JPH0293258A - Concentration difference heat accumulating device and operation method - Google Patents

Concentration difference heat accumulating device and operation method

Info

Publication number
JPH0293258A
JPH0293258A JP24697988A JP24697988A JPH0293258A JP H0293258 A JPH0293258 A JP H0293258A JP 24697988 A JP24697988 A JP 24697988A JP 24697988 A JP24697988 A JP 24697988A JP H0293258 A JPH0293258 A JP H0293258A
Authority
JP
Japan
Prior art keywords
heat
heat storage
liquid
storage liquid
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24697988A
Other languages
Japanese (ja)
Other versions
JPH0660772B2 (en
Inventor
Akira Yamada
章 山田
Yasuo Koseki
小関 康雄
Hideaki Kurokawa
秀昭 黒川
Katsuya Ebara
江原 勝也
Sankichi Takahashi
燦吉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TECHNOL RES ASSOC SUPER HEAT PUMP ENERG ACCUM SYST
Original Assignee
TECHNOL RES ASSOC SUPER HEAT PUMP ENERG ACCUM SYST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TECHNOL RES ASSOC SUPER HEAT PUMP ENERG ACCUM SYST filed Critical TECHNOL RES ASSOC SUPER HEAT PUMP ENERG ACCUM SYST
Priority to JP24697988A priority Critical patent/JPH0660772B2/en
Publication of JPH0293258A publication Critical patent/JPH0293258A/en
Publication of JPH0660772B2 publication Critical patent/JPH0660772B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To enable reduction of a quantity of a cooling heat during heat emission operation by a method wherein a bypass piping running around a heat exchanger is installed to pipings by means of which a condensing and diluting device is connected to a heat accumulating liquid storage tank through a heat exchanger, and a flow passage for heat accumulating liquid is switched to either the heat exchanger or the bypass piping according to a set liquid temperature. CONSTITUTION:A bypass piping 20 bypassing a heat exchanger 12 is installed to pipings 8 and 9 on the feed side through which a heat accumulating liquid storage tank 6 and a condensing and diluting device 2 are intercoupled. Liquid temperature measuring device 21 and 22 are installed to the piping 8 on the feed side and a piping 10 on the discharge side, respectively. Solenoid on-off valves 23 and 24 are mounted in a position closer to the heat exchanger 12 side than the branch point of the bypass piping 20 from the piping 8 on the feed side and to the bypass piping, respectively. Further, a measuring computing device 25 to output a signal, by means of which the solenoid on-off valves 23 and 24 are opened and closed, by means of temperature signals detected by the liquid temperature measuring devices 21 and 22 is provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は濃度差蓄熱装置に係り、特に熱回収効率を向上
し、該装置に設けられた冷却装置を小型化するに好適な
濃度差蓄熱装置及び運転方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a concentration difference heat storage device, and in particular, a concentration difference heat storage device suitable for improving heat recovery efficiency and downsizing a cooling device installed in the device. Concerning equipment and operating methods.

〔従来の技術〕[Conventional technology]

例えば、吸収式冷凍機などに用いられる濃度差蓄熱装置
としては、特開昭60−195575号公報に記載され
た提案が公知である。この提案は第6図に示すように構
成されている。図において、容器1内には濃縮・希釈器
2と凝縮・蒸発器3とが設けられており、それぞれに冷
却加熱管4,5が配設されている、これらは蓄熱操作時
には濃縮器2゜凝縮器3.加熱管4.冷却管5として作
用し、放熱操作時には希釈器2.蒸発器3.冷却管4.
加熱管5として作用する。また蓄熱液貯槽6は蓄熱液の
濃厚液及び希薄液をそれぞれ貯蔵する容器であり、冷媒
貯槽7は冷媒を貯蔵しておく容器である。蓄熱液貯槽6
と濃縮・希釈器2との間には供給側配管8.9及び排出
側配管10.11が接続されており、これらの配管8,
9及び10.11の中間には熱交換器12が設けられて
いる。同様に冷媒貯槽7と凝縮・蒸発器3との間には供
給側配管13.14と排出側配管15.16が接続され
ており、これらの配管13.14及び15゜16の中間
には熱交換器17が設けられている。
For example, as a concentration difference heat storage device used in an absorption refrigerator, a proposal described in Japanese Patent Application Laid-open No. 195575/1983 is known. This proposal is structured as shown in FIG. In the figure, a concentrator/diluter 2 and a condenser/evaporator 3 are installed in a container 1, and cooling and heating pipes 4 and 5 are installed in each of them. Condenser 3. Heating tube 4. Acts as a cooling pipe 5, and serves as a diluter 2 during heat dissipation operation. Evaporator 3. Cooling pipe 4.
It acts as a heating tube 5. Further, the heat storage liquid storage tank 6 is a container that stores a concentrated liquid and a diluted heat storage liquid, respectively, and the refrigerant storage tank 7 is a container that stores a refrigerant. Heat storage liquid storage tank 6
A supply side pipe 8.9 and a discharge side pipe 10.11 are connected between the concentrator and diluter 2, and these pipes 8,
A heat exchanger 12 is provided between 9 and 10.11. Similarly, a supply side pipe 13.14 and a discharge side pipe 15.16 are connected between the refrigerant storage tank 7 and the condenser/evaporator 3, and a heat pipe is connected between these pipes 13.14 and 15°16. An exchanger 17 is provided.

また供給側配管8,13にはそれぞれポンプ18゜19
が配設されている。
In addition, the supply side pipes 8 and 13 are equipped with pumps 18 and 19, respectively.
is installed.

上記のように構成された従来の濃度差蓄熱装置において
、蓄熱液としては冷媒より水蒸気圧力の低い液体を用い
、まず、蓄熱操作時には低濃度の蓄熱液を配管8,9を
介してポンプ18により濃縮器2に導入し、加熱管4に
高温液を供給して加熱する。このとき発生した蒸気は、
濃縮器2と同一圧力に保持されている凝縮器3に導入さ
れ復水される。蒸気が発生して濃縮された蓄熱液は管路
10.11を介して再び蓄熱液貯槽6へ戻される。
In the conventional concentration differential heat storage device configured as described above, a liquid having a water vapor pressure lower than that of the refrigerant is used as the heat storage liquid, and first, during heat storage operation, a low concentration heat storage liquid is pumped through the pipes 8 and 9 by the pump 18. The liquid is introduced into the concentrator 2, and heated by supplying the high temperature liquid to the heating tube 4. The steam generated at this time is
The water is introduced into the condenser 3, which is maintained at the same pressure as the condenser 2, and is condensed. The heat storage liquid that has generated steam and is concentrated is returned to the heat storage liquid storage tank 6 via the pipe 10.11.

このとき、前記濃縮器2に導入される低濃度の蓄熱液は
、蓄熱液貯槽6に貯蔵されている状態の温度であり、通
常は常温の25℃程度である。この程度の温度の蓄熱液
をそのまま濃縮器2に供給すると、蒸発するまでの昇温
、すなわち顕熱分を加熱管4によって加熱する必要があ
る。
At this time, the low concentration heat storage liquid introduced into the concentrator 2 has the same temperature as that stored in the heat storage liquid storage tank 6, which is usually about 25° C., which is room temperature. If the heat storage liquid at this temperature is supplied as it is to the concentrator 2, it is necessary to raise the temperature until it evaporates, that is, to heat the sensible heat with the heating tube 4.

一方、濃縮されて蓄熱液貯槽6に戻る蓄熱液は通常70
℃以上の高温であるので、この戻り液と前記供給液とを
熱交換器12により熱交換することにより、この供給液
は昇温されて前記顕熱変化に関する加熱量を低減するこ
とができる。
On the other hand, the heat storage liquid that is concentrated and returned to the heat storage liquid storage tank 6 is usually 70%
Since the temperature is higher than 0.degree. C., by exchanging heat between the return liquid and the supply liquid using the heat exchanger 12, the temperature of the supply liquid can be increased and the amount of heating related to the sensible heat change can be reduced.

また放熱操作時には、前述した濃縮された蓄熱液を希釈
器2に導入し、蒸発器3において加熱管5によって加熱
されて発生した蒸気を吸収し、発熱して低濃度となる。
Further, during the heat dissipation operation, the concentrated heat storage liquid mentioned above is introduced into the diluter 2, which absorbs the vapor generated by being heated by the heating tube 5 in the evaporator 3, generates heat, and becomes low in concentration.

この発熱して昇温した蓄熱液を冷却するため、冷却管4
に冷却液を流している。
In order to cool the heat storage liquid that has generated heat and increased in temperature, a cooling pipe 4 is used.
coolant is flowing into the

〔発明が解決しようとする課gl しかしながら上記のように構成された従来の濃度差蓄熱
装置によると、放熱操作時に昇温しで低濃度となった蓄
熱液は熱交換器12を介して蓄熱液貯槽中 度の蓄熱液と熱交換して、希釈器2へ導入する高濃度蓄
熱液の温度を高めてしまう。従って希釈器2における冷
却熱量が増えるか、または蒸発器3で発生する蒸気量が
低減するという問題があった。
[Issues to be Solved by the Invention] However, according to the conventional concentration difference heat storage device configured as described above, the heat storage liquid whose temperature has increased and the concentration has become low during the heat dissipation operation is transferred to the heat storage liquid via the heat exchanger 12. The temperature of the high concentration heat storage liquid introduced into the diluter 2 is increased by exchanging heat with the medium heat storage liquid in the storage tank. Therefore, there is a problem that the amount of cooling heat in the diluter 2 increases or the amount of steam generated in the evaporator 3 decreases.

この結果冷却設備容量を増さなければならず、また同一
冷却設備容量であれば得られる冷熱量が低減する欠点が
あった。
As a result, the capacity of the cooling equipment must be increased, and the amount of cold heat obtained is reduced if the capacity of the cooling equipment is the same.

本発明の目的は放熱操作時における冷却熱量の低減、ま
たは同一冷却熱量で冷水熱量の増大を図ることのできる
濃度差蓄熱装置及び運転方法を提供することにある。
An object of the present invention is to provide a concentration difference heat storage device and an operating method that can reduce the amount of cooling heat during heat dissipation operation or increase the amount of cold water heat with the same amount of cooling heat.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記目的を達成するために、蓄熱液の濃縮・希
釈器と冷媒の凝縮・蒸発器とからなりそれぞれに加熱・
冷却管が配設された容器と、濃縮・希釈器及び凝縮・蒸
発器のそれぞれに配管を介して接続する蓄熱液の蓄熱液
貯槽及び冷媒の冷媒貯槽と、蓄熱液貯槽から濃縮・希釈
器へ供給される蓄熱液と濃縮・希釈器から蓄熱液貯槽へ
排出される蓄熱液とを熱交換する熱交換器とを具備した
濃度差蓄熱装置において、濃縮・希釈器と蓄熱液貯槽と
を熱交換器を介して接続するいずれか一方の配管に熱交
換器を迂回するバイパス配管を設けるとともに、それぞ
れの配管の熱交換器入口に液温測定手段を設け、この設
定された液温によって前記蓄熱液の流路を前記熱交換器
と前記バイパス配管とのいずれかに切替える手段を設け
て構成したものである。
In order to achieve the above object, the present invention consists of a heat storage liquid concentrator/diluter and a refrigerant condenser/evaporator, each having a heating/diluting device.
A container equipped with cooling pipes, a heat storage liquid storage tank for heat storage liquid and a refrigerant storage tank for refrigerant, which are connected via piping to the concentrator/diluter and condenser/evaporator, respectively, and from the heat storage liquid storage tank to the concentrator/diluter. In a concentration difference heat storage device equipped with a heat exchanger that exchanges heat between the supplied heat storage liquid and the heat storage liquid discharged from the concentrator/diluter to the heat storage liquid storage tank, heat exchange is performed between the concentrator/diluter and the heat storage liquid storage tank. A bypass pipe is provided to bypass the heat exchanger in one of the pipes connected through the heat exchanger, and a liquid temperature measuring means is provided at the heat exchanger inlet of each pipe. A means is provided for switching the flow path to either the heat exchanger or the bypass piping.

〔作用〕[Effect]

上記の構成によると、放熱操作時に液温測定手段によっ
て蓄熱液貯槽中の蓄熱液の温度が希釈器から排出される
蓄熱液の温度より低いことを検出した場合に、蓄熱液の
蓄熱液貯槽から希釈器への導入流路を、切替手段によっ
てバイパス配管に切替え、熱交換器を介さずに希釈器へ
導入することにより、常温高濃度の蓄熱液をそのままの
温度で希釈器に供給することができる。この結果、希釈
器を冷却するための熱量を低減し、冷却設備容量の削減
または同一冷却設備容量であれば、蒸発器における蒸気
発生量の増大を図ることができ、冷熱出力を増大させる
ことができる。また、S熱液貯槽中の蓄熱液の温度が、
操作条件や気象条件によって希釈器から排出される蓄熱
液の温度より高い場合には、放熱時であっても蓄熱時と
同様に熱交換器を介して希釈器へ導入する蓄熱液の温度
を低下させる。
According to the above configuration, when the liquid temperature measurement means detects that the temperature of the heat storage liquid in the heat storage liquid storage tank is lower than the temperature of the heat storage liquid discharged from the diluter during heat dissipation operation, the temperature of the heat storage liquid is removed from the heat storage liquid storage tank. By switching the introduction flow path to the diluter to bypass piping using the switching means and introducing it to the diluter without going through a heat exchanger, it is possible to supply the heat storage liquid at room temperature and high concentration to the diluter at the same temperature. can. As a result, by reducing the amount of heat required to cool the diluter and reducing the cooling equipment capacity, or with the same cooling equipment capacity, it is possible to increase the amount of steam generated in the evaporator and increase the cold output. can. In addition, the temperature of the heat storage liquid in the S heat liquid storage tank is
If the temperature is higher than the temperature of the heat storage liquid discharged from the diluter due to operating conditions or weather conditions, the temperature of the heat storage liquid introduced into the diluter via the heat exchanger will be lowered even during heat dissipation in the same way as during heat storage. let

〔実施例〕〔Example〕

以下、本発明に係る濃度差蓄熱装置の一実施例を図面を
参照して説明する。
Hereinafter, one embodiment of the concentration difference heat storage device according to the present invention will be described with reference to the drawings.

第1図に本発明の一実施例を示す。図において。FIG. 1 shows an embodiment of the present invention. In fig.

第6図に示す従来例と同一または同等部分には同一符号
を付して示し、説明を省略する6本実施例の特徴は蓄熱
液貯槽6と濃縮・希釈器2とを連結する供給側配管8,
9に、熱交換器12を迂回するバイパス配管20を設け
、供給側配管8及び排出側配管10にそれぞれ液温測定
器21.22を設け、供給側配管8のバイパス配管2o
との分岐点より熱交換器12側とこのバイパス配管とに
それぞれ電磁開閉弁23.24を設け、さらに前記液温
測定器21.22によって検出された温度信号により電
磁開閉弁23.24を開閉する信号を出力する測定演算
器25を設けた点にある。なお本実施例では冷媒n槽7
側の熱交換器を不要とし、排出側配管10.15と供給
側配管9,13とはそれぞれ戻り配管26.27で接続
されている。
Parts that are the same or equivalent to those of the conventional example shown in FIG. 8,
9 is provided with a bypass piping 20 that bypasses the heat exchanger 12, liquid temperature measuring instruments 21 and 22 are provided on each of the supply side piping 8 and the discharge side piping 10, and the bypass piping 2o of the supply side piping 8 is provided.
Electromagnetic on/off valves 23.24 are provided on the heat exchanger 12 side and this bypass piping from the branch point, respectively, and the electromagnetic on/off valves 23.24 are opened/closed based on the temperature signal detected by the liquid temperature measuring device 21.22. The point is that a measurement calculator 25 is provided which outputs a signal. Note that in this embodiment, the refrigerant n tank 7
A side heat exchanger is not required, and the discharge side pipe 10.15 and the supply side pipes 9, 13 are connected by return pipes 26.27, respectively.

その他の構造は従来例と同様である。The rest of the structure is the same as the conventional example.

次に本実施例の作用を第2図乃至第5図を参照して説明
する。例えば吸収式冷凍機では、蓄熱液としてLiBr
水溶液が、冷媒として水がそれぞれ用いられており、加
熱液、冷却液としても水が用いられている。蓄熱操作時
には第2図に示す系統が用いられる。この場合は前述し
たように、容器1は濃縮器2.凝縮器3.加熱管4.冷
却管5として作用する。加熱管4へは温度約95℃の加
熱液が供給され、冷却管5には温度約30℃の冷却液が
供給されている。これらの加熱液及び冷却液によりそれ
ぞれ蓄熱液及び冷媒を5℃加熱または冷却すると、加熱
液出口温度は約90℃、冷却水出口温度は約35℃とな
り、また熱交換温度差を3℃と仮定すると、それぞれ濃
縮温度は約87℃、凝縮温度は約38℃となる0以上の
条件が満たされた容器1の濃縮器2に、蓄熱液貯槽6か
ら55%濃度のLiBr水溶液を、配管8.熱交換器1
2.配管9を介して導入すると、蓄熱液は61.7% 
まで濃縮され、ポンプ18に吸引されて一部は配管10
へ、また他の大部分は配管26を介して配管9へ流れ、
蓄熱液貯槽6から供給されてくる蓄熱液と混合される。
Next, the operation of this embodiment will be explained with reference to FIGS. 2 to 5. For example, in an absorption refrigerator, LiBr is used as the heat storage liquid.
Water is used as an aqueous solution and a refrigerant, and water is also used as a heating liquid and a cooling liquid. During heat storage operation, the system shown in Figure 2 is used. In this case, as mentioned above, the container 1 is the concentrator 2. Condenser 3. Heating tube 4. It acts as a cooling pipe 5. A heating liquid having a temperature of about 95° C. is supplied to the heating pipe 4, and a cooling liquid having a temperature of about 30° C. is supplied to the cooling pipe 5. When the heat storage liquid and refrigerant are heated or cooled by 5°C with these heating liquid and cooling liquid, respectively, the heating liquid outlet temperature will be approximately 90°C, the cooling water outlet temperature will be approximately 35°C, and it is assumed that the heat exchange temperature difference is 3°C. Then, a 55% concentration LiBr aqueous solution is transferred from the heat storage liquid storage tank 6 to the concentrator 2 of the container 1, which satisfies the conditions of 0 or more, such that the concentration temperature is about 87°C and the condensation temperature is about 38°C, respectively. heat exchanger 1
2. When introduced via pipe 9, the heat storage liquid is 61.7%
It is concentrated to
and most of the other water flows to the pipe 9 via the pipe 26,
It is mixed with the heat storage liquid supplied from the heat storage liquid storage tank 6.

また配管10へ流れた濃度61.7%の媒体は温度87
℃であるため、熱交換器12において蓄熱液貯槽6から
の蓄熱液に熱を伝え、この蓄熱液を30℃から76.2
℃まで昇温する。従って30℃から76.2℃までの顕
熱変化に要する熱量は前記加熱水から得る必要はなく、
また1度61.7%のLiBr水溶液は30℃まで冷却
されるため、蓄熱液貯槽6内に排出されてもこの貯槽6
は常温貯槽でよく、貯槽6の材質の低廉化が図れる。ま
た濃縮器2で発生した水蒸気は凝縮器3に移動し、38
℃で復水されて冷媒貯槽7へ溜まる。
In addition, the medium with a concentration of 61.7% flowing into the pipe 10 has a temperature of 87%.
℃, heat is transferred to the heat storage liquid from the heat storage liquid storage tank 6 in the heat exchanger 12, and the heat storage liquid is heated from 30℃ to 76.2℃.
Raise the temperature to ℃. Therefore, the amount of heat required for the sensible heat change from 30°C to 76.2°C does not need to be obtained from the heated water.
In addition, since the LiBr aqueous solution with a concentration of 61.7% is cooled to 30°C, even if it is discharged into the heat storage liquid storage tank 6, this storage tank 6
A room temperature storage tank may be used, and the material of the storage tank 6 can be made at low cost. In addition, the water vapor generated in the condenser 2 moves to the condenser 3,
The water is condensed at ℃ and accumulated in the refrigerant storage tank 7.

次に放熱操作時の作用を第3図及び第4図を参照して説
明する。この場合は前述したように、容器1は希釈器2
.蒸発器3.冷却管4.加熱管5として作用する。冷却
管4に冷却水を流し、加熱管5に加熱水を流すことによ
り、希釈器2及び蒸発器3の操作条件が設定される。例
えば、濃度61.7%、温度30℃のLiBr水溶液が
希釈器2へ導入され、蒸発器3で発生した水蒸気を吸収
して濃度が55%まで希釈されると同時に昇温するが、
冷却水により冷却されて約38℃となる。
Next, the action during the heat dissipation operation will be explained with reference to FIGS. 3 and 4. In this case, as mentioned above, container 1 is diluter 2.
.. Evaporator 3. Cooling pipe 4. It acts as a heating tube 5. By flowing cooling water through the cooling pipe 4 and flowing heated water through the heating pipe 5, operating conditions for the diluter 2 and the evaporator 3 are set. For example, a LiBr aqueous solution with a concentration of 61.7% and a temperature of 30° C. is introduced into the diluter 2, absorbs the water vapor generated in the evaporator 3, and is diluted to a concentration of 55%, at the same time raising the temperature.
It is cooled to about 38°C by cooling water.

この蓄熱液はポンプ18によって吸収されて、−部は配
管26を介して配管9へ流れ、他の一部は配管10.熱
交換器12.配管11を介して蓄熱液貯槽6へ戻る。こ
のとき、上述したように配管10から排出される蓄熱液
の方が、配管8,9を通って希釈器2に供給される蓄熱
液より温度が高い場合には、第1図に示す液温測定器2
1.22によってこれを検出し、測定演算器25を介し
て電磁開閉弁23を閉じ24を開いて、蓄熱液をバイパ
ス管路20に流すようにする。この結果、供給側の蓄熱
液は熱交換器12を通らないため熱交換は行なわれず、
蓄熱液は約30℃のまま希釈器2へ導入される。このた
め希釈器2の冷却管4への冷却熱量は、従来の熱交換器
12を介して導入する場合よりも低減することができる
。そして蒸発器3で発生し潜熱を奪われた水は降温して
8℃となり、加熱管5の出口から水温11℃の冷水が得
られる。また配管10から排出される蓄熱液の方が、配
管8,9を通って希釈器2に供給される蓄熱液より温度
が低い場合は、蓄熱操作時と同様に電磁開閉弁23を開
き24を閉じて、供給側及び排出側の両方の蓄熱液が熱
交換器12を流れるようにして、熱交換を行なって供給
側の蓄熱液を冷却する。
This heat storage liquid is absorbed by the pump 18, a - part flows to the pipe 9 via the pipe 26, and the other part flows to the pipe 10. Heat exchanger 12. It returns to the heat storage liquid storage tank 6 via the piping 11. At this time, if the heat storage liquid discharged from the pipe 10 has a higher temperature than the heat storage liquid supplied to the diluter 2 through the pipes 8 and 9 as described above, the liquid temperature shown in FIG. Measuring device 2
1.22, this is detected, the electromagnetic on-off valve 23 is closed and 24 is opened via the measurement calculator 25, and the heat storage liquid is caused to flow into the bypass pipe 20. As a result, the heat storage liquid on the supply side does not pass through the heat exchanger 12, so no heat exchange occurs.
The heat storage liquid is introduced into the diluter 2 at about 30°C. Therefore, the amount of cooling heat transferred to the cooling pipe 4 of the diluter 2 can be reduced compared to the case where the heat is introduced via the conventional heat exchanger 12. The water generated in the evaporator 3 and deprived of latent heat cools down to 8°C, and cold water with a water temperature of 11°C is obtained from the outlet of the heating tube 5. In addition, if the temperature of the heat storage liquid discharged from the pipe 10 is lower than that of the heat storage liquid supplied to the diluter 2 through the pipes 8 and 9, the electromagnetic on-off valve 23 is opened and the valve 24 is opened in the same way as during the heat storage operation. When closed, the heat storage liquid on both the supply side and the discharge side flows through the heat exchanger 12 to perform heat exchange and cool the heat storage liquid on the supply side.

上記の状況をシュミレーション計算した結果を第5図に
示す。この図は熱交換器12の温度効率Φと、蓄熱操作
時に要した加熱量と放熱操作時に得られた冷熱出力量と
によって定まる熱回収率との関係を示したグラフである
。この温度効率Φは下記の式(1)によって与えられる
Figure 5 shows the results of simulation calculations for the above situation. This figure is a graph showing the relationship between the temperature efficiency Φ of the heat exchanger 12 and the heat recovery rate determined by the amount of heating required during heat storage operation and the amount of cold output obtained during heat dissipation operation. This temperature efficiency Φ is given by the following equation (1).

1−tx ここで T1 :高温側入口温度 T2 :高温側出口温度 tl :低温側入口温度 図でわかるように、横軸の熱交換温度効率Φが向上する
につれて、熱回収効率が向上している。
1-tx Here, T1: High-temperature side inlet temperature T2: High-temperature side outlet temperature tl: Low-temperature side inlet temperature As seen in the diagram, as the heat exchange temperature efficiency Φ on the horizontal axis improves, the heat recovery efficiency improves. .

実線は蓄熱操作時及び放熱操作時とも熱交換器12を介
して熱交換した場合を示し、破線は放熱操作時には熱交
換器12を使用しない場合を示しており、この図から本
実施例による蓄熱装置の熱回収効率が向上することは明
らかである。
The solid line shows the case where heat is exchanged via the heat exchanger 12 during both the heat storage operation and the heat radiation operation, and the broken line shows the case where the heat exchanger 12 is not used during the heat radiation operation. It is clear that the heat recovery efficiency of the device is improved.

本実施例によれば、放熱操作時に希釈器2における冷却
管4に供給される冷却水の量を低減することができ、冷
水塔などの冷却水製造装置の容量を低減することが可能
となる。一方、同一容量の冷却水製造装置であれば、冷
却量が向上し、その結果として加熱管5で得られる冷水
熱量の増大を図ることができる。
According to this embodiment, it is possible to reduce the amount of cooling water supplied to the cooling pipe 4 in the diluter 2 during heat dissipation operation, and it is possible to reduce the capacity of a cooling water production device such as a cooling water tower. . On the other hand, if the cooling water production apparatus has the same capacity, the amount of cooling can be improved, and as a result, the amount of heat of the cold water obtained by the heating tube 5 can be increased.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、濃度差蓄熱装置に設け
られた熱交換器のバイパス管路を設けたので、蓄熱操作
時には濃縮器へ供給する蓄熱液の温度を高めて濃縮器へ
の加熱熱量を低減し、放熱操作時には運転条件により熱
交換器を使用せずに希釈器の冷却熱量の低減または冷熱
出力の増大を図ることができ、省エネルギ化が達成され
る。
As described above, according to the present invention, a bypass line for the heat exchanger provided in the concentration difference heat storage device is provided, so that during heat storage operation, the temperature of the heat storage liquid supplied to the concentrator is increased to heat the concentrator. By reducing the amount of heat, it is possible to reduce the amount of cooling heat of the diluter or increase the cooling output without using a heat exchanger depending on the operating conditions during heat dissipation operation, thereby achieving energy savings.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る濃度差蓄熱装置の一実施例の配管
系統図、第2図及び第3図はそれぞれ第1図の蓄熱操作
時及び放熱操作時の配管系統図。 第4図及び第5図はそれぞれ本実施例による蓄熱装置の
操作状態、及び熱交換器の温度効率と熱回収率との関係
を示すグラフ、第6図は従来の濃度差蓄熱装置の一例を
示す配管系統図である。 1・・・容器、2・・・濃縮・希釈器、3・・・凝縮・
蒸発器。 4.5・・・加熱・冷却器、6・・・蓄熱液貯槽、7・
・冷媒貯槽、8,9.to、11,13,14,151
16.26,27・・・配管、12,17・・・熱交換
器、18.19・・・ポンプ、20・・・バイパス配管
、21゜22・・・液温測定器、23.24・・・電磁
開閉弁、25・・・測定演算器。 箔5図 外交傷シュ1肋牟盃
FIG. 1 is a piping system diagram of an embodiment of the concentration difference heat storage device according to the present invention, and FIGS. 2 and 3 are piping system diagrams during heat storage operation and heat dissipation operation of FIG. 1, respectively. FIGS. 4 and 5 are graphs showing the operating state of the heat storage device according to this embodiment and the relationship between the temperature efficiency and heat recovery rate of the heat exchanger, respectively, and FIG. 6 is an example of a conventional concentration difference heat storage device. It is a piping system diagram shown. 1... Container, 2... Concentrator/diluter, 3... Condensate/
Evaporator. 4.5... Heating/cooler, 6... Heat storage liquid storage tank, 7.
・Refrigerant storage tank, 8, 9. to, 11, 13, 14, 151
16. 26, 27... Piping, 12, 17... Heat exchanger, 18. 19... Pump, 20... Bypass piping, 21° 22... Liquid temperature measuring device, 23. 24. ...Solenoid on-off valve, 25...Measurement calculator. Foil 5 Diplomatic Scars 1 Rib Cup

Claims (1)

【特許請求の範囲】 1、蓄熱液の濃縮・希釈器と冷媒の凝縮・蒸発器とから
なりそれぞれに加熱・冷却管が配設された容器と、前記
濃縮・希釈器及び前記凝縮・蒸発器のそれぞれに配管を
介して接続する前記蓄熱液の蓄熱液貯槽及び冷媒の冷媒
貯槽と、該蓄熱液貯槽から前記濃縮・希釈器へ供給され
る蓄熱液と該濃縮・希釈器から前記蓄熱液貯槽へ排出さ
れる蓄熱液とを熱交換する熱交換器とを具備した濃度差
蓄熱装置において、前記濃縮・希釈器と前記蓄熱液貯槽
とを前記熱交換器を介して接続するいずれか一方の配管
に該熱交換器を迂回するバイパス配管を設けるとともに
、それぞれの配管の前記熱交換器入口に液温測定手段を
設けたことを特徴とする濃度差蓄熱装置。 2、熱交換器のそれぞれの蓄熱液入口温度を液温測定手
段により測定し、蓄熱液の濃縮操作時は前記熱交換器を
介して熱交換し、希釈操作時は蓄熱液貯槽から前記熱交
換器へ流入する前記蓄熱液の温度が濃縮・希釈器から前
記熱交換器へ排出される前記蓄熱液の温度より高い場合
は、該蓄熱液を前記熱交換器のいずれか一方のバイパス
配管に流通することを特徴とする濃度差蓄熱装置の運転
方法。
[Scope of Claims] 1. A container comprising a heat storage liquid concentrator/diluter and a refrigerant condenser/evaporator, each of which is provided with a heating/cooling pipe, and the concentrator/diluter and the condenser/evaporator. A heat storage liquid storage tank for the heat storage liquid and a refrigerant storage tank for the refrigerant are connected to each of the heat storage liquid and the refrigerant via piping, and the heat storage liquid is supplied from the heat storage liquid storage tank to the concentrator/diluter, and the heat storage liquid storage tank is supplied from the concentrator/diluter to the heat storage liquid storage tank. In a concentration difference heat storage device comprising a heat exchanger for exchanging heat with a heat storage liquid discharged to a heat storage liquid, either one of the pipes connects the concentrator/diluter and the heat storage liquid storage tank via the heat exchanger. A concentration difference heat storage device, characterized in that a bypass pipe is provided to bypass the heat exchanger, and a liquid temperature measuring means is provided at the inlet of each pipe to the heat exchanger. 2. The temperature of each heat storage liquid inlet of the heat exchanger is measured by a liquid temperature measuring means, and when the heat storage liquid is concentrated, the heat is exchanged through the heat exchanger, and when the heat storage liquid is diluted, the heat exchange is performed from the heat storage liquid storage tank. If the temperature of the heat storage liquid flowing into the heat exchanger is higher than the temperature of the heat storage liquid discharged from the concentrator/diluter to the heat exchanger, the heat storage liquid is distributed to a bypass pipe of either one of the heat exchangers. A method of operating a concentration difference heat storage device, characterized in that:
JP24697988A 1988-09-30 1988-09-30 Concentration difference heat storage device and operation method Expired - Fee Related JPH0660772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24697988A JPH0660772B2 (en) 1988-09-30 1988-09-30 Concentration difference heat storage device and operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24697988A JPH0660772B2 (en) 1988-09-30 1988-09-30 Concentration difference heat storage device and operation method

Publications (2)

Publication Number Publication Date
JPH0293258A true JPH0293258A (en) 1990-04-04
JPH0660772B2 JPH0660772B2 (en) 1994-08-10

Family

ID=17156562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24697988A Expired - Fee Related JPH0660772B2 (en) 1988-09-30 1988-09-30 Concentration difference heat storage device and operation method

Country Status (1)

Country Link
JP (1) JPH0660772B2 (en)

Also Published As

Publication number Publication date
JPH0660772B2 (en) 1994-08-10

Similar Documents

Publication Publication Date Title
JP2782555B2 (en) Absorption heat pump
JPH08114360A (en) Double effective absorption type water cooler/heater
JPH0293258A (en) Concentration difference heat accumulating device and operation method
JPH11337214A (en) Absorption cold/hot water device and operation thereof
JP2013011424A (en) Steam absorption type refrigerating machine
JPS5812507B2 (en) Hybrid type absorption heat pump
KR100402086B1 (en) Automatic Control System and Method for preventing the Crystallization of a Solution in Absorption Refrigerator
JPH0419406Y2 (en)
JPS61119942A (en) Heat pump type hot water supplying device
JP3811632B2 (en) Waste heat input type absorption refrigerator
JP3280085B2 (en) Operation control method in absorption refrigerator
JPH07849Y2 (en) Air-cooled absorption chiller / heater
JP3416289B2 (en) Pressure difference sealing device for absorption refrigerators and water heaters
JPS6135897Y2 (en)
JPH01310272A (en) Absorption type air conditioner
JPH04203861A (en) Absorption type water cooling and/or heating device and operation thereof
JPH0243109B2 (en)
JPH04353370A (en) Heat pump type refrigerating device
JPS6280459A (en) Absorption type heat pump
JPS5844302B2 (en) Hybrid absorption heat pump
JP2003302120A (en) Double-effective absorption heat pump
JPS6113145B2 (en)
JPS5974467A (en) Absorption type heat pump
JPH0484076A (en) Absorption type freezer
JPS5913665B2 (en) Hybrid absorption heat pump

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

LAPS Cancellation because of no payment of annual fees