JPH0484076A - Absorption type freezer - Google Patents

Absorption type freezer

Info

Publication number
JPH0484076A
JPH0484076A JP19481690A JP19481690A JPH0484076A JP H0484076 A JPH0484076 A JP H0484076A JP 19481690 A JP19481690 A JP 19481690A JP 19481690 A JP19481690 A JP 19481690A JP H0484076 A JPH0484076 A JP H0484076A
Authority
JP
Japan
Prior art keywords
cooling water
group
outlet
pipes
absorption device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19481690A
Other languages
Japanese (ja)
Inventor
Akihiro Kawada
章広 川田
Yosaburo Iwato
岩藤 要三良
Yukiie Yoshida
吉田 幸家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP19481690A priority Critical patent/JPH0484076A/en
Publication of JPH0484076A publication Critical patent/JPH0484076A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To provide an absorption type freezer for increasing a condensing performance, keeping a high absorption performance and having a high coefficient of performance(COP) by a method wherein cooling water is branched into two flows, one of the flows is flowed to a condensor, the other flow is flowed to an absorption device, the absorption device is divided into two chambers, dense solution is flowed to an outlet of a flow passage of cooling water and lean solution can be dispersed at an inlet port. CONSTITUTION:A flow passage for a cooling water 7 is divided into two flow passages for cooling waters 7a and 7b. The cooling water 7a passes through a condensor 8 and the cooling water 7b passes through an absorption device 6. The cooling waters merge again at a downstream side. An inside part of the absorption device 6 having the cooling water 7b flowed therein is defined by a partition wall 23 into two chambers of an inlet chamber 21 and an outlet chamber 22. The inlet chamber 21 is provided with a group of cooling water inlet pipes and the outlet chamber 22 is provided with a group of cooling water outlet pipe 6a in such a way as the dilution 12 and dense solution 5 can be dispersed. The rich solution 5 is dispersed onto the group of cooling water outlet pipes 6a and diluted, thereafter become dilution 12 and are dispersed onto the group of cooling water side pipes 6b. One cooling water 7a is directly fed to the condensor 8, so that cooling water 7a of low temperature contributes to condensation and then COP is improved. At the absorption device 6, the cooling water is heat exchanged with the dense solution 5 at the group of pipes 6a of relative high temperature and it is further heat exchanged with dilution 12 at the group 6b of pipes of relative low temperature, resulting in that a high performance can be maintained.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は吸収冷凍機、詳しくはその冷却手段に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an absorption refrigerator, and more particularly to a cooling means thereof.

〔従来の技術〕[Conventional technology]

第2図に従来の吸収冷凍機の模式的構成を示す。 FIG. 2 shows a schematic configuration of a conventional absorption refrigerator.

再生器1で熱源流体2によって希溶液3を加熱・濃縮し
、冷媒蒸気4を発生すると共に、濃溶液5を吸収器6に
送る。冷却水7は、吸収器6を出た後、凝縮器8へとい
うように直列に流れている。
A dilute solution 3 is heated and concentrated by a heat source fluid 2 in a regenerator 1 to generate refrigerant vapor 4, and a concentrated solution 5 is sent to an absorber 6. After leaving the absorber 6, the cooling water 7 flows in series, such as to the condenser 8.

冷媒蒸気4は、凝縮器8で冷却液化し、蒸発器9で冷水
10により加熱され、蒸発して、・吸収器6に入り、冷
却水7により冷却された濃溶液5に吸収される。濃溶液
5は吸収器6で、希溶液3になり、再び再生器1へ戻る
。冷水10は、冷媒蒸気11の蒸発潜熱をうばわれ、冷
却されて、冷房用に供される。
Refrigerant vapor 4 is cooled and liquefied in a condenser 8, heated by cold water 10 in an evaporator 9, evaporated, and then enters an absorber 6 where it is absorbed into a concentrated solution 5 cooled by cooling water 7. The concentrated solution 5 becomes a dilute solution 3 in the absorber 6 and returns to the regenerator 1 again. The cold water 10 absorbs the latent heat of vaporization of the refrigerant vapor 11, is cooled, and is used for cooling.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来の吸収冷凍機には解決すべき次の課題があった
The above-mentioned conventional absorption refrigerator had the following problems to be solved.

即ち、凝縮器8での凝縮温度は、低い程吸収冷凍機の成
績係数(以後COPと書く)は向上する。
That is, the lower the condensation temperature in the condenser 8, the better the coefficient of performance (hereinafter referred to as COP) of the absorption refrigerator.

凝縮温度は、冷却水7の出口温度が低い程低下するが、
従来機では、冷却水7が吸収器6で熱交換して昇温した
後凝縮器8に入るため、冷却水出口温度が高くなり、C
OPの向上が難しいという問題があった。
The condensation temperature decreases as the outlet temperature of the cooling water 7 decreases,
In the conventional machine, the cooling water 7 enters the condenser 8 after exchanging heat with the absorber 6 and raising its temperature, so the cooling water outlet temperature becomes high and the temperature rises.
There was a problem that it was difficult to improve OP.

吸収冷凍機のCOPと凝縮温度との関係を、第3図で説
明する。第3図は圧力−温度線図に表わした吸収冷凍機
のサイクルである。実線が従来機のサイクルを示す。L
、Xzをそれぞれ濃溶液、希溶液の濃度を示している。
The relationship between the COP of the absorption refrigerator and the condensing temperature will be explained with reference to FIG. FIG. 3 is a cycle of an absorption refrigerator shown in a pressure-temperature diagram. The solid line shows the cycle of the conventional machine. L
, Xz indicate the concentration of a concentrated solution and a dilute solution, respectively.

COPはX=X、=ΔXが大きい程向上することは既存
の事実なので、一定の熱源温度T、が与えられていると
き、凝縮温度Tcが低い程(Tc’)、ΔXが大きくと
れ、COPが向上する。
It is an existing fact that COP improves as X = will improve.

凝縮器8の出口での冷却水温度を下げるには、吸収器6
と凝縮器8に並列に冷却水を流し、それぞれの熱交にて
冷却水の人出口温度差を従来と同じ値にする手段がある
が、この場合、冷却水の合計流量が従来より大巾に増加
するため、省水、省エネルギーの面から問題がある。
To lower the cooling water temperature at the outlet of the condenser 8, the absorber 6
There is a method to flow cooling water in parallel to the condenser 8 and to make the difference in temperature at the outlet of the cooling water to the same value as before in each heat exchanger, but in this case, the total flow rate of the cooling water is larger than before. This poses a problem in terms of water and energy conservation.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記課題の解決手段として、吸収器と凝縮器と
に分岐して並列に冷却水を通過させる冷却水流路と、同
冷却水流路に沿って内部を入口側と出口側との2室に区
画された凝縮器と、同凝縮器の上記各室内で中途を屈折
して冷却水流路を形成し、入口側の室にあっては希溶液
を出口側の室にあっては濃溶液をそれぞれ散布される管
群とを具備してなることを特徴とする吸収冷凍機を提供
しようとするものである。
As a means for solving the above problems, the present invention provides a cooling water flow path that branches into an absorber and a condenser and allows cooling water to pass through them in parallel, and two chambers inside the cooling water flow path, one on the inlet side and the other on the outlet side. The condenser is divided into two sections, and each of the above chambers of the condenser is bent in the middle to form a cooling water flow path, with a dilute solution in the inlet side chamber and a concentrated solution in the outlet side chamber. It is an object of the present invention to provide an absorption refrigerating machine characterized by comprising a group of tubes that are respectively dispersed.

〔作用〕[Effect]

本発明は上記のように構成されるので次の作用を有する
Since the present invention is configured as described above, it has the following effects.

一般に吸収冷凍機では吸収器と凝縮器の合計熱交換量を
1.0とすると吸収器が0.7、凝縮器は0.3の熱交
換量となっている。合計熱交換量と冷却水流量が従来と
変わらないならば、冷却水の入口、出口の温度差ΔTo
は従来と′同しとなる。従来は、第2図に示すように冷
却水を吸収器、凝縮器と直列に流しているため、吸収器
、凝縮器での冷却水人出口温度差はそれぞれ0,7ΔT
、、0.3ΔT0である。一方、並列に流すとき吸収器
、凝縮器にそれぞれ入る冷却水流量をWA、W、 、水
の人出口温度差をΔTA、ΔT、とすると、 0.7  0.3          1十     
 ″W・+W・−1=ΔT。
Generally, in an absorption refrigerator, if the total heat exchange amount of the absorber and condenser is 1.0, the absorber has a heat exchange amount of 0.7, and the condenser has a heat exchange amount of 0.3. If the total heat exchange amount and cooling water flow rate remain the same as before, the temperature difference between the cooling water inlet and outlet ΔTo
is the same as before. Conventionally, as shown in Figure 2, the cooling water flows in series with the absorber and condenser, so the temperature difference between the cooling water and the outlet of the absorber and condenser is 0.7ΔT, respectively.
,,0.3ΔT0. On the other hand, if the cooling water flow rates entering the absorber and condenser respectively when flowing in parallel are WA, W, and the temperature difference between the water outlet and outlet is ΔTA, ΔT, then 0.7 0.3 10
"W・+W・-1=ΔT.

ΔTA ΔTc 冷却水の凝縮器出口温度を従来の値より低くするには、
冷却水入口温度をΔTc≦ΔToきする必要があり、こ
のときのΔTA、ΔTcをそれぞれΔT A’+ΔTc
’とすると上式よりΔTa’≧ΔT。
ΔTA ΔTc To make the cooling water condenser outlet temperature lower than the conventional value,
The cooling water inlet temperature must be ΔTc≦ΔTo, and ΔTA and ΔTc at this time are respectively ΔT A'+ΔTc
', then from the above formula, ΔTa'≧ΔT.

≧ΔTc’となる。(ΔT^′、ΔTc′については第
3図を参照) 従って上記構成では冷却水流路を分岐して並列に流し、
従来より、吸収器の冷却水流量を少なくし、凝縮器への
冷却水流量を多くすることにより、凝縮温度を低下する
ことができる。
≧ΔTc'. (See Figure 3 for ΔT^' and ΔTc') Therefore, in the above configuration, the cooling water flow paths are branched and flowed in parallel,
Conventionally, the condensing temperature can be lowered by reducing the flow rate of cooling water to the absorber and increasing the flow rate of cooling water to the condenser.

また、上記構成の吸収器では、冷却水流路を屈折して2
つの管群とすることにより、従来例より冷却水流量が減
少しても管内流速を上昇させ、伝熱性能を確保し得ると
共に、2室に分けた吸収器の出口側の室では吸収温度の
高い濃溶液を、温度の高い出口側冷却水管群で冷却し、
同しく入口側の室では吸収温度の低い希溶液を、温度の
低い入口側冷却水管群で冷却することで、性能を維持す
ることができる。
In addition, in the absorber with the above configuration, the cooling water flow path is refracted to create two
By using two tube groups, even if the cooling water flow rate is reduced compared to the conventional example, the flow velocity in the tubes can be increased and heat transfer performance can be ensured. A highly concentrated solution is cooled by a group of cooling water pipes on the outlet side, which have a high temperature.
Similarly, in the chamber on the inlet side, performance can be maintained by cooling the dilute solution with a low absorption temperature through a group of cooling water pipes on the inlet side with a low temperature.

〔実施例〕〔Example〕

本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described with reference to FIG.

第1図は本実施例に係る吸収冷凍機の模式的構成図で従
来例の第2図と同様の構成部材には同符号を付し、説明
を省略する。
FIG. 1 is a schematic block diagram of an absorption refrigerator according to this embodiment, and the same components as those in FIG. 2 of the conventional example are given the same reference numerals and their explanations will be omitted.

第1図において、冷却水7の流路は冷却水7a7bの2
つの流路に分岐され、冷却水7aは凝縮器8を経由して
、冷却水7bは吸収器6を経由して、下流で再び合流す
るよう構成されている。即ち、冷却水7は分岐されて凝
縮器8と吸収器6とを並列に流れる。
In FIG. 1, the flow path of the cooling water 7 is 2 of the cooling water 7a7b.
The cooling water 7a passes through the condenser 8, the cooling water 7b passes through the absorber 6, and the flow paths are configured to be branched into two, and to join again downstream. That is, the cooling water 7 is branched and flows through the condenser 8 and the absorber 6 in parallel.

冷却水7bの流れる吸収器6内は隔壁23によって人口
室21、出口室22の2室に区画されており、人口室2
1には冷却水7bの流路を屈折した冷却水入口側管群6
bが、出口室22には同しく冷却水出口側管群6aがそ
れぞれ希溶液12、濃溶液5を散布可能に設けられてい
る。
The interior of the absorber 6 through which the cooling water 7b flows is divided by a partition wall 23 into two chambers: a population chamber 21 and an outlet chamber 22.
1 includes a cooling water inlet side tube group 6 that bends the flow path of the cooling water 7b.
Similarly, in the outlet chamber 22, a cooling water outlet side tube group 6a is provided so as to be able to spray the dilute solution 12 and the concentrated solution 5, respectively.

吸収器6内では冷却水7bの流路は直列状に冷却水出口
側管群6aと冷却水入口側管群6bとに別れており、濃
溶液5は、先ず冷却水出口側管群6aの上に散布され、
希釈された後、希溶液12となって、冷却水入口側管群
6bの上に散布される。
In the absorber 6, the flow path of the cooling water 7b is divided into a cooling water outlet side tube group 6a and a cooling water inlet side tube group 6b in series, and the concentrated solution 5 first flows through the cooling water outlet side tube group 6a. sprinkled on top,
After being diluted, it becomes a dilute solution 12 and is sprayed onto the cooling water inlet side tube group 6b.

以上の通り、本実施例によれば冷却水7を分岐して、そ
の一方の冷却水7aを直接、凝縮器8へ送るので、従来
のように吸収器6を経た冷却水に比し低温の冷却水7a
が凝縮に寄与することになりCOPが向上する。
As described above, according to this embodiment, the cooling water 7 is branched and one of the cooling water 7a is sent directly to the condenser 8, so the temperature is lower than that of the cooling water that passes through the absorber 6 as in the conventional case. Cooling water 7a
contributes to condensation, improving COP.

また、分岐されて水量の減った冷却水7bを送給される
吸収器6では、直列する冷却水出口側管群6aと冷却水
入口側管群6bとの2つの管群に冷却水7bを通し、高
温でも冷媒蒸気の吸収能力の高い濃溶液5と比較的高温
側の冷却水出口側管群6aで熱交換させ、比較的低温側
の冷却水入口側管群6bでは希溶液12と熱交換させる
ので結果として高い性能が維持される。
In addition, in the absorber 6 to which the cooling water 7b whose water amount has been reduced due to branching is supplied, the cooling water 7b is supplied to two tube groups, a cooling water outlet side tube group 6a and a cooling water inlet side tube group 6b, which are connected in series. The concentrated solution 5, which has a high ability to absorb refrigerant vapor even at high temperatures, exchanges heat with the cooling water outlet side tube group 6a on the relatively high temperature side, and the dilute solution 12 exchanges heat with the cooling water inlet side tube group 6b on the relatively low temperature side. As a result, high performance is maintained.

第3図は上記実施例と従来例との各サイクルにおける性
能比較線画で、−点鎖線が上記実施例のサイクル、実線
が従来例のサイクルである。
FIG. 3 is a line drawing comparing the performance in each cycle of the above embodiment and the conventional example, where the dashed-dotted line is the cycle of the above embodiment and the solid line is the cycle of the conventional example.

図において、ΔTc≦ΔToとすることで凝縮温度が従
来のTcから、Tc’まで低下し、これに伴ない再生蓋
圧力が低下し、濃溶液濃度が従来のX、からXl′に移
り、XI’  X2>XI  X2となって濃度中が大
きくなり、吸収冷凍機のCoPが向上する。即、ち、実
施例のCOPが高いことが分る。
In the figure, by setting ΔTc≦ΔTo, the condensation temperature decreases from the conventional Tc to Tc', the regeneration lid pressure decreases accordingly, the concentrated solution concentration shifts from the conventional X, to Xl', and XI 'X2>XI X2, the concentration increases, and the CoP of the absorption refrigerator improves. That is, it can be seen that the COP of the example is high.

〔発明の効果〕〔Effect of the invention〕

本発明は上記のように構成されるので次の効果を有する
Since the present invention is configured as described above, it has the following effects.

即ち、冷却水を分岐し、その一方を直接、凝縮器に流す
ので、冷却能率がよく、従って、凝縮性能が高まる。
That is, since the cooling water is branched and one of the branches is flowed directly to the condenser, the cooling efficiency is good, and therefore the condensing performance is improved.

また、分岐された冷却水の他方を吸収器に流すについて
、吸収器内を2室に分け、冷却水の流路の途中をそれぞ
れ管群として各室に設け、出口側(後流側)に濃溶液を
、入口側(上流側)に希溶液をそれぞれ散布可能とする
ので、従来例に比し、冷却水量は滅したにも拘らず、高
い吸収性能が維持される。
In addition, in order to flow the other branched cooling water into the absorber, the inside of the absorber is divided into two chambers, and the middle of the cooling water flow path is provided as a group of tubes in each chamber, and the outlet side (slipstream side) is Since a concentrated solution and a dilute solution can be sprayed on the inlet side (upstream side), high absorption performance is maintained compared to the conventional example even though the amount of cooling water is reduced.

以上の結果、COPの高い吸収冷凍機が得られる。As a result of the above, an absorption refrigerator with high COP can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る吸収冷凍機の模式的構
成図、第2図は従来の吸収冷凍機の模式的構成図、第3
図は従来の吸収冷凍機のサイクルと上記実施例のサイク
ルの性能比較図である。 6・・・吸収器、     6a・・・冷却水入口側管
群、6b・・・冷却水出口側管群、7.7a、7b・・
・冷却水、8・・・凝縮器、     21・・・入口
室、22・・・出口室、     23・・・隔壁。 代理人 弁理士 坂 間   暁 外2名 L!:!R 手続補正書 (自発) 平成2年9月4日
FIG. 1 is a schematic diagram of an absorption refrigerator according to an embodiment of the present invention, FIG. 2 is a diagram of a conventional absorption refrigerator, and FIG. 3 is a diagram of a conventional absorption refrigerator.
The figure is a performance comparison diagram of a conventional absorption refrigerator cycle and the cycle of the above embodiment. 6... Absorber, 6a... Cooling water inlet side tube group, 6b... Cooling water outlet side tube group, 7.7a, 7b...
- Cooling water, 8... Condenser, 21... Inlet chamber, 22... Outlet chamber, 23... Partition wall. Agent: Patent Attorney Akigai Sakama, 2 people! :! R Procedural amendment (voluntary) September 4, 1990

Claims (1)

【特許請求の範囲】[Claims] 吸収器と凝縮器とに分岐して並列に冷却水を通過させる
冷却水流路と、同冷却水流路に沿って内部を入口側と出
口側との2室に区画された凝縮器と、同凝縮器の上記各
室内で中途を屈折して冷却水流路を形成し、入口側の室
にあっては希溶液を出口側の室にあっては濃溶液をそれ
ぞれ散布される管群とを具備してなることを特徴とする
吸収冷凍機。
A cooling water flow path that branches into an absorber and a condenser and passes the cooling water in parallel, a condenser whose interior is divided into two chambers, an inlet side and an outlet side, along the cooling water flow path, and the condenser. A cooling water flow path is formed by bending the cooling water in each of the chambers of the vessel, and a group of tubes are provided to spray a dilute solution in the chamber on the inlet side and a concentrated solution in the chamber on the outlet side. An absorption refrigerator that is characterized by
JP19481690A 1990-07-25 1990-07-25 Absorption type freezer Pending JPH0484076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19481690A JPH0484076A (en) 1990-07-25 1990-07-25 Absorption type freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19481690A JPH0484076A (en) 1990-07-25 1990-07-25 Absorption type freezer

Publications (1)

Publication Number Publication Date
JPH0484076A true JPH0484076A (en) 1992-03-17

Family

ID=16330736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19481690A Pending JPH0484076A (en) 1990-07-25 1990-07-25 Absorption type freezer

Country Status (1)

Country Link
JP (1) JPH0484076A (en)

Similar Documents

Publication Publication Date Title
JPS61119954A (en) Absorption heat pump/refrigeration system
JPS5913670B2 (en) Dual effect absorption refrigeration equipment
JP3824436B2 (en) Triple effect absorption refrigerator
JPH0278866A (en) Refrigerator of absorption type
KR101690303B1 (en) Triple effect absorption chiller
JPH0484076A (en) Absorption type freezer
CN107388617A (en) Fume hot-water compound type lithium bromide absorption type refrigeration unit
JPH0581816B2 (en)
JP2000154946A (en) Triple effect absorption refrigeration machine
KR20080094985A (en) Hot-water using absorption chiller
JP2779565B2 (en) Absorption refrigerator
JP3762217B2 (en) refrigerator
JPS61140762A (en) Evaporator for non-eutectic mixed medium
CN107477907A (en) Fume hot-water compound type lithium bromide absorption type handpiece Water Chilling Units
JPH0350463A (en) Absorption refrigerator
JPH07151417A (en) Engine exhaust heat recovery/absorption cold/hot water supplier
JP2517421B2 (en) Absorption refrigerator
JPH0198863A (en) Absorption refrigerator
JP2000088391A (en) Absorption refrigerating machine
JPS6135897Y2 (en)
JPS6122224B2 (en)
JPH0658186B2 (en) Double-effect absorption chiller / heater
JP2004011928A (en) Absorption refrigerator
JP3811632B2 (en) Waste heat input type absorption refrigerator
JPH03144262A (en) Absorption refrigerator