to a rare earth permanent magnet thick film coating method that can be applied to sensors of automobiles by allowing a thick film to be coated on a base material of heterogeneous materials while maintaining a low temperature of the rare earth permanent magnet powder.

본 발명은 저온가열된 압축공기와 희토류계 영구자석 분말을 혼합한 후 압축-팽창 노즐을 통과시켜 저온상태에서 초음속으로 이송하도록 하여 모재 표면에 압착코팅하는 방법을 제공함으로써 희토류계 영구자석 재질을 벌크형 뿐만아니라 이종재질의 모재에 자기적 특성의 변화없이 후막으로 코팅할 수 있게 되어 그 응용범위를 확대할 수 있는 효과를 가져올 수 있다.The present invention provides a method of compressing and coating a rare earth permanent magnet material on a surface of a base material by mixing compressed air heated at low temperature with a rare earth permanent magnet powder, and then passing the compression-expansion nozzle to transfer at a supersonic speed at a low temperature. In addition, it can be coated with a thick film on the base material of the dissimilar material without changing the magnetic properties can bring an effect that can extend the application range.

Description

희토류계 영구자석 후막 코팅방법Rare Earth Permanent Magnet Thick Film Coating Method

본 발명은 희토류계 영구자석 후막 코팅방법에 관한 것으로서, 더욱 상세하게는 이종재질의 모재에 희토류계 영구자석의 특성을 유지하기 위해 저온상태에서 후막 코팅할 수 있는 방법에 관한 것이다.The present invention relates to a rare earth permanent magnet thick film coating method, and more particularly to a method capable of thick film coating at low temperature in order to maintain the characteristics of the rare earth permanent magnet on a heterogeneous base material.

일반적으로 금속재질의 조성물을 이종재질의 모재에 코팅하는 방법, 특히 코팅층의 접착력이 우수한 코팅방법으로는 고온분사코팅(thermal spray coating), 플라즈마 분사코팅(plasma spray coating) 방법이 있으나, 희토류계 영구자석은 희토류계 합금을 용해하여 잉곳을 제조한 후 분쇄하고 성형시 자장을 가하여 입자를 자장방향으로 정렬시킨 상태에서 압축한 후 약 9001200의 온도에서 소결하여 자기이방성을 갖는 영구자석으로 제조되므로 10,000이상의 고온에서 용융시켜 고온분사코팅 또는 플라즈마 분사코팅하면 희토류계 영구자석 재질의 자기적 특성을 잃게되므로 이를 적용할 수 없다.In general, a method of coating a metal composition on a base material of a dissimilar material, in particular, a coating method having excellent adhesion of the coating layer includes a thermal spray coating and a plasma spray coating method, but rare earth-based permanent The magnet is prepared by dissolving the rare earth-based alloy to make an ingot, then crushing and compressing in a state in which the particles are aligned in the magnetic field by applying a magnetic field during molding. 1200 10,000 is manufactured as a permanent magnet having magnetic anisotropy by sintering at a temperature of Melting at the above high temperature, high temperature spray coating or plasma spray coating loses the magnetic properties of the rare earth permanent magnet material, so it cannot be applied.

한편, 자동차의 전자제어장치에 이용되는 센서중 크러스터 속도센서, 조향토크센서 등은 영구자석 코팅층을 필요로 하고 있으나 현재는 희토류계 영구자석을 벌크형으로 밖에 제조할 수 없어 이의 적용이 어려운 상태이다.On the other hand, among the sensors used in the electronic control device of the vehicle, the cluster speed sensor, the steering torque sensor, etc. need a permanent magnet coating layer, but at present, the rare earth permanent magnet can only be manufactured in bulk, which is difficult to apply.

따라서 본 발명은 이와같은 종래의 단점을 해결하기 위한 것으로, 희토류계 영구자석을 저온상태를 유지하면서 이종재질의 모재에 후막 코팅할 수 있도록 하므로써 자동차의 센서류에 응용할 수 있도록 하는데 그 목적이 있다.Accordingly, an object of the present invention is to solve the above-mentioned disadvantages, and to provide a rare-film permanent magnet with a thick film on a base material of different materials while maintaining a low temperature.

이와 같은 목적을 실현하기 위한 본 발명은 저온가열된 압축공기와 희토류계 영구자석 분말을 혼합한 후 압축-팽창 노즐을 통과시켜 저온상태에서 초음속으로 이송하도록 하여 모재 표면에 충돌적층코팅하는 희토류계 영구자석 후막 코팅방법을 제공한다.The present invention for realizing the above object is a rare earth permanent permanent mixing of the low-temperature heated compressed air and rare earth permanent magnet powder and passing through a compression-expansion nozzle to transfer at a supersonic speed at low temperature to collide lamination coating on the surface of the base material Provided is a magnetic thick film coating method.

본 발명의 바람직한 실시예에 따르면 압축공기의 온도는 25400의 저온상태의 온도범위로 유지하는 것을 특징으로 한다.According to a preferred embodiment of the present invention the temperature of the compressed air is 25 400 It is characterized by maintaining in the low temperature state of the temperature range.

제1도는 본 발명에 따른 영구자석 후막 코팅장치를 보인 구성도.1 is a block diagram showing a permanent magnet thick film coating apparatus according to the present invention.

제2도는 본 발명에 따른 초음속 노즐부의 노즐 개념도.2 is a conceptual diagram of a nozzle of a supersonic nozzle unit according to the present invention.

제3도는 본 발명에 따른 혼합분말의 이송속도와 관련된 마하수, 압력, 온도의 변화를 나타낸 그래프.Figure 3 is a graph showing the change in Mach number, pressure, temperature associated with the feed rate of the mixed powder according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10 : 압축공기 저장부 20 : 영구자석 분말 저장부10: compressed air storage unit 20: permanent magnet powder storage unit

30 : 압축공기 가열부 40 : 초음속 노즐부30: compressed air heating unit 40: supersonic nozzle unit

50 : 배관부 60 : 모재50: piping 60: the base material

62 : 영구자석 코팅층62: permanent magnet coating layer

이하 본 발명의 구성 및 작용효과를 첨부도면과 함께 상세히 설명하면 다음과 같다.Hereinafter, the configuration and operation of the present invention will be described in detail with the accompanying drawings.

제1도는 본 발명에 따른 영구자석 후막 코팅장치를 보인 구성도로서, 압축공기 저장부(10), 영구자석 분말 저장부(20), 압축공기 가열부(30), 초음속 노즐부(40) 및 이를 연결하는 배관부(50)로 구성이다.1 is a configuration showing the permanent magnet thick film coating apparatus according to the present invention, the compressed air storage unit 10, permanent magnet powder storage unit 20, compressed air heating unit 30, supersonic nozzle unit 40 and It is composed of a pipe 50 for connecting it.

먼저 희토류계 합금은 하나 또는 그 이상의 희토류(Rare Earth)원소, 하나 또는 그 이상의 천이금속(Transition Metal; 이하 TM이라 약칭함) 및 붕소(B),탄소(C), 질소(N) 가운데 하나 또는 그 이상의 원소를 함유하는 조성물로 이루어진다.First, the rare earth alloy includes one or more rare earth elements, one or more transition metals (abbreviated as TM), one of boron (B), carbon (C), nitrogen (N), or It consists of a composition containing more elements.

여기서 희토류 원소는 네오디뮴(Nd), 또는 프라세어디뮴(Pr) 또는 두 원소 모두 해당되고, 천이금속으로서는 철(Fe) 또는 철과 코발트(Co)의 혼합물이 해당된다. 이들의 바람직한 조성물은 Re2TM14B 상을 포함하는 것이다.Here, the rare earth element corresponds to neodymium (Nd), praseodymium (Pr), or both elements, and the transition metal corresponds to iron (Fe) or a mixture of iron and cobalt (Co). Their preferred composition is one comprising a Re 214 B phase.

이와 같은 Re-TM-B 합금을 기초로 하는 영구자석을 제조하는 대표적인 방법으로는 소결법(Sintering Process)과 급속응고법(Rapid Solidification Process)이 연구되어 있다.Representative methods for producing permanent magnets based on such Re-TM-B alloys have been studied, such as the sintering process and the rapid solidification process.

먼저 소결법에 따르면 Re-TM-B 합금을 용해한 후 조분쇄(Crushing), 미분쇄(Milling)를 거쳐 20이하의 분말을 제조한다. 미분쇄된 분말은 성형시 자장을 가하여 입자를 자장 방향으로 정렬시킨 상태에서 압축하는 자장중 성형(Field Pressing) 공정을 거친다. 이와 같이 자장중에서 압축된 성형체를 약 9001200의 온도에서 소결(Sintering)한다. 즉, 소정의 소결온도에 이르면 액상이 형성되면서 분말 성형체의 기공이 액상으로 채워지고 치밀화가 진행된다. 이어지는 단계로 보자력 특성을 향상시키기 위해 4501000의 온도에서 열처리(Heat-treatment)한다. 소결 및 열처리가 끝난 후 소정의 모양으로 가공하고, 니켈(Ni)도금 등의 표면처리를 통하여 내식성을 향상시킨다.First, according to the sintering method, after dissolving the Re-TM-B alloy, it is subjected to crushing and milling. The following powders are produced. The finely ground powder is subjected to a field pressing process in which the particles are compressed in a state in which the particles are aligned in the magnetic direction by applying a magnetic field during molding. The molded article compressed in the magnetic field as described above is about 900 1200 Sintering at the temperature of. That is, when a predetermined sintering temperature is reached, the liquid phase is formed, the pores of the powder compact are filled with the liquid phase, and densification proceeds. In order to improve the coercivity property 1000 Heat-treatment at the temperature of. After sintering and heat treatment are finished, it is processed into a predetermined shape and corrosion resistance is improved through surface treatment such as nickel (Ni) plating.

한편, 급속응고법에 따르면 Re-TM-B 합금을 용해한 후 멜트 스피닝(Melt Spinning)법으로 급속응고시켜 자기적 특성을 갖는 비정질 또는 미세 결정질의 리본을 제조한다. 제조된 리본 입자는 볼 밀(Ball Mill)장치로 미세하게 분쇄한다. 이와같이 분쇄된 리본 입자를 밀폐형 또는 반밀폐형 금형다이에 장입한 후 열간압축성형하여 등방성의 영구자석을 형성한 후 다시 열간에서 소성변형시키는 다이업 셋팅(Die-upsetting) 공정을 통해 자화 용이축이 가압방향과 대체로 평행한 방향으로 이방화 특성을 나타내는 영구자석을 제조한다.On the other hand, according to the rapid solidification method, after dissolving the Re-TM-B alloy is rapidly solidified by the melt spinning method (Melt Spinning) to produce an amorphous or fine crystalline ribbon having magnetic properties. The ribbon particles thus prepared are finely ground in a ball mill apparatus. The easy-to-magnetize shaft is pressurized through a die-upsetting process in which the pulverized ribbon particles are charged into a hermetic or semi-hermetic mold die, followed by hot compression molding to form an isotropic permanent magnet, and plastic deformation in hot again. Permanent magnets are produced which exhibit anisotropic properties in a direction generally parallel to the direction.

이와같이 소결법 또는 급속응고법으로 제조되는 벌크형 희토류계 영구자석을 제조하는 과정에서 제조된 분말을 호퍼(hopper) 등과같은 영구자석 분말 저장부에 저장한다.In this way, the powder produced in the process of manufacturing the bulk rare earth permanent magnet manufactured by the sintering method or the rapid solidification method is stored in a permanent magnet powder storage unit such as a hopper.

압축공기 저장부(10)는 상기 영구자석 분말 저장부(20) 및 초음속 노즐부(40)에 각각 압축공기를 공급할 수 있도록 배관되어 연결되며, 초음속 노즐부(40)에 공급되는 압축공기 저장부(10)와 초음속 노즐부(40) 사이에는 압축공기 가열부(30)가 매개되어 초음속 노즐부(40)에 공급되는 압축공기를 25400의 저온상태의 온도범위로 가열할 수 있도록 되어 있다.The compressed air storage unit 10 is connected to the permanent magnet powder storage unit 20 and the supersonic nozzle unit 40 so as to supply compressed air, respectively, the compressed air storage unit is supplied to the supersonic nozzle unit 40 Between the 10 and the supersonic nozzle unit 40, the compressed air heating unit 30 is mediated and the compressed air supplied to the supersonic nozzle unit 40 is 25 400 It can be heated in the temperature range of low temperature.

한편, 초음속 노즐부(40)의 선단에서 저온으로 가열된 압축공기와 영구자석 분말이 혼합되며, 단면적이 상대적으로 좁은 노즐을 통과하면서 혼합분말이 초음속으로 가속되어 이송된다.On the other hand, the compressed air heated at a low temperature and the permanent magnet powder are mixed at the tip of the supersonic nozzle unit 40, and the mixed powder is accelerated and transferred at a supersonic speed while passing through a nozzle having a relatively narrow cross-sectional area.

제2도는 본 발명에 따른 초음속 노즐부의 노즐 개념도이며, 제3도는 본 발명에 따른 혼합분말의 이송속도와 관련된 마하수, 압력, 온도의 변화를 나타낸 그래프이다.2 is a conceptual diagram of the nozzle of the supersonic nozzle unit according to the present invention, and FIG. 3 is a graph showing the change of Mach number, pressure and temperature related to the feed rate of the mixed powder according to the present invention.

제2도에 도시된 바와 같이, 만약 목(thoat) 부위에서 음속흐름이 존재한다고 가정할 때 이때의 단면적은 A*이고, 임계 마하수 M* 1, 속도 V* 음속이라 하고, 어느 부분의 면적, 마하수, 속도를 각각 A, M, V라 한다면,As shown in FIG. 2, if there is a sonic flow at the throat, the cross-sectional area is A * and the critical Mach number M * 1, the speed V * Sonic speed, and if the area, Mach number, and speed of each part is A, M, V,

ρ*V*AρVA이고,ρ * V * A ρVA,

Mf(A/A*)의 함수관계를 갖게 된다.M It has a functional relationship of f (A / A * ).

따라서, A/A* 1이면, M1이 된다.Thus, A / A * 1, M It becomes 1.

한편, 출구에서는 단면적(A)가 노즐(A*)보다 크게 하면 M1이 되어 혼합분말의 이송속도가 초음속으로 됨을 알 수 있다.On the other hand, at the exit, if the cross-sectional area A is larger than the nozzle A * , then M It can be seen that the feed rate of the mixed powder becomes supersonic speed by 1.

즉, 혼합분말의 초음속 이송속도는 압축공기의 압력, 온도, 밀도 및 노즐 단면적에 따라 결정되며, 혼합분말의 밀도, 혼합분말의 공급속도, 혼합분말의 온도 팽창율 등의 변수를 조절하여 저온상태에서 초음속으로 가속하여 모재 표면에 충돌시켜 희토류계 영구자석 분말을 후막으로 압착코팅시킨다.That is, the supersonic feed rate of the mixed powder is determined according to the pressure, temperature, density and nozzle cross-sectional area of the compressed air, and is controlled at low temperature by adjusting variables such as the density of the mixed powder, the feed rate of the mixed powder, and the temperature expansion rate of the mixed powder. It accelerates at supersonic speed and hits the surface of the base material so that the rare earth permanent magnet powder is pressed onto a thick film.

이와같이 모재(60)의 표면에 후막으로 압착코팅된 영구자석 코팅층(62) 주변에 강한 자장을 형성시키는 고전류를 인가하여 영구자석 코팅층(62)을 착자시켜 희토류계 영구자석 후막 코팅공정을 완료한다.In this way, a high current is applied to the surface of the base material 60 to form a strong magnetic field around the permanent magnet coating layer 62 that is press-coated with a thick film to magnetize the permanent magnet coating layer 62 to complete a rare earth permanent magnet thick film coating process.

따라서, 희토류계 영구자석의 자기적 특성을 변화시키지 않으면서 모재(60)에 분사코팅할 수 있는 방법을 제공하게 되어 이종재질을 갖는 모재(60)에 희토류계 영구자석 분말을 후막 코팅하여 조향 토크센서 및 크러스터 속도센서 등에 응용할 수 있게 된다.Accordingly, the present invention provides a method of spray coating on the base material 60 without changing the magnetic properties of the rare earth permanent magnets, so that the rare earth permanent magnet powder is thick-coated on the base material 60 having a dissimilar material, thereby steering torque. It can be applied to sensors and cluster speed sensors.

이상, 상기 내용은 바람직한 일 실시예를 단지 예시한 것으로 본 발명의 당업자는 본 발명의 요지를 변경시킴이 없이 본 발명에 대한 수정 및 변경을 가할 수 있음을 인지해야 한다.As mentioned above, it should be noted that those skilled in the art can only make modifications and changes to the present invention without changing the gist of the present invention as it merely illustrates one preferred embodiment.

따라서 본 발명에 따르면, 희토류계 영구자석 재질을 벌크형 뿐만 아니라 이종재질의 모재에 자기적 특성의 변화없이 후막으로 코팅할 수 있게 되어 그 응용범위를 확대할 수 있는 효과를 가져올 수 있다.Therefore, according to the present invention, the rare earth permanent magnet material can be coated with a thick film on the base material of the dissimilar material as well as the bulk type, thereby bringing the effect of expanding its application range.

Claims (2)

저온가열된 압축공기와 희토류계 영구자석 분말을 혼합한 후 압축-팽창 노즐을 통과시켜 저온상태에서 초음속으로 이송하도록 하여 모재 표면에 충돌적 층코팅하는 희토류계 영구자석 후막 코팅방법.A rare earth permanent magnet thick film coating method of impinging layer coating on the surface of a base material by mixing compressed air heated at low temperature and rare earth permanent magnet powder, and then passing it through a compression-expansion nozzle at supersonic speed at low temperature. 제1항에 있어서, 상기 압축공기의 온도는 25400의 저온상태의 온도범위로 유지하는 것을 특징으로 하는 희토류계 영구자석 후막 코팅방법.The method of claim 1, wherein the temperature of the compressed air is 25 400 Rare earth permanent magnet thick film coating method characterized in that it is maintained in the temperature range of the low temperature state.
KR1019960081271A 1996-12-31 1996-12-31 Method for thick film coating of permanent magnet in rare earth system KR100208221B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960081271A KR100208221B1 (en) 1996-12-31 1996-12-31 Method for thick film coating of permanent magnet in rare earth system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960081271A KR100208221B1 (en) 1996-12-31 1996-12-31 Method for thick film coating of permanent magnet in rare earth system

Publications (2)

Publication Number Publication Date
KR19980061893A KR19980061893A (en) 1998-10-07
KR100208221B1 true KR100208221B1 (en) 1999-07-15

Family

ID=19493896

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960081271A KR100208221B1 (en) 1996-12-31 1996-12-31 Method for thick film coating of permanent magnet in rare earth system

Country Status (1)

Country Link
KR (1) KR100208221B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11810698B2 (en) 2015-07-06 2023-11-07 Dyson Technology Limited Magnet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11810698B2 (en) 2015-07-06 2023-11-07 Dyson Technology Limited Magnet

Also Published As

Publication number Publication date
KR19980061893A (en) 1998-10-07

Similar Documents

Publication Publication Date Title
JPH0420242B2 (en)
US5464670A (en) Resin bound magnet and its production process
US10022796B2 (en) Method of making Nd—Fe—B magnetic materials with reduced heavy rare earth metals
US20030156964A1 (en) Method and apparatus for producing magnetic rare earth alloy powder, method for producing bonded magnet, method for producing rare earth sintering magnet, and method and apparatus for improving purity of inert gas
JPH01283301A (en) Explosive compression of rare earth/transition alloy in fluid
JPH03153006A (en) Permanent magnet and raw material therefor
KR890016594A (en) Flakes manufacturing method of magnetically arranged RE-Fe-B type material and apparatus therefor
CN105609225B (en) Hot-working magnet and its raw material powder, by formed body and their manufacturing method made of raw material powder forming
KR100208221B1 (en) Method for thick film coating of permanent magnet in rare earth system
EP1295658A1 (en) Method and apparatus for producing magnetic rare earth alloy powder, method for producing bonded magnet, method for producing rare earth sintering magnet, and method and apparatus for improving purity of inert gas
JP2000348919A (en) Nanocomposite crystalline sintered magnet and manufacture of the same
JPH11176682A (en) Manufacturing bond (trade mark) magnet
JPH0616447B2 (en) Method for manufacturing composite permanent magnet
KR19980033929A (en) Rare earth high energy permanent magnet manufacturing method
JPH02125402A (en) Magnetic powder and manufacture thereof
CN108015268A (en) The bonded permanent magnet that a kind of R-B-Ti-Fe alloy powders and preparation method thereof are prepared with the alloy powder
KR100229410B1 (en) Method of manufacturing over-quenched ribbons in rare earth system
JP3120585B2 (en) Method for producing anisotropic magnetic powder
JPH10199717A (en) Anisotropic magnet and its manufacturing method
JPH10189320A (en) Anisotropic magnet alloy powder, and its manufacture
JP2003031407A (en) Iron base anisotropic permanent magnet and its manufacturing method
KR100211603B1 (en) Method for manufacturing permanent magnet in rare earth system
JPH02222108A (en) Magnet roll
KR100216875B1 (en) Method of manufacturing wide width ribbon of bonding magnet
KR19980043536A (en) Rare Earth System Quenching Ribbon Powder Manufacturing Equipment

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee