JPH0660772B2 - Concentration difference heat storage device and operation method - Google Patents

Concentration difference heat storage device and operation method

Info

Publication number
JPH0660772B2
JPH0660772B2 JP24697988A JP24697988A JPH0660772B2 JP H0660772 B2 JPH0660772 B2 JP H0660772B2 JP 24697988 A JP24697988 A JP 24697988A JP 24697988 A JP24697988 A JP 24697988A JP H0660772 B2 JPH0660772 B2 JP H0660772B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
liquid
storage liquid
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24697988A
Other languages
Japanese (ja)
Other versions
JPH0293258A (en
Inventor
章 山田
康雄 小関
秀昭 黒川
勝也 江原
燦吉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24697988A priority Critical patent/JPH0660772B2/en
Publication of JPH0293258A publication Critical patent/JPH0293258A/en
Publication of JPH0660772B2 publication Critical patent/JPH0660772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は濃度差蓄熱装置に係り、特に熱回収効率を向上
し、該装置に設けられた冷却装置を小型化するに好適な
濃度差蓄熱装置及び運転方法に関する。
The present invention relates to a concentration difference heat storage device, and more particularly to a concentration difference heat storage device that improves heat recovery efficiency and is suitable for downsizing a cooling device provided in the device. The present invention relates to a device and an operating method.

〔従来の技術〕[Conventional technology]

例えば、吸収式冷凍機などに用いられる濃度差蓄熱装置
としては、特開昭60-195575号公報に記載された提案が
公知である。この提案は第6図に示すように構成されて
いる。図において、容器1内には濃縮・希釈機2と凝縮
・蒸発器3とが設けられており、それぞれに冷却加熱管
4,5が配設されている。これらは蓄熱操作時には濃縮
器2,凝縮器3,加熱管4,冷却管5として作用し、放
熱操作時には希釈器2,蒸発器3,冷却管4,加熱管5
として作用する。また蓄熱液貯槽6は蓄熱液の濃厚液及
び希薄液をそれぞれ貯蔵する容器であり、冷媒貯槽7は
冷媒を貯蔵しておく容器である。蓄熱液貯槽6と濃縮・
希釈器2との間には供給側配管8,9及び排出側配管1
0,11が接続されており、これらの配管8,9及び1
0,11の中間には熱交換器12が設けられている。同
様に冷媒貯槽7と凝縮。蒸発器3との間には供給側配管
13,14と排出側配管15,16が接続されており、
これらの配管13,14及び15,16の中間には熱交
換器17が設けられている。また供給側配管8,13に
はそれぞれポンプ18、19が配設されている。
For example, as a concentration difference heat storage device used in an absorption refrigerator or the like, the proposal described in JP-A-60-195575 is known. This proposal is constructed as shown in FIG. In the figure, a container 1 is provided with a concentrating / diluting machine 2 and a condensing / evaporating machine 3, and cooling / heating pipes 4 and 5 are provided in each. These act as a condenser 2, a condenser 3, a heating pipe 4, and a cooling pipe 5 during a heat storage operation, and a diluter 2, an evaporator 3, a cooling pipe 4, and a heating pipe 5 during a heat radiation operation.
Acts as. The heat storage liquid storage tank 6 is a container for storing a concentrated liquid and a dilute liquid of the heat storage liquid, respectively, and the refrigerant storage tank 7 is a container for storing a refrigerant. Heat storage liquid storage tank 6 and concentration
Supply side pipes 8 and 9 and a discharge side pipe 1 are provided between the diluter 2 and the diluter 2.
0, 11 are connected to these pipes 8, 9 and 1
A heat exchanger 12 is provided between 0 and 11. Similarly condensed with the refrigerant storage tank 7. Supply side pipes 13 and 14 and discharge side pipes 15 and 16 are connected between the evaporator 3 and
A heat exchanger 17 is provided between the pipes 13, 14 and 15, 16. Pumps 18 and 19 are arranged in the supply side pipes 8 and 13, respectively.

上記のように構成された従来の濃度差蓄熱装置におい
て、蓄熱液としては冷媒より水蒸気圧力の低い液体を用
い、まず、蓄熱操作時には低濃度の蓄熱液を配管8,9
を介してポンプ18により濃縮器2に導入し、加熱管4
に高温液を供給して加熱する。このとき発生した蒸気
は、濃縮器2と同一圧力に保持されている凝縮器2に導
入され復水される。蒸気が発生して濃縮された蓄熱液は
管路10,11を介して再び蓄熱液貯槽6へ戻される。
このとき、前記濃縮器2に導入される低濃度の蓄熱液
は、蓄熱液貯槽6に貯蔵されている状態の温度であり、
通常は常温の25℃程度である。この程度の温度の蓄熱
液をそのまま濃縮器2に供給すると、蒸発するまでの昇
温、すなわち顕熱分を加熱管4によって加熱する必要が
ある。
In the conventional concentration difference heat storage device configured as described above, a liquid having a vapor pressure lower than that of the refrigerant is used as the heat storage liquid, and first, at the time of the heat storage operation, the low concentration heat storage liquid is connected to the pipes 8 and 9.
Is introduced into the concentrator 2 by the pump 18 via the heating tube 4
A high temperature liquid is supplied to and heated. The steam generated at this time is introduced into the condenser 2 held at the same pressure as the condenser 2 and condensed. The heat storage liquid condensed by generating steam is returned to the heat storage liquid storage tank 6 again via the pipe lines 10 and 11.
At this time, the low-concentration heat storage liquid introduced into the concentrator 2 has a temperature in a state of being stored in the heat storage liquid storage tank 6,
Usually, it is about 25 ° C. at room temperature. When the heat storage liquid having such a temperature is supplied to the concentrator 2 as it is, it is necessary to raise the temperature until evaporation, that is, to heat the sensible heat by the heating pipe 4.

一方、濃縮されて蓄熱液貯槽6に戻る蓄熱液は通常70
℃以上の高温であるので、この戻り液と前記供給液とを
熱交換器12により熱交換することにより、この供給液
は昇温されて前記顕熱変化に関する加熱量を低減するこ
とができる。
On the other hand, the heat storage liquid concentrated and returned to the heat storage liquid storage tank 6 is usually 70
Since the temperature is higher than 0 ° C., the return liquid and the supply liquid are heat-exchanged by the heat exchanger 12, so that the supply liquid is heated and the heating amount related to the sensible heat change can be reduced.

また放熱操作時には、前述した濃縮された蓄熱液を希釈
器2に導入し、蒸発器3において加熱管5によって加熱
されて発生した蒸気を吸収し、発熱して低濃度となる。
この発熱して昇温した蓄熱液を冷却するため、冷却管4
に冷却液を流している。
Further, at the time of heat radiation operation, the concentrated heat storage liquid described above is introduced into the diluter 2, and the vapor generated by being heated by the heating pipe 5 in the evaporator 3 is absorbed to generate heat and become a low concentration.
In order to cool the heat storage liquid that has generated heat and has risen in temperature, the cooling pipe 4
Coolant is flowing through.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかしながら上記のように構成された従来の濃度差蓄熱
装置によると、放熱操作時に昇温して低濃度となった蓄
熱液は熱交換器12を介して蓄熱液貯槽6に戻るため、
常温で貯蔵されていた高濃度の蓄熱液と熱交換して、希
釈器2へ導入する高濃度蓄熱液の温度を高めてしまう。
従って希釈器2における冷却熱量が増えるか、または蒸
発器3で発生する蒸気量が低減するという問題があっ
た。この結果冷却設備容量を増さなければならず、また
同一冷却設備容量であれば得られる冷熱量が低減する欠
点があった。
However, according to the conventional concentration difference heat storage device configured as described above, the heat storage liquid whose temperature has risen to a low concentration during the heat radiation operation returns to the heat storage liquid storage tank 6 via the heat exchanger 12,
The heat of the high-concentration heat storage liquid stored at room temperature is exchanged, and the temperature of the high-concentration heat storage liquid introduced into the diluter 2 is increased.
Therefore, there is a problem that the amount of cooling heat in the diluter 2 increases or the amount of vapor generated in the evaporator 3 decreases. As a result, the cooling equipment capacity must be increased, and if the same cooling equipment capacity is used, the amount of cold heat obtained is reduced.

本発明の目的は放熱操作時における冷却熱量の低減、ま
たは同一冷却熱量で冷水熱量の増大を図ることのできる
濃度差蓄熱装置及び運転方法を提供することにある。
An object of the present invention is to provide a concentration difference heat storage device and an operating method capable of reducing the amount of cooling heat during a heat radiation operation or increasing the amount of cold water heat with the same amount of cooling heat.

〔課題を解決するための手段〕[Means for Solving the Problems]

本発明は上記目的を達成するために、蓄熱液の濃縮・希
釈器と冷媒の凝縮・蒸発器とからなりそれぞれに加熱・
冷却管が配設された容器と、濃縮・希釈器及び凝縮・蒸
発器のそれぞれに配管を介して接続する蓄熱液の蓄熱液
貯槽及び冷媒の冷媒貯槽と、蓄熱液貯槽から濃縮・希釈
器へ供給される蓄熱液と濃縮・希釈器から蓄熱液貯槽へ
排出される蓄熱液とを熱交換する熱交換器とを具備した
濃度差蓄熱装置において、濃縮・希釈器と蓄熱液貯槽と
を熱交換器を介して接続するいずれか一方の配管に熱交
換器を迂回するバイパス配管を設けるとともに、それぞ
れの配管の熱交換器入口に液温測定手段を設け、この設
定された液温によって前記蓄熱液の流路を前記熱交換器
と前記バイパス配管とのいずれかに切替える手段を設け
て構成したものである。
In order to achieve the above object, the present invention comprises a heat storage liquid concentrating / diluting device and a refrigerant condensing / evaporating device, each of which heats and
From a container in which a cooling pipe is installed, a heat storage liquid storage tank for heat storage liquid and a refrigerant storage tank for refrigerant that are connected to the concentrator / diluter and condenser / evaporator via piping, respectively, and from the heat storage liquid storage tank to the condenser / diluter In a concentration difference heat storage device equipped with a heat exchanger that exchanges heat between the supplied heat storage liquid and the heat storage liquid discharged from the concentrating / diluting device to the heat storage liquid storage tank, heat exchange between the concentrating / diluting device and the heat storage liquid storage tank A bypass pipe that bypasses the heat exchanger is provided in either one of the pipes connected via the heat exchanger, and liquid temperature measuring means is provided at the heat exchanger inlet of each pipe, and the heat storage liquid is set by the set liquid temperature. And a means for switching the flow path to either the heat exchanger or the bypass pipe.

〔作用〕[Action]

上記の構成によると、放熱操作時に液温測定手段によっ
て蓄熱液貯槽中の蓄熱液の温度が希釈器から排出される
蓄熱液の温度より低いことを検出した場合に、蓄熱液の
蓄熱液貯槽から希釈器への導入流路を、切替手段によっ
てバイパス配管に切替え、熱交換器を介さず希釈器へ導
入することにより、常温高濃度の蓄熱液をそのままの温
度で希釈器に供給することができる。この結果、希釈器
を冷却するための熱量を低減し、冷却設備容量の削減ま
たは同一冷却設備容量であれば、蒸発器における蒸気発
生量の増大を図ることができ、冷熱出力を増大させるこ
とができる。また、蓄熱液貯槽中の蓄熱液の温度が、操
作条件や気象条件によって希釈器から排出される蓄熱液
の温度より高い場合には、放熱時であっても蓄熱時と同
様に熱交換器を介して希釈器へ導入する蓄熱液の温度を
低下させる。
According to the above configuration, when it is detected by the liquid temperature measuring means that the temperature of the heat storage liquid in the heat storage liquid storage tank is lower than the temperature of the heat storage liquid discharged from the diluter during the heat radiation operation, the heat storage liquid storage tank stores the heat storage liquid. By switching the introduction flow path to the diluter to the bypass pipe by the switching means and introducing it into the diluter without passing through the heat exchanger, it is possible to supply the heat storage liquid having a high normal temperature and concentration to the diluter at the same temperature. . As a result, the amount of heat for cooling the diluter can be reduced, and if the cooling facility capacity is reduced or the same cooling facility capacity is used, the amount of steam generated in the evaporator can be increased and the cold heat output can be increased. it can. Also, if the temperature of the heat storage liquid in the heat storage liquid storage tank is higher than the temperature of the heat storage liquid discharged from the diluter due to operating conditions or weather conditions, the heat exchanger should be operated in the same manner as during heat storage even during heat dissipation. The temperature of the heat storage liquid introduced into the diluter is lowered.

〔実施例〕〔Example〕

以下、本発明に係る濃度差蓄熱装置の一実施例を図面を
参照して説明する。
An embodiment of the concentration difference heat storage device according to the present invention will be described below with reference to the drawings.

第1図に本発明の一実施例を示す。図において、第6図
に示す従来例と同一または同等部分には同一符号を付し
て示し、説明を省略する。本実施例の特徴は蓄熱液貯槽
6と濃縮・希釈器2とを連結する供給側配管8,9に、
熱交換器12を迂回するバイパス配管20を設け、供給
側配管8及び排出側配管10にそれぞれ液温測定器2
1,22を設け、供給側配管8のバイパス配管20との
分岐点より熱交換器12側とこのバイパス配管とにそれ
ぞれ電磁開閉弁23,24を設け、さらに前記液温測定
器21,22によって検出された温度信号により電磁開
閉弁23,24を開閉する信号を出力する測定演算器2
5を設けた点にある。なお本実施例では冷媒貯槽7側の
熱交換器を不要とし、排出側配管10,15と供給側配
管9,13とはそれぞれ戻り配管26,27で接続され
ている。その他の構造は従来例と同様である。
FIG. 1 shows an embodiment of the present invention. In the figure, parts that are the same as or equivalent to those in the conventional example shown in FIG. The feature of this embodiment is that the supply side pipes 8 and 9 connecting the heat storage liquid storage tank 6 and the concentrating / diluting device 2 are
A bypass pipe 20 that bypasses the heat exchanger 12 is provided, and the liquid temperature measuring device 2 is provided in each of the supply side pipe 8 and the discharge side pipe 10.
1, 22 are provided, electromagnetic switching valves 23, 24 are provided on the heat exchanger 12 side from the branch point of the bypass pipe 20 of the supply side pipe 8 and this bypass pipe, respectively, and further by the liquid temperature measuring devices 21, 22. Measurement calculator 2 that outputs a signal for opening and closing the solenoid on-off valves 23, 24 according to the detected temperature signal
5 is provided. In this embodiment, the heat exchanger on the refrigerant storage tank 7 side is unnecessary, and the discharge side pipes 10 and 15 and the supply side pipes 9 and 13 are connected by return pipes 26 and 27, respectively. Other structures are similar to those of the conventional example.

次に本実施例の作用を第2図乃至第5図を参照して説明
する。例えば吸収式冷凍機では、蓄熱液としてLiBr
水溶液が、冷媒として水がそれぞれ用いられており、加
熱液,冷却液としても水が用いられている。蓄熱操作時
には第2図に示す系統が用いられる。この場合は前述し
たように、容器1は濃縮器2,凝縮器3,加熱管4,冷
却管5として作用する。加熱管4へは温度約95℃の加
熱液が供給され、冷却管5には温度約30℃の冷却液が
供給されている。これらの加熱液及び冷却液によりそれ
ぞれ蓄熱液及び冷媒を5℃加熱または冷却すると、加熱
液出口温度は約90℃、冷却水出口温度は約35℃とな
り、また熱交換温度差を3℃と仮定すると、それぞれ濃
縮温度は約87℃、凝縮温度は約38℃となる。以上の
条件が満たされた容器1の濃縮器2に、蓄熱液貯槽6か
ら55%濃度のLiBr水溶液を、配管8,熱交換器1
2,配管9を介して導入すると、蓄熱液は61.7%ま
で濃縮され、ポンプ18に吸引されて一部は配管10
へ、また他の大部分は配管26を介して配管9へ流れ、
蓄熱液貯槽6から供給されてくる蓄熱液と混合される。
また配管10へ流れた濃度61.7%の媒体は温度87
℃であるため、熱交換器12において蓄熱液貯槽6から
の蓄熱液に熱を伝え、この蓄熱液を30℃から76.2
℃まで昇温する。従って30℃から76.2℃までの顕
熱変化に要する熱量は前記加熱水から得る必要はなく、
また濃度61.7%のLiBr水溶液は30℃まで冷却
されるため、蓄熱液貯槽6内に排出されてもこの貯槽6
は常温貯槽でよく、貯槽6の材質の低廉化が図れる。ま
た濃縮器2で発生した水蒸気は凝縮器3に移動し、38
℃で復水されて冷媒貯槽7へ溜まる。
Next, the operation of this embodiment will be described with reference to FIGS. For example, in an absorption refrigerator, LiBr is used as the heat storage liquid.
The aqueous solution uses water as the refrigerant, and the heating liquid and the cooling liquid also use water. The system shown in FIG. 2 is used during the heat storage operation. In this case, as described above, the container 1 functions as the condenser 2, the condenser 3, the heating pipe 4, and the cooling pipe 5. The heating liquid having a temperature of about 95 ° C. is supplied to the heating pipe 4, and the cooling liquid having a temperature of about 30 ° C. is supplied to the cooling pipe 5. When the heat storage liquid and the refrigerant are heated or cooled by 5 ° C. by these heating liquid and cooling liquid, respectively, the heating liquid outlet temperature becomes about 90 ° C., the cooling water outlet temperature becomes about 35 ° C., and the heat exchange temperature difference is assumed to be 3 ° C. Then, the condensing temperature is about 87 ° C. and the condensing temperature is about 38 ° C., respectively. To the concentrator 2 of the container 1 satisfying the above conditions, the 55% concentration LiBr aqueous solution was fed from the heat storage liquid storage tank 6 to the pipe 8 and the heat exchanger 1.
2. When introduced through the pipe 9, the heat storage liquid is concentrated to 61.7%, sucked by the pump 18, and part of the heat is stored in the pipe 10.
And most of the other flows through line 26 to line 9,
The heat storage liquid is mixed with the heat storage liquid supplied from the heat storage liquid storage tank 6.
The temperature of the medium having a concentration of 61.7% flowing to the pipe 10 is 87
Since it is ℃, heat is transferred to the heat storage liquid from the heat storage liquid storage tank 6 in the heat exchanger 12, and this heat storage liquid is transferred from 30 ° C. to 76.2.
Raise the temperature to ℃. Therefore, it is not necessary to obtain the amount of heat required for sensible heat change from 30 ° C to 76.2 ° C from the heated water,
Further, since the 61.7% concentration LiBr aqueous solution is cooled to 30 ° C., even if it is discharged into the heat storage liquid storage tank 6, this storage tank 6 is
Can be a room temperature storage tank, and the material of the storage tank 6 can be made inexpensive. Further, the steam generated in the concentrator 2 moves to the condenser 3 and
The water is condensed at ℃ and accumulated in the refrigerant storage tank 7.

次に放熱操作時の作用を第3図及び第4図を参照して説
明する。この場合は前述したように、容器1は希釈器
2,蒸発器3,冷却管4,加熱管5として作用する。冷
却管4に冷却水を流し、加熱管5に加熱水を流すことに
より、希釈器2及び蒸発器3の操作条件が設定される。
例えば、濃度61.7%、温度30℃のLiBr水溶液
が希釈器2へ導入され、蒸発器3で発生した水蒸気を吸
収して濃度が55%まで希釈されると同時に昇温する
が、冷却水により冷却されて約38℃となる。この蓄熱
液はポンプ18によって吸収されて、一部は配管26を
介して配管9へ流れ、他の一部は配管10,熱交換器1
2,配管11を介して蓄熱液貯槽6へ戻る。このとき、
上述したように配管10から排出される蓄熱液の方が、
配管8,9を通って希釈器2に供給される蓄熱液より温
度が高い場合には、第1図に示す液温測定器21,22
によってこれを検出し、測定演算器25を介して電磁開
閉弁23を閉じ24を開いて、蓄熱液をバイパス管路2
0に流すようにする。この結果、供給側の蓄熱液は熱交
換器12を通らないため熱交換は行なわれず、蓄熱液は
約30℃のまま希釈器2へ導入される。このため希釈器
2の冷却管4への冷却熱量は、従来の熱交換器12を介
して導入する場合よりも低減することができる。そして
蒸発器3で発生し潜熱を奪われた水は昇温して8℃とな
り、加熱管5の出口から水温11℃の冷水が得られる。
また配管10から排出される蓄熱液の方が、配管8,9
を通って希釈器2に供給される蓄熱液より温度が低い場
合は、蓄熱操作時と同様に電磁開閉弁23を開き24を
閉じて、供給側及び排出側の両方の蓄熱液は熱交換器1
2を流れるようにして、熱交換を行なって供給側の蓄熱
液を冷却する。
Next, the operation at the time of heat radiation operation will be described with reference to FIGS. 3 and 4. In this case, as described above, the container 1 functions as the diluter 2, the evaporator 3, the cooling pipe 4, and the heating pipe 5. By flowing the cooling water through the cooling pipe 4 and the heating water through the heating pipe 5, the operating conditions of the diluter 2 and the evaporator 3 are set.
For example, a LiBr aqueous solution having a concentration of 61.7% and a temperature of 30 ° C. is introduced into the diluter 2, absorbs water vapor generated in the evaporator 3 and is diluted to a concentration of 55%, and the temperature rises at the same time. To about 38 ° C. This heat storage liquid is absorbed by the pump 18, part of which flows to the pipe 9 via the pipe 26, and the other part of which is the pipe 10 and the heat exchanger 1.
2. Return to the heat storage liquid storage tank 6 via the pipe 11. At this time,
As described above, the heat storage liquid discharged from the pipe 10 is
When the temperature is higher than the heat storage liquid supplied to the diluter 2 through the pipes 8 and 9, the liquid temperature measuring devices 21 and 22 shown in FIG.
This is detected by, and the electromagnetic on-off valve 23 is closed and the opening 24 is opened via the measurement calculator 25, and the heat storage liquid is bypassed by the bypass line 2
Let it flow to 0. As a result, since the heat storage liquid on the supply side does not pass through the heat exchanger 12, heat exchange is not performed, and the heat storage liquid is introduced into the diluter 2 as it is at about 30 ° C. Therefore, the amount of cooling heat to the cooling pipe 4 of the diluter 2 can be reduced as compared with the case where the diluter 2 is introduced through the conventional heat exchanger 12. Then, the water generated in the evaporator 3 and deprived of the latent heat is heated to 8 ° C., and cold water having a water temperature of 11 ° C. is obtained from the outlet of the heating pipe 5.
Further, the heat storage liquid discharged from the pipe 10 is
When the temperature is lower than that of the heat storage liquid supplied to the diluter 2 through the same, the electromagnetic opening / closing valve 23 is opened and 24 is closed as in the heat storage operation, so that the heat storage liquids on both the supply side and the discharge side are heat exchangers. 1
The heat storage liquid on the supply side is cooled by performing heat exchange so as to flow through the flow path 2.

上記の状況をシュミレーション計算した結果を第5図に
示す。この図は熱交換器12の温度効率Φと、蓄熱操作
時に要した加熱量と放熱操作時に得られた冷熱出力量と
によって定まる熱回収率との関係を示したグラフであ
る。この温度効率Φは下記の式(1)によって与えられ
る。
The result of the simulation calculation of the above situation is shown in FIG. This figure is a graph showing the relationship between the temperature efficiency Φ of the heat exchanger 12 and the heat recovery rate determined by the heating amount required during the heat storage operation and the cold heat output amount obtained during the heat radiation operation. This temperature efficiency Φ is given by the following equation (1).

ここで、T:高温側入口温度 T:高温側出口温度 t:低温側入口温度 図でわかるように、横軸の熱交換温度効率Φが向上する
につれて、熱回収効率が向上している。実線は蓄熱操作
時及び放熱操作時とも熱交換器12を介して熱交換した
場合を示し、破線は放熱操作時には熱交換器12を使用
しない場合を示しており、この図から本実施例による蓄
熱装置の熱回収効率が向上することは明らかである。
Here, T 1 : high temperature side inlet temperature T 2 : high temperature side outlet temperature t 1 : low temperature side inlet temperature As can be seen, as the heat exchange temperature efficiency Φ on the horizontal axis improves, the heat recovery efficiency improves. There is. The solid line shows the case where heat is exchanged through the heat exchanger 12 both during the heat storage operation and the heat radiation operation, and the broken line shows the case where the heat exchanger 12 is not used during the heat radiation operation. From this figure, the heat storage according to the present embodiment is shown. It is clear that the heat recovery efficiency of the device is improved.

本実施例によれば、放熱操作時に希釈器2における冷却
管4に供給される冷却水の量を低減することができ、冷
水塔などの冷却水製造装置の容量を低減することが可能
となる。一方、同一容量の冷却水製造装置であれば、冷
却量が向上し、その結果として加熱管5で得られる冷水
熱量の増大を図ることができる。
According to this embodiment, it is possible to reduce the amount of cooling water supplied to the cooling pipe 4 in the diluter 2 during the heat radiation operation, and it is possible to reduce the capacity of the cooling water manufacturing device such as the cooling water tower. . On the other hand, if the cooling water production apparatus has the same capacity, the cooling amount is improved, and as a result, the amount of cold water heat obtained in the heating pipe 5 can be increased.

〔発明の効果〕〔The invention's effect〕

上述したように本発明によれば、濃度差蓄熱装置に設け
られた熱交換器のバイパス管路を設けたので、蓄熱操作
時には濃縮器へ供給する蓄熱液の温度を高めて濃縮器へ
の加熱熱量を低減し、放熱操作時には運転条件により熱
交換器を使用せずに希釈器の冷却熱量の低減または冷熱
出力の増大を図ることができ、省エネルギ化が達成され
る。
As described above, according to the present invention, since the bypass conduit of the heat exchanger provided in the concentration difference heat storage device is provided, the temperature of the heat storage liquid supplied to the concentrator during the heat storage operation is increased to heat the concentrator. It is possible to reduce the amount of heat, reduce the amount of cooling heat of the diluter or increase the amount of cold heat output without using a heat exchanger depending on the operating conditions during the heat radiation operation, and energy saving is achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る濃度差蓄熱装置の一実施例の配管
系統図、第2図及び第3図はそれぞれ第1図の蓄熱操作
時及び放熱操作時の配管系統図、第4図及び第5図はそ
れぞれ本実施例による蓄熱装置の操作状態、及び熱交換
器の温度効率と熱回収率との関係を示すグラフ、第6図
は従来の濃度差蓄熱装置の一例を示す配管系統図であ
る。 1…容器、2…濃縮・希釈器、3…凝縮・蒸発器、 4,5…加熱・冷却器、6…蓄熱液貯槽、7…冷媒貯
槽、8,9,10,11,13,14,15,16,2
6,27…配管、12、17…熱交換器、 18,19…ボンプ、20…バイパス配管、21,22
…液温測定器、23,24…電磁開閉弁、 25…測定演算器。
FIG. 1 is a piping system diagram of an embodiment of the concentration difference heat storage device according to the present invention, and FIGS. 2 and 3 are piping system diagrams at the time of heat storage operation and heat release operation of FIG. 1, FIG. 4 and FIG. FIG. 5 is a graph showing the relationship between the operating state of the heat storage device and the temperature efficiency of the heat exchanger and the heat recovery rate, respectively, and FIG. 6 is a piping system diagram showing an example of a conventional concentration difference heat storage device. Is. 1 ... Container, 2 ... Concentrator / diluter, 3 ... Condenser / evaporator, 4,5 ... Heating / cooler, 6 ... Heat storage liquid storage tank, 7 ... Refrigerant storage tank, 8, 9, 10, 11, 13, 14, 15, 16, 2
6, 27 ... Piping, 12, 17 ... Heat exchanger, 18, 19 ... Bumps, 20 ... Bypass piping 21, 22
... Liquid temperature measuring device, 23, 24 ... Electromagnetic on-off valve, 25 ... Measurement arithmetic unit.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江原 勝也 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (72)発明者 高橋 燦吉 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内 (56)参考文献 特開 昭62−56751(JP,A) 特開 昭63−49670(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Katsuya Ehara 4026 Kuji Town, Hitachi City, Ibaraki Prefecture, Hitachi Research Laboratory Ltd. Hitachi, Ltd. (56) References JP 62-56751 (JP, A) JP 63-49670 (JP, A)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】蓄熱液の濃縮・希釈器と冷媒の凝縮・蒸発
器とからなりそれぞれに加熱・冷却管が配設された容器
と、前記濃縮・希釈器及び前記凝縮・蒸発器のそれぞれ
に配管を介して接続する前記蓄熱液の蓄熱液貯槽及び冷
媒の冷媒貯槽と、該蓄熱液貯槽から前記濃縮・希釈器へ
供給される蓄熱液と該濃縮・希釈器から前記蓄熱液貯槽
へ排出される蓄熱液とを熱交換する熱交換器とを具備し
た濃度差蓄熱装置において、前記濃縮・希釈器と前記蓄
熱液貯槽とを前記熱交換器を介して接続するいずれか一
方の配管に該熱交換器を迂回するバイパス配管を設ける
とともに、それぞれの配管の前記熱交換器入口に液温測
定手段を設けたことを特徴とする濃度差蓄熱装置。
1. A container comprising a condensing / diluting device for a heat storage liquid and a condensing / evaporating device for a refrigerant, each having a heating / cooling pipe, and each of the concentrating / diluting device and the condensing / evaporating device. A heat storage liquid storage tank of the heat storage liquid and a refrigerant storage tank of a refrigerant connected via a pipe, a heat storage liquid supplied from the heat storage liquid storage tank to the concentrator / diluter, and discharged from the concentrator / diluter to the heat storage liquid tank. In a concentration difference heat storage device comprising a heat exchanger for exchanging heat with the heat storage liquid, the heat is stored in either one of the pipes connecting the concentrator / diluter and the heat storage liquid storage tank via the heat exchanger. A concentration difference heat storage device, characterized in that a bypass pipe bypassing the exchanger is provided, and a liquid temperature measuring means is provided at the heat exchanger inlet of each pipe.
【請求項2】熱交換器のそれぞれの蓄熱液入口温度を液
温測定手段により測定し、蓄熱液の濃縮操作時は前記熱
交換器を介して熱交換し、希釈操作時は蓄熱液貯槽から
前記熱交換器へ流入する前記蓄熱液の温度が濃縮・希釈
器から前記熱交換器へ排出される前記蓄熱液の温度より
高い場合は、該蓄熱液を前記熱交換器のいずれか一方の
バイパス配管に流通することを特徴とする濃度差蓄熱装
置の運転方法。
2. A heat storage liquid inlet temperature of each of the heat exchangers is measured by a liquid temperature measuring means, heat is exchanged through the heat exchanger when the heat storage liquid is concentrated, and from a heat storage liquid storage tank when the dilution operation is performed. When the temperature of the heat storage liquid flowing into the heat exchanger is higher than the temperature of the heat storage liquid discharged from the concentrating / diluting device to the heat exchanger, the heat storage liquid is bypassed to either one of the heat exchangers. A method for operating a concentration difference heat storage device, which is characterized in that it is distributed through a pipe.
JP24697988A 1988-09-30 1988-09-30 Concentration difference heat storage device and operation method Expired - Fee Related JPH0660772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24697988A JPH0660772B2 (en) 1988-09-30 1988-09-30 Concentration difference heat storage device and operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24697988A JPH0660772B2 (en) 1988-09-30 1988-09-30 Concentration difference heat storage device and operation method

Publications (2)

Publication Number Publication Date
JPH0293258A JPH0293258A (en) 1990-04-04
JPH0660772B2 true JPH0660772B2 (en) 1994-08-10

Family

ID=17156562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24697988A Expired - Fee Related JPH0660772B2 (en) 1988-09-30 1988-09-30 Concentration difference heat storage device and operation method

Country Status (1)

Country Link
JP (1) JPH0660772B2 (en)

Also Published As

Publication number Publication date
JPH0293258A (en) 1990-04-04

Similar Documents

Publication Publication Date Title
JPS5913670B2 (en) Dual effect absorption refrigeration equipment
JP2782555B2 (en) Absorption heat pump
WO2004102085A1 (en) Absorption chiller
JPH0660772B2 (en) Concentration difference heat storage device and operation method
CN212870869U (en) Vaporization condensation cooler capable of cooling twice
JP3225155B2 (en) Absorption air conditioner
JPH0621736B2 (en) Absorption refrigerator
JPH061139B2 (en) Cold / hot water production facility
JPS5935755A (en) Heat pump type hot-water supply apparatus
JP2921372B2 (en) Double-effect absorption heat pump
JPH07104065B2 (en) Absorption heat pump device
JPH0445363A (en) Absorption refrigerating and heating hot water supply machine
JPS5974467A (en) Absorption type heat pump
JP3416289B2 (en) Pressure difference sealing device for absorption refrigerators and water heaters
JPH07849Y2 (en) Air-cooled absorption chiller / heater
CN116379634A (en) Closed absorption heat pump system and operation method
JPS6060458A (en) Solar heat hot water supplier
JPS6144128Y2 (en)
JPH06100403B2 (en) Air-cooled absorption heat pump
JPH0419406Y2 (en)
JP2777452B2 (en) Absorption refrigerator
JPS6280459A (en) Absorption type heat pump
JPS6342181B2 (en)
JPH01310272A (en) Absorption type air conditioner
JPS6280458A (en) Absorption type heat pump

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees