KR100229410B1 - Method of manufacturing over-quenched ribbons in rare earth system - Google Patents

Method of manufacturing over-quenched ribbons in rare earth system Download PDF

Info

Publication number
KR100229410B1
KR100229410B1 KR1019960051771A KR19960051771A KR100229410B1 KR 100229410 B1 KR100229410 B1 KR 100229410B1 KR 1019960051771 A KR1019960051771 A KR 1019960051771A KR 19960051771 A KR19960051771 A KR 19960051771A KR 100229410 B1 KR100229410 B1 KR 100229410B1
Authority
KR
South Korea
Prior art keywords
ribbon
rare earth
anisotropic
manufacturing
quench
Prior art date
Application number
KR1019960051771A
Other languages
Korean (ko)
Other versions
KR19980033928A (en
Inventor
송치용
Original Assignee
오상수
만도기계주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오상수, 만도기계주식회사 filed Critical 오상수
Priority to KR1019960051771A priority Critical patent/KR100229410B1/en
Publication of KR19980033928A publication Critical patent/KR19980033928A/en
Application granted granted Critical
Publication of KR100229410B1 publication Critical patent/KR100229410B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

본 발명은 희토류계 급냉 리본 제조방법에 관한 것으로, Re-TM-B(여기서, Re는 희토류원소로서 네오디뮴(Nd), 프라세어디뮴(Pr) 또는 이들의 혼합물이고, TM은 천이금속으로서 철(Fe) 또는 철(Fe)과 코발트(Co)의 혼합물이며, B는 붕소이다.) 합금을 용기에 넣고 가열하여 용융금속합금으로 용해하는 단계와, 상기 용융금속합금을 노즐을 통해 휘일 드럼의 표면에 분사시켜 급냉된 리본형 입자를 형성하는 단계와, 상기 급냉된 리본형 입자를 600~800℃의 소성변형 온도에서 표면에 요철형상이 형성된 롤러장치에 삽입하여 이방성 리본으로 제조하는 단계를 구비함으로써, 이방화된 본디드 영구자석을 제조할 수 있을 뿐만아니라, 고 에너지 영구자석의 이방화를 위한 다이-업셋팅 공정을 생략할 수 있는 급냉 리본을 제공함으로써 공정수 및 제조비용을 절감할 수 있는 효과를 가져올 수 있다.The present invention relates to a rare earth-based quench ribbon manufacturing method, wherein Re-TM-B, wherein Re is neodymium (Nd), praseodymium (Pr), or mixtures thereof as rare earth elements, and TM is iron as a transition metal. (Fe) or a mixture of iron (Fe) and cobalt (Co), and B is boron.) An alloy is placed in a container and heated to dissolve it into a molten metal alloy. Forming a quenched ribbon-shaped particle by spraying the surface, and inserting the quenched ribbon-shaped particle into a roller device having a concavo-convex shape formed on the surface at a plastic deformation temperature of 600 to 800 ° C. to produce an anisotropic ribbon. This not only makes it possible to manufacture anisotropic bonded permanent magnets, but also reduces the number of processes and manufacturing costs by providing a quenching ribbon that can omit the die-upsetting process for anisotropic high energy permanent magnets. There Can have an effect.

Description

희토류계 급냉 리본 제조방법Rare earth quench ribbon manufacturing method

본 발명은 희토류계 급냉 리본 제조방법에 관한 것으로, 더욱 상세하게는 이방화된 리본형 입자를 제조할 수 있는 희토류계 급냉 리본 제조방법에 관한 것이다.The present invention relates to a rare earth-based quench ribbon manufacturing method, and more particularly to a rare earth-based quench ribbon manufacturing method capable of producing anisotropic ribbon-shaped particles.

희토류(Rare Earth)원소, 천이금속(Transition Metal ; 이하 TM이라 약칭함) 및 붕소(B)를 기초로 하는 영구자석 조성물이 이미 알려져 있으며, 여기서 희토류 원소로는 네오디뮴(Nd), 또는 프라세어디뮴(Pr) 또는 두원소 모두 해당되고, 천이금속으로서는 철(Fe) 또는 철과 코발트(Co)의 혼합물이 해당된다. 이들의 바람직한 조성물은 Re2TM14B 상(여기서 TM은 철을 포함하는 하나 또는 그 이상의 천이금속원소임)을 포함하는 것이다.Permanent magnet compositions based on rare earth elements, transition metals (abbreviated as TM) and boron (B) are already known, where rare earth elements are neodymium (Nd), or prasedy Phenium (Pr) or both elements are applicable, and the transition metals are iron (Fe) or a mixture of iron and cobalt (Co). Preferred compositions thereof are those comprising a Re 2 TM 14 B phase, where TM is one or more transition metal elements comprising iron.

이와같은 합금을 제조하는 공지된 방법은 용융상태의 비정질 구조가 등방성이면서 영구자석 특성을 갖는 미세한 결정구조(Crystalline Microstructure)를 얻도록 하는 급속응고공정(Rapid Solidification Process)을 이용한다.Known methods for producing such alloys utilize a Rapid Solidification Process that allows the amorphous amorphous structure of the molten state to obtain a crystalline microstructure having isotropic and permanent magnet properties.

급속응고공정은 도 1에 도시된 바와 같이, Re2TM14B 합금을 석영도가니 등과 같은 용기(12)에 넣고 용융금속합금을 형성하기 위해 가열수단(14)으로 용해한다.In the rapid solidification process, as shown in Fig. 1, the Re 2 TM 14 B alloy is placed in a vessel 12 such as a quartz crucible or the like and dissolved by heating means 14 to form a molten metal alloy.

상기 용융금속합금을 작은 직경의 출구를 갖는 노즐(16)을 통해 소정의 회전 속도로 회전하는 휘일 드럼(Wheel Drum ; 18)의 표면에 분사시키면 용융금속합금은 거의 순간적으로 응고되어 작은 리본형 입자의 형태로 휘일 드럼(18)의 표면을 빠져 나오게 된다.When the molten metal alloy is sprayed onto the surface of a wheel drum 18 that rotates at a predetermined rotational speed through a nozzle 16 having a small diameter outlet, the molten metal alloy solidifies almost instantaneously to form small ribbon particles. Will exit the surface of the wheel drum 18 in the form of.

상기와 같이 휘일 드럼의 표면을 빠져나온 리본형 입자의 산물은 비정질이거나 또는 미세한 결정질 상태를 이루며, 이와같이 얇은 조각형태의 급냉리본을 이용하여 본디드 영구자석 및 고 에너지 영구자석을 제조한다.The product of the ribbon-shaped particles exiting the surface of the wheel drum as described above is in an amorphous or fine crystalline state, and thus bonded bonded permanent magnets and high energy permanent magnets are manufactured using the thin quench ribbon.

먼저 본디드 영구자석(Bonded Permanent Magnet) 제조방법은 상기 급냉리본 입자에 바인더(Binder)를 적절히 혼합하여 혼합분말을 제조하는 단계와, 이 혼합 분말을 금형안에 넣고 냉간압축성형(Cold Pressing)하여 예비성형체(Preform)를 제조하는 단계와, 상기 예비성형체 내에 함유된 바인더를 경화시키기 위한 열처리를 통해 성형체를 제조하는 단계와, 상기 성형체를 표면처리하는 단계로 본디드 영구자석을 제조한다.First, Bonded Permanent Magnet (Bonded Permanent Magnet) manufacturing method is a step of preparing a mixed powder by mixing a binder (Binder) to the quench ribbon particles, and pre-prepared by placing the mixed powder in a mold and cold pressing (Cold Pressing) A bonded permanent magnet is manufactured by preparing a molded body, preparing a molded body through heat treatment for curing the binder contained in the preform, and surface treating the molded body.

이때 본디드 영구자석은 자화방향이 등방상태를 갖는 급냉리본을 바인더와 함께 혼합하여 경화킨 것으로 근본적으로 등방성 영구자석이므로 자기적 특성을 높이는데 한계 있다.At this time, the bonded permanent magnet is hardened by mixing a quench ribbon having an isotropic state with the binder and hardened by the isotropic permanent magnet.

한편, 고 에너지 영구자석은 빠르게 응고된 근본적으로 등방성을 갖는 리본형 입자를 고 밀도체로 압출성형한 후, 상기 고 밀도체를 소성변형되도록 고온에서 압축성형하여 결정립 성장 및 결정 배열을 초래함으로써 높은 에너지 생성을 가져올 수 있는 자기적 특성이 우수한 이방성 영구자석이다.On the other hand, high-energy permanent magnet extrudes the rapidly solidified essentially isotropic ribbon-like particles into a high density body, and then compresses the high density body at high temperature to plastically deform, resulting in grain growth and crystal arrangement. It is an anisotropic permanent magnet with excellent magnetic properties that can produce it.

즉, 근본적으로 등방성을 갖는 급냉리본 입자를 금형안에 넣고 냉간압축성형하여 예비성형체를 제조하는 단계와, 상기 급냉리본 입자를 700℃ 부근에서 열간압축성형(Hot Pressing Process)하여 등방성을 부여하는계와, 상기 등방화된 영구 자석을 700~750℃ 부근에서 다이-업셋팅 공정(Die-Upsetting Process)으로 소성변형시켜 이방성을 부여하는 단계를 구비하여 자기적 특성이 향상된 고 에너지 영구자석을 제조한다.That is, a step of preparing a preform by inserting quench ribbon particles having essentially isotropy into a mold and performing cold compression molding, and a system for imparting isotropy by hot pressing process at around 700 ° C. In addition, the isotropicized permanent magnet is plastically deformed by a die-upsetting process in the vicinity of 700 to 750 ° C. to provide anisotropy, thereby manufacturing a high energy permanent magnet having improved magnetic properties.

그런데, 종래의 영구자석 제조방법에 있어서, 본디드 영구자석 제조방법은 근본적으로 등방성을 갖는 급냉 리본을 가공하는 것이므로 이방화된 본디드 영구자석을 제조할 수 없는 단점이 있으며, 고 에너지 영구자석 제조방법은 급냉된 리본 입자를 냉간서 압축성형하여 예비성형체를 형성한 다음, 열간압축성형하여 등방성 영구자석을 제조하고 또한 이방화를 위해 고온에서 별도의 다이-업셋팅 공정을 이용하여 소성 변형해야 하므로 여러단계의 공정수와 이에 따른 공정상의 효율이 저하되는 문제점이있다.However, in the conventional permanent magnet manufacturing method, since the bonded permanent magnet manufacturing method is to process a quench ribbon having an isotropic nature, there is a disadvantage that can not produce anisotropic bonded permanent magnets, high energy permanent magnet manufacturing The method is to cold preform the compression of the quenched ribbon particles to form a preform, then hot compression to produce an isotropic permanent magnet and also plastic deformation using a separate die-upsetting process at high temperature for anisotropy There is a problem in that the number of steps in the process and the resulting process efficiency is reduced.

따라서 본 발명은 이와같은 문제점을 해결하기 위한 것으로, 이방화된 본디드 영구자석을 제조할 수 있을 뿐만아니라, 고 에너지 영구자석의 이방화를 위한 다이-업셋팅 공정을 생략할 수 있는 급냉 리본을 제공함으로써 공정수 및 제조비용을 절감할 수 있는 희토류계 급냉 리본 제조방법을 제공하는데 그 목적이 있다.Therefore, the present invention is to solve such a problem, it is possible to manufacture anisotropic bonded permanent magnet, as well as to quench the ribbon that can omit the die-upsetting process for anisotropic high energy permanent magnet The purpose is to provide a rare earth-based quench ribbon manufacturing method that can reduce the number of processes and manufacturing costs by providing.

이와같은 목적을 실현하기 위한 본 발명은 Re2TM14B(여기서, Re는 희토류원소로서 네오디뮴(Nd), 프라세어디뮴(Pr) 또는 이들의 혼합물이고, TM은 천이금속으로서 철(Fe)또는 철(Fe)과 코발트(Co)의 혼합물이며, B는 붕소이다.) 합금을 용기에 넣고 가열하여 용융금속합금으로 용해하는 단계와, 상기 용융금속합금을 노즐을 통해 휘일 드럼의 표면에 분사시켜 급냉된 리본형 입자를 형성하는 단계와, 상기 급냉된 리본형 입자를 600~800℃의 소성변형 온도에서 표면에 요철현상이 형성된 쌍롤러에 삽입하여 이방성 리본으로 제조하는 단계를 포함하는 희토류계 급냉 리본 제조방법을 제공하는 것이다.The present invention for achieving this purpose is Re 2 TM 14 B (where Re is a rare earth element neodymium (Nd), praseodymium (Pr) or a mixture thereof, TM is a transition metal iron (Fe) Or a mixture of iron (Fe) and cobalt (Co), and B is boron.) An alloy is placed in a container and heated to melt the molten metal alloy, and the molten metal alloy is sprayed onto the surface of the wheel drum through a nozzle. Forming a quenched ribbon-shaped particle, and inserting the quenched ribbon-shaped particle into a twin roller having irregularities formed on the surface at a plastic deformation temperature of 600 to 800 ° C. to produce an anisotropic ribbon. It is to provide a quench ribbon manufacturing method.

제 1도는 종래의 희토류계 급냉 리본 제조과정을 보인 사시도.1 is a perspective view showing a conventional rare earth-based quench ribbon manufacturing process.

제 2도는 본 발명에 따른 희토류계 급냉 리본 제조과정을 보인 사시도.Figure 2 is a perspective view showing a rare earth-based quench ribbon manufacturing process according to the present invention.

제 3도는 본 발명에 따른 급냉 리본의 요철형상을 확대 도시한 부분 사시도.3 is an enlarged partial perspective view showing the irregularities of the quench ribbon according to the present invention.

제 4도는 본 발명에 따른 급냉리본의 이방화 과정을 보인 제 3도의 I-I 의 단면도.4 is a cross-sectional view of I-I of FIG. 3 showing the anisotropic process of a quench ribbon according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10 : 급속응고장치 12 : 용기10: rapid solidification device 12: container

14 : 가열수단 16 : 노즐14 heating means 16 nozzle

18 : 휘일 드럼 20 : 급냉 리본18: drum drum 20: quench ribbon

30 : 롤러장치 32 : 요철현상30: roller device 32: irregularities

이하, 본 발명에 따른 희토류계 급냉 리본을 제조하기위한 방법을 첨부 도면과 함께 상세하게 설명한다.Hereinafter, a method for producing a rare earth-based quench ribbon according to the present invention will be described in detail with the accompanying drawings.

도 2는 본 발명에 따른 희토류계 급냉 리본 제조하기 위한 급속응고장치(10) 및 롤러장치(30)를 보인 사시도이다.2 is a perspective view showing a rapid solidification device 10 and a roller device 30 for producing a rare earth-based quench ribbon according to the present invention.

먼저, 희토류 원소가 많이 함유된 결정립계를 갖으면서 불규칙하게 배열된 Nd-Fe-B 결정립을 포함하는 자기적으로 등방성인 미세한 결정질 물질 또는 비정질 물질을 석영 도가니와 같은 적절한 용기(12)내에 담고 유도 또는 저항가열기 등의 가열수단(14)에 의해 용융되어 용융금속합금을 형성한다.First, magnetically isotropic fine crystalline materials or amorphous materials containing irregularly arranged Nd-Fe-B crystal grains having grain boundaries containing a lot of rare earth elements are contained in a suitable container 12 such as a quartz crucible, or induced. It is melted by heating means 14 such as a resistance heater to form a molten metal alloy.

상기 용융금속합금은 아르곤과 같은 불활성 가스에 의해서 가압되어 용기(12)의 저부에 형성된 노즐(16)을 통해 방출된다.The molten metal alloy is pressurized by an inert gas such as argon and discharged through the nozzle 16 formed at the bottom of the vessel 12.

휘일 드럼(18)은 용기(12)의 노즐(16)과 소정 간극을 갖도록 이격되어 고속으로 회전하도록 설치되어 있으며, 휘일 드럼(18)의 표면에 용융금속합금이 방출되면 거의 순간적으로 응고되어 급냉 리본(20)이 제조된다.The wheel drum 18 is spaced apart from the nozzle 16 of the container 12 so as to rotate at a high speed. When the molten metal alloy is released on the surface of the wheel drum 18, the wheel drum 18 is solidified almost instantaneously and quenched. Ribbon 20 is produced.

급냉 리본(20)의 두께 및 냉각속도는 휘일 드럼(18)의 원주속도에 의해 결정되며, 휘일 드럼(18)의 크기가 휘일 표면상과 부딪히는 용융물의 양보다 휠씬 커 휠의 온도가 거의 변화되지 않으므로 휘일 드럼(18)을 냉각시키기 위한 별도의 냉각수단은 필수적이지 않다.The thickness and cooling rate of the quench ribbon 20 is determined by the circumferential speed of the wheel drum 18, and the size of the wheel drum 18 is much larger than the amount of melt that collides with the wheel surface so that the temperature of the wheel is hardly changed. Therefore, a separate cooling means for cooling the wheel drum 18 is not essential.

본 발명을 실행하기 위한 소정의 미세 결정립의 급냉 리본(20)을 제조하기 위하여 휘일 드럼(18)의 속도는 약 15~40m/s로 회전시키며, 용융금속합금을 0.2~0.5Kgf/cm2의 분사압으로 분사하는 것이 바람직하다.The speed of the wheel drum 18 is rotated at about 15 to 40 m / s to produce a quench ribbon 20 of the predetermined fine grains for carrying out the present invention, the molten metal alloy of 0.2 ~ 0.5 Kgf / cm 2 It is preferable to spray by the injection pressure.

계속되는 단계로 상기와 같이 제조된 급냉 리본(20) 조각들은 표면에 요철형상(32)을 갖는 롤러장치(30)에 삽입되어 급냉 리본(20)의 표면은 롤러(30) 표면에 형성된 요철형상(32)과 반대되는 형상의 요철형상이 형성된다.In the subsequent step, the pieces of the quench ribbon 20 manufactured as described above are inserted into the roller device 30 having the concave-convex shape 32 on the surface, and thus the surface of the quench ribbon 20 has the concave-convex shape formed on the surface of the roller 30. The concave-convex shape of the shape opposite to 32 is formed.

이때 롤러장치(30)는 600~800℃의 온도범위를 유지하게 되며, 이는 급냉리본(20)이 롤러장치(30)에 의해 압연가공되면서 소성변형을 일으키기에 적합한 온도이다.At this time, the roller device 30 maintains a temperature range of 600 ~ 800 ℃, which is a temperature suitable for causing plastic deformation while the quench ribbon 20 is rolled by the roller device (30).

이와 같이 롤러장치(30)에 의해 압연가공되는 과정에서 급냉 리본(20)의 결정립의 형상은 근본적으로 자기적으로 등방성인 구형 결정으로부터 플레이크(얇은 박막형상) 형상으로 변형됨과 동시에 다수의 요철 형상(32)들이 급냉 리본(20)의 표면에 형성되는 과정에서 소성변형이 일어난다.As described above, the shape of the crystal grains of the quench ribbon 20 in the process of rolling by the roller device 30 is deformed from a magnetically isotropic spherical crystal into a flake (thin thin film) shape and at the same time a large number of irregularities ( Plastic deformation occurs in the process of forming 32 on the surface of the quench ribbon 20.

도 3은 본 발명에 따른 급냉 리본의 요철형상을 확대 도시한 부분 사시도로서, 요철형상(32)은 직경이 0.5~1mm의 크기를 갖는 반구형상의 돌기가 100~500/cm2의 갯수로 형성되는 것이 바람직하다.Figure 3 is a partial perspective view showing an enlarged concave-convex shape of the quench ribbon according to the present invention, the concave-convex shape 32 is a hemispherical protrusion having a diameter of 0.5 ~ 1mm is formed in the number of 100 ~ 500 / cm 2 It is preferable.

도 4는 본 발명에 따른 급냉 리본의 이방화 과정을 보인 도 3의 I-I 의 확대 단면도로서, 최초 평탄한 면을 갖는 급냉 리본(20)이 롤러장치(30)에 삽입되어 롤러의 표면에 형성된 돌기에 의해 가압되면서 급냉 리본(20)의 표면은 은선으로 표시된 ⓛ에서 ②의 방향으로 오목하게 소성변형되며, 이에 수직한 방향인 화살표 방향으로 자기적인 이방성을 갖게 된다.4 is an enlarged cross-sectional view of II of FIG. 3 showing an anisotropic process of the quench ribbon according to the present invention, in which a quench ribbon 20 having an initial flat surface is inserted into the roller device 30 to a projection formed on the surface of the roller. While being pressed by the surface of the quench ribbon 20 concave plastic deformation concave in the direction of (에서) in the indicated by the silver line, it has magnetic anisotropy in the direction of the arrow perpendicular to it.

도 4는 단지 롤러장치(30)의 일측에 형성된 돌기에 의해 급냉 리본의 일측면이 오목하게 소성변형되는 과정을 보이고 있으나, 롤러장치(30)의 타측에 형성된 돌기에 의해서 급냉 리본(20)의 타측면(예를 들면 도 4에서 급냉 리본의 저면)이 오목하게 소성변형되는 과정에서도 동일한 방향의 이방성을 갖게되는 것은 자명한 사실이다.4 illustrates a process in which one side of the quench ribbon is concave plastically deformed by a protrusion formed on one side of the roller device 30, but the protrusion of the quench ribbon 20 is formed by a protrusion formed on the other side of the roller device 30. It is obvious that the other side (for example, the bottom surface of the quench ribbon in FIG. 4) has anisotropy in the same direction even when the plastic deformation is concave.

한편, 이와같이 표면에 요철형상(32)을 갖는 롤러장치(30)에 의해 이방화된 급냉 리본(20)에 바인더(Binder)를 적절히 혼합하여 혼합분말을 제조한 다음, 이 혼합분말을 금형안에 넣고 냉간압축성형하여 예비성형체를 제조한 후, 상기 예비성형체를 바인더의 경화온도인 150℃에서 약 3시간동안 열처리하여 표면처리 등의 후처리를 통해 이방성을 갖는 본디드 영구자석을 제조할 수 있다.On the other hand, a binder is appropriately mixed with a quench ribbon 20 anisotropically formed by the roller device 30 having a concave-convex shape 32 on the surface to prepare a mixed powder, and then the mixed powder is placed in a mold. After cold compression molding to prepare the preform, the preform may be heat-treated at 150 ° C. for about 3 hours at a curing temperature of the binder to prepare a bonded permanent magnet having anisotropy through post-treatment such as surface treatment.

즉, 본 발명에 따른 본디드 영구자석은 자화방향이 이방성을 갖는 급냉 리본(20)을 바인더와 함께 혼합하여 경화시킨 것이므로 이방성을 갖게되며 이에 따라 자기적 특성이 향상되는 효과를 가져올 수 있다.That is, the bonded permanent magnet according to the present invention is hardened by mixing the quenching ribbon 20 having an anisotropy in magnetization with a binder and thus has anisotropy, thereby improving the magnetic properties.

한편, 본 발명에 따른 이방성 급냉 리본(20)을 소정의 형상을 갖도록 상온에서 고 밀도체로 압축성형한 후, 상기 고 밀도체를 고온에서 압축성형하여 자기적 특성이 우수한 고 에너지 이방성 영구자석을 제조할 수 있다.Meanwhile, after compression molding the anisotropic quench ribbon 20 according to the present invention to a high density body at room temperature to have a predetermined shape, the high density body is compression molded at high temperature to produce a high energy anisotropic permanent magnet having excellent magnetic properties. can do.

즉, 고 에너지 영구자석을 제조하기위해 급냉된 리본 입자를 냉간에서 압축성형하여 예비성형체를 형성한 다음, 열간압축성형하여 등방성 영구자석을 제조하고 또한 이방화를 위해 고온에서 별도의 다이-업셋팅 공정을 이용하여 소성변형해야 하는 종래의 제조방법과 비교하여 제조공정수의 단축 및 이에 따른 공정상의 효율을 향상시킬 수 있는 효과를 얻을 수 있다.In other words, in order to manufacture a high energy permanent magnet, the quenched ribbon particles are cold pressed to form a preform, followed by hot compression to produce an isotropic permanent magnet, and a separate die-up setting at a high temperature for anisotropy. Compared with the conventional manufacturing method that needs to be plastically deformed using the process, the number of manufacturing steps can be shortened and the effect of improving the process efficiency can be obtained.

이상. 상기 내용은 본 발명의 바람직한 일실시예를 단지 예시한 것으로 본 발명이 속하는 분야의 당업자는 본 발명의 요지를 변경시킴이 없이 본 발명에 대한 수정 및 변경을 가할 수 있다.More than. The above description merely illustrates a preferred embodiment of the present invention, and those skilled in the art to which the present invention pertains may make modifications and changes to the present invention without changing the gist of the present invention.

따라서 본 발명에 따르면, 표면에 요철 형상을 갖는 휘일 드럼에 의해 급냉리본의 표면에 소정의 크기를 갖는 요철 형상이 다수개 형성되도록하여 열간압축성형 공정시 요철 형상 부분 중 볼록한 부분이 우선적으로 소성변형되면서 이방화되어 기존의 이방화를 위한 다이-업셋팅 공정을 생략할 수 있는 급냉 리본을 제공함으로써 공정수 및 제조비용을 절감할 수 있는 효과를 얻을 수 있다.Therefore, according to the present invention, the convex part of the concave-convex part is preferentially plastically deformed during the hot compression molding process by forming a plurality of concave-convex shapes having a predetermined size on the surface of the quench ribbon by the wheel drum having the concave-convex shape on the surface. By providing a quenching ribbon that can be anisotropically to omit the die-upsetting process for the anisotropy can reduce the number of processes and manufacturing costs.

Claims (1)

Re2TM14B(여기서,Re는 희토류원소로서 네오디뮴(Ne), 프라세어디뮴(Pr) 또는 이들의 혼합물이고, TM은 천이금속으로서 철(Fe) 또는 철(Fe)과 코발트(Co)의 혼합물이며, B는 붕소이다.) 합금을 용기에 넣고 가열하여 용융금속합금으로 용해하는 단계와,Re 2 TM 14 B (where Re is a rare earth element neodymium (Ne), praseodymium (Pr) or mixtures thereof and TM is a transition metal as iron (Fe) or iron (Fe) and cobalt (Co) And B is boron.) The alloy is placed in a container and heated to be dissolved in a molten metal alloy. 상기 용융금속합금을 노즐을 통해 휘일 드럼의 표면에 분사시켜 급냉된 리본형 입자를 형성하는 단계와,Spraying the molten metal alloy on the surface of the wheel drum through a nozzle to form quenched ribbon particles; 상기 급냉된 리본형 입자를 600~800℃의 소성변형 온도에서 표면에 요철형상이 형성된 쌍롤러에 삽입하여 이방성 급냉 리본형 입자로 형성하는 단계를 포함하는 희토류계 급냉 리본 제조방법.Rare earth-based quench ribbon manufacturing method comprising the step of inserting the quenched ribbon-shaped particles into an anisotropic quench ribbon-shaped particles by inserting into a twin roller having an uneven shape formed on the surface at a plastic deformation temperature of 600 ~ 800 ℃.
KR1019960051771A 1996-11-04 1996-11-04 Method of manufacturing over-quenched ribbons in rare earth system KR100229410B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960051771A KR100229410B1 (en) 1996-11-04 1996-11-04 Method of manufacturing over-quenched ribbons in rare earth system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960051771A KR100229410B1 (en) 1996-11-04 1996-11-04 Method of manufacturing over-quenched ribbons in rare earth system

Publications (2)

Publication Number Publication Date
KR19980033928A KR19980033928A (en) 1998-08-05
KR100229410B1 true KR100229410B1 (en) 1999-11-01

Family

ID=19480673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960051771A KR100229410B1 (en) 1996-11-04 1996-11-04 Method of manufacturing over-quenched ribbons in rare earth system

Country Status (1)

Country Link
KR (1) KR100229410B1 (en)

Also Published As

Publication number Publication date
KR19980033928A (en) 1998-08-05

Similar Documents

Publication Publication Date Title
US4913745A (en) Method for producing a rare earth metal-iron-boron anisotropic bonded magnet from rapidly-quenched rare earth metal-iron-boron alloy ribbon-like flakes
US5464670A (en) Resin bound magnet and its production process
KR20180106852A (en) Highly thermostable rare-earth permanent magnetic material, preparation method thereof and magnet containing the same
CA1317203C (en) Method for making flakes of re-fe-b type magnetically aligned material
US20030156964A1 (en) Method and apparatus for producing magnetic rare earth alloy powder, method for producing bonded magnet, method for producing rare earth sintering magnet, and method and apparatus for improving purity of inert gas
JPH05209210A (en) Production of magnet alloy particle
KR100229410B1 (en) Method of manufacturing over-quenched ribbons in rare earth system
KR100229411B1 (en) Method of making high energy permanent magnet in rare earth system
EP1263003B1 (en) Preparation of a rare earth magnet alloy powder for a bonded magnet and rare earth bonded magnet therewith
KR100201698B1 (en) Method for producing quenching ribbon powder
JPS62203302A (en) Cast rare earth element-iron system permanent magnet
CN1021607C (en) Producing method and apparatus of anisotropic micro rare earth permanent magnetic material
JPS62276802A (en) Manufacture of rare earth magnet
JPH08260112A (en) Alloy thin strip for permanent magnet, alloy powder obtained from the same, magnet and production of alloy thin strip for permanent magnet
KR100208221B1 (en) Method for thick film coating of permanent magnet in rare earth system
JPH02125402A (en) Magnetic powder and manufacture thereof
KR19980043535A (en) Rare earth anisotropic permanent magnet manufacturing method
JP2003234204A (en) Anisotropic magnetic powder, method and device for manufacturing the same, and anisotropic bonded magnet using the same
EP4199011A1 (en) Method for obtaining an ndfeb precursor material, precursor material thus obtained, method for obtaining a magnet comprising the precursor material and magnet thus obtained
KR100216875B1 (en) Method of manufacturing wide width ribbon of bonding magnet
JP3180269B2 (en) Manufacturing method of rare earth-transition metal-boron bonded magnet
JPH0677023A (en) Manufacture of anisotropic magnetic powder
JP2003031407A (en) Iron base anisotropic permanent magnet and its manufacturing method
KR100211603B1 (en) Method for manufacturing permanent magnet in rare earth system
JP3125226B2 (en) Manufacturing method of rare earth metal-transition metal-boron based anisotropic sintered magnet

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee