KR100229411B1 - Method of making high energy permanent magnet in rare earth system - Google Patents

Method of making high energy permanent magnet in rare earth system Download PDF

Info

Publication number
KR100229411B1
KR100229411B1 KR1019960051772A KR19960051772A KR100229411B1 KR 100229411 B1 KR100229411 B1 KR 100229411B1 KR 1019960051772 A KR1019960051772 A KR 1019960051772A KR 19960051772 A KR19960051772 A KR 19960051772A KR 100229411 B1 KR100229411 B1 KR 100229411B1
Authority
KR
South Korea
Prior art keywords
rare earth
permanent magnet
molten metal
energy permanent
preform
Prior art date
Application number
KR1019960051772A
Other languages
Korean (ko)
Other versions
KR19980033929A (en
Inventor
송치용
Original Assignee
오상수
만도기계주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오상수, 만도기계주식회사 filed Critical 오상수
Priority to KR1019960051772A priority Critical patent/KR100229411B1/en
Publication of KR19980033929A publication Critical patent/KR19980033929A/en
Application granted granted Critical
Publication of KR100229411B1 publication Critical patent/KR100229411B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0293Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets diffusion of rare earth elements, e.g. Tb, Dy or Ho, into permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

본 발명은 희토류계 고 에너지 영구자석 제조방법에 관한 것으로, Re2TM14B(여기서, Re는 희토류원소로서 네오디뮴(Nd), 프라세어디뮴(Pr) 또는 이들의 혼합물이고, TM은 천이금속으로서 철(Fe) 또는 철(Fe)과 코발트(Co)의 혼합물이며, B는 붕소이다.) 합금을 용기에 넣고 가열하여 용융금속합금으로 용해시키고, 상기 용융금속합금을 노즐을 통해 요철형상의 표면을 갖는 휘일 드럼의 표면에 분사시켜 요철 형상의 표면을 갖는 급냉된 리본형 입자를 형성하고, 상기 요철 형상의 표면을 갖는 급냉된 리본형 입자를 냉간에서 압축성형하여 예비성형체를 형성하며, 상기 예비성형체를 680~750℃의 온도에서 요철 현상이 평활하게 소성변형되면서 이방성을 갖도록 열간압축성형하는 단계를 포함한다. 따라서 기존의 이방화를 위한 다이-업셋팅 공정을 생략하여 제조공정수 및 제조비용을 절감할 수 있는 효과를 얻을 수 있는 것이다.The present invention relates to a rare earth-based high energy permanent magnet manufacturing method, wherein Re 2 TM 14 B (where Re is a rare earth element neodymium (Nd), praseodymium (Pr) or a mixture thereof, TM is a transition metal Iron (Fe) or a mixture of iron (Fe) and cobalt (Co), and B is boron.) An alloy is placed in a container and heated to dissolve it into a molten metal alloy, and the molten metal alloy is uneven through a nozzle. Spraying the surface of a wheel drum having a surface to form a quenched ribbon-like particle having a concave-convex surface, and compression-molding the quenched ribbon-shaped particle having the concave-convex surface in cold form to form a preform; And hot compressing the preform to have anisotropy while the irregularities are smoothly plastically deformed at a temperature of 680 to 750 ° C. Therefore, it is possible to obtain an effect of reducing the number of manufacturing process and manufacturing cost by omitting the existing die-up setting process for anisotropic.

Description

희토류계 고 에너지 영구자석 제조방법Rare earth high energy permanent magnet manufacturing method

본 발명은 희토류계 고 에너지 영구자석 제조방법에 관한 것으로, 더욱 상세하게는 희토류계 합금을 용해하여 급냉된 리본형 입자를 제조하는 과정에서 요철 형상의 표면을 갖는 휘일 드럼에 의해 급냉된 리본형 입자의 표면에 요철 형상을 갖도록하여 열간압축성형공정과 함께 자회방향이 이방화 되도록 한 희토류계 고 에너지 영구자석 제조방법에 관한 것이다.The present invention relates to a rare earth-based high-energy permanent magnet manufacturing method, and more particularly, ribbon-shaped particles quenched by a wheel drum having a concave-convex surface in the process of preparing a quenched ribbon particles by dissolving the rare earth-based alloy. The present invention relates to a rare earth-based high energy permanent magnet manufacturing method having an uneven shape on the surface of the surface thereof so that the magnetic rotation direction is anisotropic with the hot compression molding process.

희토류(Rare Earth)원소, 천이금속(Transition Metal ; 이하 TM 이라 약칭함) 및 붕소(B)를 기초로 하는 영구자석 조성물이 이미 알려져 있으며, 여기서 희토류원소로는 네오디뮴(Nd), 또는 프라세어디뮴(Pr) 또는 두원소 모두 해당되고, 천이금속으로서는 철(Fe)또는 철과 코발트(Co)의 혼합물이 해당된다. 이들의 바람직한 조성물은 Re2TM14B상(여기서 TM은 철을 포함하는 하나 또는 그 이상의 천이금속 원소임)을 포함하는 것이다.Permanent magnet compositions based on rare earth elements, transition metals (abbreviated herein as TM) and boron (B) are already known, where rare earth elements are neodymium (Nd), or prasedy Pb or both elements are applicable, and the transition metal is iron (Fe) or a mixture of iron and cobalt (Co). Preferred compositions thereof are those comprising a Re 2 TM 14 B phase, where TM is one or more transition metal elements comprising iron.

이와같은 합금을 제조하는 공지된 방법은 용융상태의 비정질 구조가 등방성이면서 영구자석 특성을 갖는 미세한 결정구조(Crystalline Microstructure)을 얻도록 하는 급속응고공정(Rapid Solidification Process)을 이용한다.Known methods for producing such alloys utilize a Rapid Solidification Process that allows the amorphous amorphous structure of the molten state to obtain a crystalline microstructure having isotropic and permanent magnet properties.

급속응고공정은 도 1에 도시된 바와 같이, Re2TM14B 합금을 석영관에 넣고 용융금속합금을 형성하기 위해 가열수단으로 용해한다. 상기 용융금속합금을 작은 직경의 출구를 갖는 노즐(10)을 통해 소정의 회전속도로 회전하는 휘일 드럼(Wheel Drum ; 11)의 표면에 분사시키면 용융금속합금은 거의 순차적으로 응고되어 작은 리본형 입자의 형태로 휘일 드럼(11)의 표면을 빠져 나오게 된다.In the rapid solidification process, as shown in FIG. 1, a Re 2 TM 14 B alloy is placed in a quartz tube and melted by heating means to form a molten metal alloy. When the molten metal alloy is sprayed onto a surface of a wheel drum 11 that rotates at a predetermined rotational speed through a nozzle 10 having a small diameter outlet, the molten metal alloy solidifies in sequence, thereby forming small ribbon particles. Will exit the surface of the wheel drum 11 in the form of.

상기와 같이 휘일 드럼의 표면을 빠져나온 리본형 입자의 산물은 평탄한 면을 갖는 비정질이거나 또는 미세한 결정질 상태를 이루며, 이와같이 평탄한 면을 갖는 얇은 조각형태의 급냉리본을 이용하여 희토류계 고 에너지 영구자석을 제조한다.The product of the ribbon-shaped particles exiting the surface of the wheel drum as described above is in an amorphous or fine crystalline state having a flat surface, and thus a rare earth-type high energy permanent magnet is formed by using a thin quench ribbon having a flat surface. Manufacture.

즉, 상기 급냉리본 입자를 금형안에 넣고 냉간압축성형(Cold Pressig)하여 예비성형체(Preform)를 제조하는 단계와, 상기 급냉리본 입자를 700℃ 부근에서 열간압축성형(Hot Pressing Process)하여 등방성을 부여하는 단계와, 상기 등방화된 영구자석을 700~750℃ 부근에서 다이-업셋팅 공정(Die-Upsetting Process)으로 소성변형시켜 이방성을 부여하는 단계를 구비하여 자기적 특성이 향상된 고 에너지 영구자석을 제조한다.That is, putting the quench ribbon particles into a mold and cold pressing (Cold Pressig) to prepare a preform, and gives the isotropy by hot pressing the hot crush ribbon particles at around 700 ° C (Hot Pressing Process) And the step of plastically deforming the isotropicized permanent magnet in a die-upsetting process in the vicinity of 700 to 750 ° C. to provide anisotropy to obtain a high energy permanent magnet having improved magnetic properties. Manufacture.

그런데 이와같은 종래의 희토류계 고 에너지 영구자석 제조방법은 급냉리본 입자를 냉간에서 압축성형하여 예비성형체를 형성한 다음, 열간압축성형하여 등방성 영구자석을 제조하고, 또한 이방화를 위해 다이-업셋팅 공정을 이용하여 소성 변형해야 하므로 여러단게의 공정수와 이에 따른 공정상의 효율이 저하되는 문제점이 있다.However, in the conventional rare earth-based high energy permanent magnet manufacturing method, the cold ribbon particles are cold pressed to form a preform, and then hot pressed to produce an isotropic permanent magnet, and also die-up for anisotropy. Since plastic deformation should be performed using the process, there are problems in that the number of steps and the efficiency of the process are reduced.

따라서, 본 발명은 이와같은 문제점을 해결하기 위한 것으로, 표면에 요철 형상을 갖는 휘일 드럼에 의해 급냉 리본의 표면에 소정의 크기를 갖는 요철 형상이 다수개 형성되도록하여 열간압축성형 공정시 요철 형상 부분 중 볼록한 부분이 우선적으로 소성변형되면서 이방회되어 기존의 이방화를 위한 다이-업셋팅 공정을 생략할 수 있는 고 에너지 영구자석을 제공함으로서 공정수 및 제조비용을 절감할 수 있는 희토류계 영구자석 제조방법을 제공하는 데 그 목적이 있다.Accordingly, the present invention is to solve such a problem, by forming a plurality of irregularities having a predetermined size on the surface of the quenching ribbon by a wheel drum having an uneven shape on the surface of the uneven portion during the hot compression molding process The rare earth permanent magnets can be saved by reducing the number of processes and manufacturing costs by providing high-energy permanent magnets that can be eliminated as the convex part is plastically deformed and is thus anisotropic, thus eliminating the existing die-up setting process. The purpose is to provide a method.

이와같은 목적을 실현하기 위한 본 발명은, Re2TM14B(여기서, Re는 희토류원소로서 네오디뮴(Nd), 프라세어디뮴(Pr) 또는 이들의 혼합물이고, TM은 천이금속으로서 철(Fe)또는 철(Fe)과 코발트(Co)의 혼합물이며, B는 붕소이다.) 합금을 용기에 넣고 가열하여 용융금속합금으로 용해하는 단계와, 상기 용융금속합금을 노즐을 통해 요철형상의 표면을 갖는 휘일 드럼의 표면에 분사시켜 요철 형상의 표면을 갖는 급냉된 리본형 입자를 형성하는 단계와, 상기 요철 형상의 표면을 갖는 급냉된 리본형 입자를 냉간에서 압축성형하여 예비성형체를 형성하는 단계와, 상기 예비성형체를 680~750℃의 온도에서 요철 형상이 평활하게 소성변형되면서 이방성을 갖도록 열간압축성형하는 단계를 포함하는 희토류계 고 에너지 영구자석 제조방법을 제공하는 것이다.The present invention for achieving the above object is Re 2 TM 14 B (where Re is a rare earth element neodymium (Nd), praseodymium (Pr) or a mixture thereof, TM is a transition metal iron (Fe Or a mixture of iron (Fe) and cobalt (Co), and B is boron.) An alloy is placed in a container and heated to dissolve it into a molten metal alloy, and the molten metal alloy is unevenly formed through a nozzle. Forming a quenched ribbon-shaped particle having a concave-convex surface by spraying the surface of the wheel drum having a convex-concave shape; In addition, the preform is to provide a rare earth-based high-energy permanent magnet manufacturing method comprising the step of hot compression molding to have anisotropy while the irregular shape is smooth plastic deformation at a temperature of 680 ~ 750 ℃.

제 1도는 종래의 고에너지 희토류계 영구자석을 제조하기 위한 제조공정을 보인 공정도.1 is a process chart showing a manufacturing process for manufacturing a conventional high energy rare earth permanent magnet.

제 2도는 종래의 급냉 리본을 제조하기 위한 급속응고장치를 보인 사시도.2 is a perspective view showing a rapid solidification apparatus for manufacturing a conventional quench ribbon.

제 3도는 본 발명에 따른 희토류계 고 에너지 영구자석 제조방법을 순차적으로 나타낸 공정도.3 is a process chart sequentially showing a rare earth-based high-energy permanent magnet manufacturing method according to the present invention.

제 4도는 본 발명에 따른 급냉 리본을 제조하기 위한 급속응고장치를 보인 사시도.Figure 4 is a perspective view showing a rapid solidification device for producing a quench ribbon according to the present invention.

제 5도는 본 발명에 따른 열간압축성형공정을 보인 개략도.5 is a schematic view showing a hot compression molding process according to the present invention.

제 6도는 본 발명에 따른 급냉리본의 돌기를 확대 도시한 부분사시도.6 is an enlarged partial perspective view showing the projection of the quench ribbon according to the present invention.

제 7도는 본 발명에 따른 급냉리본의 돌기의 이방화 과정을 보인 도 6의 I-I의 단면도.Figure 7 is a cross-sectional view of I-I of Figure 6 showing the anisotropic process of the projection of the quench ribbon according to the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

10 : 급속응고장치 12 : 용기10: rapid solidification device 12: container

14 : 가열수단 16 : 노즐14 heating means 16 nozzle

18 : 휘일 드럼 20 : 돌기18: wheel drum 20: projection

22 : 급냉 리본22: quench ribbon

이하, 본 발명에 따른 희토류계 고 에너지 영구자석을 제조하기위한 방법을 첨부 도면과 함께 상세하게 설명한다.Hereinafter, a method for manufacturing a rare earth-based high energy permanent magnet according to the present invention will be described in detail with the accompanying drawings.

도 3은 본 발명에 따른 희토류계 고 에너지 영구자석 제조방법을 순차적으로 나타낸 공정도이며, 도 4는 본 발명에 따른 급냉 리본을 제조하기 위한 급속응고장치를 보인 사시도이다.3 is a process diagram sequentially showing a rare earth-based high-energy permanent magnet manufacturing method according to the present invention, Figure 4 is a perspective view showing a rapid solidification device for producing a quench ribbon according to the present invention.

본 발명은 도 3에 도시된 바와 같이, 희토류계 합금을 용융금속합금으로 용해하는 단계, 용융된 금속합금을 급속히 응고시키면서 얇은 조각으로 형성하는 급냉리본 제조 단계, 예비성형체를 형성하기 위하여 급냉리본을 금형에 적층시켜 냉간에서 압축성형하는 단계, 예비성형체를 이방화시킴과 아울러 소성변형시키는 열간압축성형단계를 포함한다.The present invention, as shown in Figure 3, dissolving the rare earth-based alloy with a molten metal alloy, a rapid ribbon manufacturing step of forming a thin piece while rapidly solidifying the molten metal alloy, a quench ribbon to form a preform Laminating to a mold to form a cold compression step, anisotropically preforming the preform, and hot compression molding step of plastic deformation.

특히, 본 발명에 적합한 용융금속합금 및 표면에 요철형상을 갖는 급냉 리본은 도 4에 도시된 바와 같은 급속응고장치(10)에 의해 이루어지는 바, 희토류 원소가 많이 함유된 결정립계를 갖으면서 불규칙하게 배열된 Nd-Fe-B 결정립을 포함하는 자기적으로 등방성인 미세한 결정질 물질 또는 비정질물질을 석영 도가니와 같은 적절한 용기(12)내에 담는다.In particular, the molten metal alloy suitable for the present invention and the quench ribbon having a concave-convex shape on the surface is made by the rapid solidification apparatus 10 as shown in Figure 4, arranged irregularly with a grain boundary containing a lot of rare earth elements The magnetically isotropic fine crystalline material or amorphous material containing the Nd-Fe-B crystal grains is contained in a suitable container 12 such as a quartz crucible.

희토류계 합금은 유도 또는 저항가열기 등의 가열수단(14)에 의해 용융되며, 용융금속합금은 아른곤과 같은 불활성 가스에 의해서 가압되어 용기(12)의 저부에 형성된 노즐(16)을 통해 방출된다.The rare earth-based alloy is melted by heating means 14 such as an induction or resistance heater, and the molten metal alloy is pressurized by an inert gas such as argon to be discharged through the nozzle 16 formed at the bottom of the container 12. .

휘일 드럼(18)은 용기(12)의 노즐(16)과 소정 간극을 갖도록 이격되어 고속으로 회전(15~40m/s)하도록 설치되어 있으며, 휘일 드럼(18)의 표면에는 직경이 0.5~1mm의 크기를 갖는 반구형상의 돌기(2)가 100~500/cm2의 갯수로 형성되어 요철 형상을 이루고 있다.The wheel drum 18 is spaced apart from the nozzle 16 of the container 12 to have a predetermined gap so as to rotate at a high speed (15 to 40 m / s), and the surface of the wheel drum 18 has a diameter of 0.5 to 1 mm. A hemispherical protrusion 2 having a size of is formed in a number of 100 to 500 / cm 2 to form an uneven shape.

이와같은 휘일 드럼(18)의 표면에 용융금속합금이 방출되면 거이 순간적으로 응고되어 급냉 리본(22)이 제조되는 휘일 드럼(18)의 표면에 형성된 요철 형상과 대응하는 형상을 갖는 즉, 표면에 요철형상을 갖는 급냉 리본922)이 형성된다.When the molten metal alloy is released on the surface of the wheel drum 18, the molten metal alloy is instantaneously solidified to have a shape corresponding to the uneven shape formed on the surface of the wheel drum 18 on which the quench ribbon 22 is manufactured, that is, on the surface. A quench ribbon 922 having an uneven shape is formed.

여기서, 급냉 리본(22)의 두께 및 냉각속도는 휘일 드럼(18)의 원주속도에 의해 결정되며, 휘일 드럼(18)의 크기가 휘일 표면상과 부딪히는 용융물의 양보다 휠씬 커 휠의 온도가 거의 변화되지 않으므로 휘일 드럼(18)을 냉각시키기 위한 별도의 냉각수단은 필수적이지 않다.Here, the thickness of the quench ribbon 22 and the cooling rate are determined by the circumferential speed of the wheel drum 18, and the size of the wheel drum 18 is much larger than the amount of melt that collides with the wheel surface. Since it does not change, no separate cooling means for cooling the wheel drum 18 is necessary.

본 발명을 실행하기 위한 소정의 미세 결정립의 급냉 리본(22)를 제조하기 위하여 휘일 드럼(18)의 속도는 약 40m/s로 회전시키며, 용융금속합금을 0.2~0.5Kgf/cm2의 분사압으로 분사하는 것이 바람직하다.The speed of the wheel drum 18 is rotated at about 40 m / s in order to produce a quench ribbon 22 of a predetermined fine grain for practicing the present invention, the injection pressure of the molten metal alloy 0.2 ~ 0.5 Kgf / cm 2 Spraying is preferred.

이와같이 요철형상을 갖는 급냉 리본(22) 조각들을 금형에 넣고 급냉 리본(22)조각들이 소성변형을 일으키지 않는 범위 내에서 냉간압축성형하여 소망하는 형상을 갖는 예비성형체를 형성한다.In this way, the pieces of the quench ribbon (22) having an uneven shape are put into a mold and cold pressed within the range where the pieces of the quench ribbon (22) do not cause plastic deformation, thereby forming a preform having a desired shape.

한편, 이와같이 형성된 예비성형체는 각각의 급냉 리본(22) 조각들의 표면에 형성된 요철 형상을 포함하고 있다.On the other hand, the preform thus formed includes an uneven shape formed on the surface of each of the pieces of quench ribbon (22).

이와같은 예비성형체를 열간압축성형을 위한 금형에 넣고 소성변형 온도에서 가압가공하면 우선적으로 급냉 리본(22)의 표면에 요철 형상으로 형성된 돌기(20)들이 평탄해지는 소성변형이 일어난다.When the preform is placed in a mold for hot compression molding and pressurized at a plastic deformation temperature, plastic deformation occurs in which protrusions 20 formed in an uneven shape are flattened on the surface of the quench ribbon 22.

도 5에 도시된 바와 같이, 열간금형 다이(Die)안에 급냉 리본(22) 조각들을 넣고 680~750℃의 온도로 가열하면서 상하부에서 가압하면 급냉리본(22)의 결정립의 형상은 근본적으로 자기적으로 등방성인 구형 절정으로부터 플레이크(얇은 박막형상) 형상으로 변형됨과 동시에 표면에 형성된 다수의 돌기(20)들이 평탄해지는 변형이 일어난다.As shown in FIG. 5, when the pieces of the quenching ribbon 22 are placed in a die die and pressurized at the upper and lower portions while heating to a temperature of 680 to 750 ° C., the shape of the grains of the quench ribbon 22 is essentially magnetic. As a result of the deformation from the isotropic spherical peak to a flake (thin thin film) shape, a plurality of protrusions 20 formed on the surface are deformed.

도 6은 본 발명에 따른 급냉리본의 돌기를 확대 도시한 부분 사시도로서, 도면상 1 개의 돌기(20)를 보이고 있으나 실제로는 이와같은 돌기(20)가 연속적이며 불규칙적으로 형성되어 있다.FIG. 6 is an enlarged partial perspective view of the projection of the quench ribbon according to the present invention. In the drawing, one projection 20 is shown. In reality, the projection 20 is continuously and irregularly formed.

도 7은 본 발명에 따른 급냉 리본의 돌기의 이방화 과정을 보인 도 6의 I-I의 단면도로서, 열간압축성형시 상·하 방향에서 가압하면 돌기(20)는 은선으로 표시된 ①→②→③의 방향으로 돌기(20)가 평탄해지는 방향으로 소성변형을 일으키게 되며, 이에 수직한 방향인 화살표 방향으로 자기적인 이방성을 갖게 된다.7 is a cross-sectional view of II of FIG. 6 showing the anisotropic process of the projection of the quenching ribbon according to the present invention. When hot pressing is performed in the up and down direction, the projection 20 is shown by the hidden line ① → ② → ③. Plastic deformation occurs in the direction in which the projections 20 are flattened in the direction, and has magnetic anisotropy in the direction of the arrow that is perpendicular thereto.

따라서 희토류계 영구자석의 자기적 특성을 향상시키기 위한 방법으로 이용되고 있는 자기적인 이방화 공정을 종래에는 별도의 다이 업셋팅 공정을 통해 소정변형을 일으킴으로서 진행해 왔으나 본 발명에서는 급냉 리본 제조시에 표면에 요철형상을 갖도록하여 열간압축성형공정시 요철형상이 소성변형되면서 성형체의 이방화가 동시에 진행되도록 하는데 특징이 있다.Therefore, the magnetic anisotropy process, which is used as a method for improving the magnetic properties of rare earth permanent magnets, has been conventionally performed by causing a predetermined deformation through a separate die upsetting process. In the hot compression molding process, the uneven shape is plastically deformed so that the anisotropy of the molded body proceeds simultaneously.

이상, 상기 내용은 본 발명의 바람직한 일실시예를 단지 예시한 것으로 본 발명이 속하는 분야의 당업자는 본 발명의 요지를 변경시킴이 없이 본 발명에 대한 수정 및 변경을 가할 수가 있다.The foregoing is merely illustrative of the preferred embodiment of the present invention and those skilled in the art to which the present invention pertains may make modifications and changes to the present invention without changing the gist of the present invention.

따라서 본 발명에 따르면, 표면에 요철 형상을 갖는 휘일 드럼에 의해 급냉리본의 표면에 소정의 크기를 갖는 요철 형상이 다수개 형성되도록하여 열간압축성형 공정시 요철 형상 부분 중 볼록한 부분이 우선적으로 소성변형되면서 이방화되어 기존의 이방화를 위한 다이-업셋팅 공정을 생략할 수 있는 고 에너지 영구자석을 제공함으로서 공정수 및 제조비용을 절감할 수 있는 효과를 얻을 수 있다.Therefore, according to the present invention, the convex part of the concave-convex part is preferentially plastically deformed during the hot compression molding process by forming a plurality of concave-convex shapes having a predetermined size on the surface of the quench ribbon by the wheel drum having the concave-convex shape on the surface. By providing a high-energy permanent magnet that can be anisotropically bypassed the die-upsetting process for the anisotropy can reduce the number of processes and manufacturing costs.

Claims (3)

Re2TM14B(여기서, Re는 희토류원소러서 네오디뮴(Nd), 프라세어디뮴(Pr) 또는 이들의 혼합물이고, TM은 천이금속으로서 철(Fe) 또는 철(Fe) 코발트(Co)의 혼합물이며, B는 붕소이다.) 합금을 용기에 넣고 가열하여 용융금속합금으로 용해하는 단계와,Re 2 TM 14 B, where Re is a rare earth element and is neodymium (Nd), praseodymium (Pr) or mixtures thereof, and TM is a transition metal of iron (Fe) or iron (Fe) cobalt (Co) A mixture, and B is boron.) The alloy is placed in a container and heated to be dissolved in a molten metal alloy. 상기 용융금속합금을 노즐을 통해 요철형상의표면을 갖는 휘일 드럼의 표면에 분사시켜 요철 형상의 표면을 갖는 급냉된 리본형 입자를 형성하는 단계와,Spraying the molten metal alloy onto the surface of the wheel drum having a concave-convex surface through a nozzle to form quenched ribbon particles having a concave-convex surface; 상기 요철 형상의 표면을 갖는 급냉된 리본형 입자를 냉강에서 압축성형하여 예비성형체를 형성하는 단계와,Forming a preform by compression molding the quenched ribbon particles having the uneven surface in cold steel; 상기 예비성형체를 680~750℃의 온도에서 요철 형상이 평활하게 소성변형되면서 이방성을 갖도록 열간압축성형하는 단계를 포함하는 희토류계 고 에너지 영구자석 제조방법.Rare earth-based high-energy permanent magnet manufacturing method comprising the step of hot compression molding the preform to have an anisotropy while the plastic irregularities shape smoothly at a temperature of 680 ~ 750 ℃. 제 1 항에 있어서,The method of claim 1, 상기 요철 형상은 직경이 0.5~1mm의 크기를 갖는 반구형상이 돌기로 이루어지는 것을 특징으로 하는 희토류계 고 에너지 영구자석 제조방법.The uneven shape is a rare earth-based high energy permanent magnet manufacturing method characterized in that the hemispherical shape having a size of 0.5 ~ 1mm diameter projections. 제 2 항에 있어서,The method of claim 2, 상기 돌기가 100~500/cm2의 갯수로 형성되는 것을 특징으로 하는 희토류계 고 에너지 영구자석 제조방법.Rare earth-based high-energy permanent magnet manufacturing method characterized in that the projections are formed in the number of 100 ~ 500 / cm 2 .
KR1019960051772A 1996-11-04 1996-11-04 Method of making high energy permanent magnet in rare earth system KR100229411B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960051772A KR100229411B1 (en) 1996-11-04 1996-11-04 Method of making high energy permanent magnet in rare earth system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960051772A KR100229411B1 (en) 1996-11-04 1996-11-04 Method of making high energy permanent magnet in rare earth system

Publications (2)

Publication Number Publication Date
KR19980033929A KR19980033929A (en) 1998-08-05
KR100229411B1 true KR100229411B1 (en) 1999-11-01

Family

ID=19480674

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960051772A KR100229411B1 (en) 1996-11-04 1996-11-04 Method of making high energy permanent magnet in rare earth system

Country Status (1)

Country Link
KR (1) KR100229411B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101837279B1 (en) * 2016-07-04 2018-03-12 고려대학교 산학협력단 Method of controlling a growth of grains in a Rare Earth Permanent Magnet
KR101837280B1 (en) * 2016-07-04 2018-03-12 고려대학교 산학협력단 Method of manufacturing a Rare Earth Sintering Magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102244550B1 (en) * 2019-12-24 2021-04-26 고등기술연구원연구조합 Manufacturing method of amorphous soft magnetic core and amorphous soft magnetic core

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101837279B1 (en) * 2016-07-04 2018-03-12 고려대학교 산학협력단 Method of controlling a growth of grains in a Rare Earth Permanent Magnet
KR101837280B1 (en) * 2016-07-04 2018-03-12 고려대학교 산학협력단 Method of manufacturing a Rare Earth Sintering Magnet

Also Published As

Publication number Publication date
KR19980033929A (en) 1998-08-05

Similar Documents

Publication Publication Date Title
JPH0553853B2 (en)
US4881985A (en) Method for producing anisotropic RE-FE-B type magnetically aligned material
US4859410A (en) Die-upset manufacture to produce high volume fractions of RE-Fe-B type magnetically aligned material
CA1317203C (en) Method for making flakes of re-fe-b type magnetically aligned material
US5127970A (en) Method for producing rare earth magnet particles of improved coercivity
KR100229411B1 (en) Method of making high energy permanent magnet in rare earth system
US20030156964A1 (en) Method and apparatus for producing magnetic rare earth alloy powder, method for producing bonded magnet, method for producing rare earth sintering magnet, and method and apparatus for improving purity of inert gas
US4920009A (en) Method for producing laminated bodies comprising an RE-FE-B type magnetic layer and a metal backing layer
KR100229410B1 (en) Method of manufacturing over-quenched ribbons in rare earth system
CN1033479C (en) Producing method for Nd-Fe-B permanent magnet
KR100201698B1 (en) Method for producing quenching ribbon powder
CN1021607C (en) Producing method and apparatus of anisotropic micro rare earth permanent magnetic material
JPS62276802A (en) Manufacture of rare earth magnet
JP3399056B2 (en) Manufacturing method of anisotropic magnet
JPH08260112A (en) Alloy thin strip for permanent magnet, alloy powder obtained from the same, magnet and production of alloy thin strip for permanent magnet
KR100208221B1 (en) Method for thick film coating of permanent magnet in rare earth system
KR100216875B1 (en) Method of manufacturing wide width ribbon of bonding magnet
JP3120585B2 (en) Method for producing anisotropic magnetic powder
JP2003031407A (en) Iron base anisotropic permanent magnet and its manufacturing method
KR100198358B1 (en) Method for manufacturing high energy permanent magnet in rare earth system
JP2794704B2 (en) Manufacturing method of anisotropic permanent magnet
KR100211603B1 (en) Method for manufacturing permanent magnet in rare earth system
JPH06224061A (en) Manufacture of anisotropic rare-earth magnet
KR0160879B1 (en) Method for manufacturing an anisotropic rare earth quenching ribbon
Oguchi et al. Production of flaky amorphous powders in Fe-Zr-B system by a supercooled liquid quenching method, and their magnetic properties

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee