JPS61140762A - Evaporator for non-eutectic mixed medium - Google Patents

Evaporator for non-eutectic mixed medium

Info

Publication number
JPS61140762A
JPS61140762A JP26172784A JP26172784A JPS61140762A JP S61140762 A JPS61140762 A JP S61140762A JP 26172784 A JP26172784 A JP 26172784A JP 26172784 A JP26172784 A JP 26172784A JP S61140762 A JPS61140762 A JP S61140762A
Authority
JP
Japan
Prior art keywords
evaporator
medium
evaporation chamber
heat source
azeotropic mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26172784A
Other languages
Japanese (ja)
Inventor
小山 由夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26172784A priority Critical patent/JPS61140762A/en
Publication of JPS61140762A publication Critical patent/JPS61140762A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/02Details of evaporators
    • F25B2339/024Evaporators with refrigerant in a vessel in which is situated a heat exchanger
    • F25B2339/0242Evaporators with refrigerant in a vessel in which is situated a heat exchanger having tubular elements

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は非共沸混合媒体を用いた冷凍装置やヒートポン
プ、あるいは地熱バイナリ−発電プラントなど(−使用
される非共沸混合媒体用蒸発器に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to an evaporator for a non-azeotropic mixed medium used in a refrigeration device, a heat pump, or a geothermal binary power generation plant using a non-azeotropic mixed medium. .

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ここで、非共沸混合冷媒用蒸発器がいかなる箇所(=使
用されているかを理解するために、例として冷凍装置の
場合について考えてみる。第10図は非共沸混合媒体を
用いた冷凍装置の概略構成を示す図であり、図中14は
圧縮機、17は凝縮器、13は膨張機構、18は蒸発器
であり、装置内には非共沸混合媒体が封入されている。
Here, in order to understand where the evaporator for non-azeotropic mixed refrigerants is used, let's consider the case of a refrigeration system as an example. It is a diagram showing a schematic configuration of the device, in which 14 is a compressor, 17 is a condenser, 13 is an expansion mechanism, and 18 is an evaporator, and a non-azeotropic mixed medium is sealed in the device.

圧縮機14で圧縮された媒体は凝縮器17で工業用水な
どの冷却水Hと熱交換され、高圧状態で凝縮する。液化
された媒体は膨張機構13で減圧されて蒸発器18に導
かれる。
The medium compressed by the compressor 14 undergoes heat exchange with cooling water H such as industrial water in the condenser 17, and is condensed in a high pressure state. The liquefied medium is depressurized by the expansion mechanism 13 and guided to the evaporator 18 .

ここで媒体は冷水として外部に供給される低温の熱源流
体りによって対向流形式で加熱されて低圧状態で蒸発し
、圧縮機14へ供給される。第10図の冷凍装置内C二
封入されている非共沸混合媒体は沸点の異なる2種類以
上の媒体を混合させたもので、気相と液相の組成が異な
り、一定圧力のもとで蒸発、凝縮させた場合でも、その
相変化過程で温度変化を生じるような媒体である。この
ような媒体を用い、しかも先に述べた如く蒸発器におい
て冷水と非共沸混合媒体とを対向流形式で熱交換させる
と、熱交換過程の温度差による不可逆損失が減り、ひい
ては装置の高効率化が実現できるため、この種の非共沸
混合媒体を用いた冷凍装置が最近特に注目されるように
なった。
Here, the medium is heated in a countercurrent manner by a low-temperature heat source fluid stream supplied externally as cold water, evaporated at low pressure, and supplied to the compressor 14. The non-azeotropic mixed medium enclosed in C2 in the refrigeration equipment shown in Figure 10 is a mixture of two or more types of media with different boiling points, and the gas phase and liquid phase have different compositions, and under constant pressure. It is a medium that causes temperature changes during the phase change process even when evaporated or condensed. If such a medium is used and heat is exchanged between cold water and a non-azeotropic mixed medium in the evaporator in a counter-flow manner as described above, irreversible losses due to temperature differences in the heat exchange process will be reduced, and the equipment will be more expensive. Recently, refrigeration equipment using this type of non-azeotropic mixed media has attracted particular attention because of its ability to improve efficiency.

その実施にあたっては低温熱源流体L(冷水)の温度降
下と非共沸混合媒体の蒸発過程における温度上昇をでき
るだけ一致させることによって大きな効果を生じさせる
ことができる。
In implementing this, a great effect can be produced by matching the temperature drop of the low-temperature heat source fluid L (cold water) and the temperature rise in the evaporation process of the non-azeotropic mixed medium as much as possible.

従来非共沸混合媒体用蒸発器としては熱源流体と媒体と
を完全対向流形式で熱交換させるために管内で流れなが
ら蒸発をさせる二相流形式の熱交換器が使用されている
。しかしながら、この二相流形式の蒸発器には媒体の流
れ方向≦二人きな圧力損失を生じるという大きな欠点が
あった。この圧力損失は圧縮機の吸込流量の減少や蒸発
器における媒体の温度変化の減少を引き起こすため、非
共沸混合媒体を使用してもその特性を十分に利用するこ
とが困難であった。
Conventionally, as an evaporator for a non-azeotropic mixed medium, a two-phase heat exchanger is used in which evaporation occurs while flowing in a tube in order to exchange heat between a heat source fluid and a medium in a completely counter-flow manner. However, this two-phase flow type evaporator has a major drawback in that a pressure loss occurs in the flow direction of the medium ≦2. This pressure loss causes a decrease in the suction flow rate of the compressor and a decrease in the temperature change of the medium in the evaporator, so even if a non-azeotropic mixed medium is used, it has been difficult to fully utilize its characteristics.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮してなされたもので、その目的
とするところは、非共沸混合媒体と熱源流体との間の熱
交換時における不可逆的なエネルギ損失を抑制でき、し
かも媒体の圧力損失をほとんど生じない高性能な非共沸
混合媒体用蒸発器を提供することにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to suppress irreversible energy loss during heat exchange between a non-azeotropic mixed medium and a heat source fluid, and to reduce the pressure of the medium. An object of the present invention is to provide a high-performance evaporator for non-azeotropic mixed media that causes almost no loss.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明は非共沸混合媒体を
熱源流体によって加熱し蒸発せしめる非共沸混合媒体用
蒸発器において蒸発器を前記熱源流体の流れ方向に沿っ
た複数の蒸発室より構成し、それぞれの蒸発室に蒸気取
出口を設け、かつ前記熱源流体の最下流側に位置する蒸
発室に外部より供給された非共沸混合媒体が各蒸発室で
一部蒸発した後、順次隣接する熱源流体上流側の蒸発室
C三浦入するように隣接する蒸発室間に冷媒液の導通路
を設ける構成とした。
In order to achieve the above object, the present invention provides an evaporator for a non-azeotropic mixed medium that heats and evaporates a non-azeotropic mixed medium with a heat source fluid, in which the evaporator is connected to a plurality of evaporation chambers along the flow direction of the heat source fluid. a steam extraction port is provided in each evaporation chamber, and after the non-azeotropic mixed medium supplied from the outside to the evaporation chamber located on the most downstream side of the heat source fluid is partially evaporated in each evaporation chamber, A refrigerant liquid conduction path is provided between adjacent evaporation chambers so that the adjacent heat source fluid enters the evaporation chamber C Miura on the upstream side.

〔発明の効果〕〔Effect of the invention〕

本発明によれば組成の異なる非共沸混合媒体を複数の蒸
発室に同一圧力レベルで各別に作用させられるため、蒸
発器内で媒体の温度を熱源流体の温度変化のパターンC
:沿うように階段状に変えることができ、熱交換時の不
可逆損失を低減できる。
According to the present invention, since non-azeotropic mixed media having different compositions can be applied to a plurality of evaporation chambers individually at the same pressure level, the temperature of the medium in the evaporator can be changed to the pattern C of the temperature change of the heat source fluid.
: Can be changed into a step-like shape, reducing irreversible loss during heat exchange.

しかも、二相流形蒸発器のような圧力損失を全く生じな
いため、非共沸混合媒体の特性を有効適切に利用するこ
とができる。
Moreover, unlike a two-phase flow evaporator, no pressure loss occurs, so the characteristics of the non-azeotropic mixed medium can be effectively and appropriately utilized.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例によって説明する。 Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図、第2図は本発明の一実施例である非共沸混合媒
体用蒸発器の概略構成を示す図である。
FIGS. 1 and 2 are diagrams showing a schematic configuration of an evaporator for a non-azeotropic mixed medium, which is an embodiment of the present invention.

第1図に示すように本発明に係る非共沸混合媒体用蒸発
器の大きな特徴の一つはその内部が熱源流体りの流れ方
向に沿った複数(第1図では4室)の蒸発室(第1蒸発
室1a、第2蒸発室1b、第8蒸発室1c、第4蒸発室
1d)より構成されていることにある。すなわち、軸心
を水平方向にして配置した円筒体2の右側開口および左
側開口が蓋体8a、8bでそれぞれ閉塞され、さらには
その着体8a、ab間に形成された空間が複数(第1図
では8枚)の仕切板4で区画され、前記の第1蒸発室1
a乃至第4蒸発室1dが設けられている。各蒸発室の上
方には蒸気取出口(第1蒸気取出口5a、第2蒸気取出
口5b、第8蒸気取出ロ5C1第4蒸気取出ロ5d )
が取付けられており、また、蒸発器内には第2図に示す
如く複数の伝熱管6からなる伝熱管束7が上記蓋体3a
、 3b sそして仕切板4を貫通する形で配設されて
いる。伝熱管束の一端開口側、つまりは前記蓋体8aの
右側には熱源流体取入室8aが設けられ、伝熱管束7の
他端開口側、つまりは前記蓋体3bの左側には熱源流体
取出室8bが設けられ、これらの取入室8aおよび取出
室8bは伝熱管束7を介して連通している。前記熱源流
体りはこの取入室8aに供給され、伝熱管6の管内を流
れた後、取出室8bより外部へ導かれる。
As shown in Fig. 1, one of the major features of the evaporator for non-azeotropic mixed media according to the present invention is that its interior has a plurality of (four in Fig. 1) evaporation chambers along the flow direction of the heat source fluid. (The first evaporation chamber 1a, the second evaporation chamber 1b, the eighth evaporation chamber 1c, and the fourth evaporation chamber 1d). That is, the right side opening and left side opening of the cylindrical body 2, which is arranged with its axis in the horizontal direction, are respectively closed by the lids 8a and 8b, and furthermore, the spaces formed between the attached bodies 8a and ab are The first evaporation chamber 1 is divided by partition plates 4 (eight in the figure).
A to fourth evaporation chambers 1d are provided. Above each evaporation chamber is a steam outlet (first steam outlet 5a, second steam outlet 5b, eighth steam outlet 5C1, fourth steam outlet 5d).
is attached to the evaporator, and as shown in FIG.
, 3b s and are arranged so as to penetrate through the partition plate 4. A heat source fluid intake chamber 8a is provided at one end of the heat transfer tube bundle, that is, on the right side of the lid 8a, and a heat source fluid intake chamber is provided at the other end of the heat transfer tube bundle 7, that is, on the left side of the lid 3b. A chamber 8b is provided, and the intake chamber 8a and the extraction chamber 8b communicate with each other via the heat exchanger tube bundle 7. The heat source fluid stream is supplied to the intake chamber 8a, flows inside the heat transfer tube 6, and then guided to the outside from the extraction chamber 8b.

さらに、熱源流体りの最下流側に位置する蒸発室(第1
図では第1蒸発室1a )には媒体人口9が、また隣接
する蒸発室間には媒体液の導通路(第1導通路10aS
第2導通路10b1第8導通路10c )が設けられて
いるため、冷媒人口9を介して第1蒸発室la内に外部
より非共沸混合媒体11を供給し伝熱管束7を液中Cユ
浸らせるとともに伝熱管束7の各伝熱管6内に熱源流体
りを通流させると外部より供給された媒体は各蒸発室で
プール沸騰により一部蒸発した後、順次隣接する熱源流
体上流側の蒸発室に流入していく。
Furthermore, the evaporation chamber (first
In the figure, there is a medium population 9 in the first evaporation chamber 1a), and a medium liquid conduit path (first conduit path 10aS) between adjacent evaporation chambers.
Since the second conduction path 10b1 and the eighth conduction path 10c) are provided, the non-azeotropic mixed medium 11 is supplied from the outside into the first evaporation chamber la through the refrigerant population 9, and the heat transfer tube bundle 7 is submerged in C. When the heat source fluid is passed through each heat transfer tube 6 of the heat transfer tube bundle 7, the medium supplied from the outside is partially evaporated by pool boiling in each evaporation chamber, and then sequentially flows into the adjacent heat source fluid upstream side. into the evaporation chamber.

すなわち、外部より第1蒸発室1aに供給された非共沸
混合媒体11は第1蒸発室1aで熱源流体L Cよって
加熱され、その一部は蒸気11aとなり蒸気取出口5a
より蒸発器外に取出される。一方、未蒸発液118′は
前記第1導通路10aを通って第2蒸発室1bへ流入し
、それ以降順次、同様の操作が行なわれて各蒸発室より
それぞれ蒸気11b、llc。
That is, the non-azeotropic mixed medium 11 supplied from the outside to the first evaporation chamber 1a is heated by the heat source fluid LC in the first evaporation chamber 1a, and a part of it becomes steam 11a and flows through the steam outlet 5a.
is taken out of the evaporator. On the other hand, the unevaporated liquid 118' flows into the second evaporation chamber 1b through the first conduit 10a, and from then on, similar operations are performed one after another to produce steam 11b, llc from each evaporation chamber, respectively.

lidが外部へ取出される。The lid is taken out to the outside.

図中、llb’、llc’はそれぞれ第2導通路iob
と第8導通路10cを通る媒体の未蒸発液を示す。ここ
で、本実施例の蒸発器においてはポンプを使わずに液静
水頭の差によって媒体が順次隣接する蒸発室に流入する
ようにしているため、第1図に示す如く、各蒸発室に若
干の液位差が生じる。この液位差が大きくなり過ぎるよ
うな場合には媒体液の導通路に小型ポンプを設置し、媒
体液を隣りの蒸発室に送り込んでもよいし、蒸発器を若
干傾斜させて設置し、媒体液を流れやすくすることもで
きる。
In the figure, llb' and llc' are respectively second conductive paths iob.
and shows the unevaporated liquid of the medium passing through the eighth conduction path 10c. Here, in the evaporator of this embodiment, a pump is not used and the medium is made to flow into adjacent evaporation chambers sequentially by the difference in liquid hydrostatic head, so as shown in FIG. A difference in liquid level occurs. If this liquid level difference becomes too large, you can install a small pump in the medium liquid conduit passage to send the medium liquid to the adjacent evaporation chamber, or install the evaporator with a slight inclination to increase the medium liquid level. It can also be made easier to flow.

さて、以上C二詳細を述べた本発明による非共沸混合媒
体用蒸発器の作用C二ついて第3図に示すような冷凍装
置に使用した場合を例にとって説明する。
Now, the function of the evaporator for non-azeotropic mixed media according to the present invention, which has been described in detail above, will be explained by taking as an example the case where C2 is used in a refrigeration system as shown in FIG.

第8図に示した冷凍装置が従来技術を説明するに用いた
第10図の冷凍装置と異なる点は本発明による非共沸混
合媒体用蒸発器12を使用していることにあり、その他
の同一部分については同一符号で示し、その説明を省略
する。第8図において膨張機構13で減圧されて二相状
態になった非共沸混合媒体11は第1図で説明したよう
に熱源流体りの最下流側の蒸発室に取付けられた媒体入
口9を介して蒸発器12内に供給され、各蒸発室で一部
蒸発した後、順次導通路を介して隣接する蒸発室に流入
する。各蒸発室で発生した蒸気は第1蒸気取出口5a乃
至第4蒸気取出口5dから外部へ取出され、合流した後
圧縮機14の吸込口に導かれる。
The refrigeration system shown in FIG. 8 differs from the refrigeration system shown in FIG. 10 used to explain the prior art in that it uses the evaporator 12 for non-azeotropic mixed media according to the present invention. Identical parts are designated by the same reference numerals and their explanations will be omitted. In FIG. 8, the non-azeotropic mixed medium 11, which has been reduced in pressure by the expansion mechanism 13 and has become a two-phase state, enters the medium inlet 9 installed in the evaporation chamber on the most downstream side of the heat source fluid stream, as explained in FIG. After being partially evaporated in each evaporation chamber, it sequentially flows into the adjacent evaporation chamber via the conduit. The steam generated in each evaporation chamber is taken out from the first steam outlet 5a to the fourth steam outlet 5d, and after joining together, is led to the suction port of the compressor 14.

このような構造にすると組成の異なる非共沸混合媒体を
複数の蒸発室に同一圧力レベルで各別に作用させられる
ため、蒸発器内で媒体の温度を熱源流体の温度変化のパ
ターンに沿うように階段状C二変えることができ、熱交
換時の不可逆損失を低減できる。
With this structure, non-azeotropic mixed media with different compositions can be applied to multiple evaporation chambers individually at the same pressure level, so the temperature of the medium can be adjusted in the evaporator to follow the pattern of temperature change of the heat source fluid. It is possible to change the step shape C2 to reduce irreversible loss during heat exchange.

その効果について2成分(AとB)からなる非共沸混合
媒体を例にとって具体的に説明する。第4図はその混合
媒体の一定圧力P=Po(蒸発器内圧力)における気液
平衡関係を示す図である。
The effect will be specifically explained using a non-azeotropic mixed medium consisting of two components (A and B) as an example. FIG. 4 is a diagram showing the vapor-liquid equilibrium relationship at a constant pressure P=Po (evaporator internal pressure) of the mixed medium.

縦軸のtは温度、横軸のXAは人成分の重量分率を意味
する。xA=0(B成分だけ)におけるtいXA = 
1 (人成分だけ)における1AはそれぞれB成分とA
成分の圧力P。における飽和温度であり、図ではBの方
が飽和温度が高い、つまりは蒸発しく二くいようになっ
ている。図には)(A−Q;t=tB、xA=1;t=
tAの2点を通る2本の曲線が描かれている。上の曲線
は気相線と呼ばれ、下の曲線は液相線と言う。平衡状態
では気相線より上の領域では混合媒体は蒸気のみ、また
液相線より下の領域では液体しか存在し得ない。両回線
の間の領域は液体、気体の共存領域である。
t on the vertical axis means temperature, and XA on the horizontal axis means the weight fraction of human components. tXA at xA=0 (B component only) =
1A in 1 (human component only) is the B component and A, respectively.
component pressure P. In the figure, B has a higher saturation temperature, that is, it is more likely to evaporate. In the figure) (A-Q; t=tB, xA=1; t=
Two curves passing through two points tA are drawn. The upper curve is called the gas phase line, and the lower curve is called the liquidus line. In the equilibrium state, only vapor can exist in the mixed medium in the region above the gas phase line, and only liquid can exist in the region below the liquidus line. The region between the two lines is a region where liquid and gas coexist.

さて、第1図〜第3図で説明した本発明による蒸発器内
の状態をこの第4図上に記すと次のようになる。蒸発器
入口の媒体11は二相状態であるため気相線と液相線の
間に位置する点1で表されるが、第1蒸発室で熱源流体
Ll二よって加熱されると蒸発室内の液再循環の効果が
加わるため、第1蒸発室内の液と蒸気はそれぞれ点a′
と点aで示される成分状態になる。当然のことながら、
第1導通路10aを通って第2蒸発室に流入する未蒸発
液118′の成分も点a′で示される。その時の温度は
1aである。
Now, the state inside the evaporator according to the present invention explained in FIGS. 1 to 3 is shown in FIG. 4 as follows. Since the medium 11 at the evaporator inlet is in a two-phase state, it is represented by point 1 located between the gas phase line and the liquidus line, but when it is heated by the heat source fluid L2 in the first evaporation chamber, Due to the added effect of liquid recirculation, the liquid and vapor in the first evaporation chamber are respectively at point a'
The component state is as shown by point a. As a matter of course,
The component of the unevaporated liquid 118' flowing into the second evaporation chamber through the first conduit 10a is also indicated by point a'. The temperature at that time is 1a.

同様に第2蒸発室の液と蒸気は点b′と点す第8#  
 #   I  点C′と点C第4ff   #   
#  点d′と点dで表わされ、その温度はta+’b
+t。+ td  の順C二高くなっていく。
Similarly, the liquid and vapor in the second evaporation chamber are connected to point b' at #8.
# I Point C' and point C 4th ff #
# Represented by points d' and d, whose temperature is ta+'b
+t. +td becomes higher in the order of C2.

第5図はその蒸発器内部の温度と熱源流体りの温度を表
示したものである。図よりわかるように、第4蒸発室1
d側から第1蒸発室la側へ流れる熱源流体りは線分t
Lで示されるように流れ方向に温度低下を生ずるわけで
あるが、先に述べた如く蒸発器内の媒体温度が第1蒸発
室から第4蒸発室に向かってt、 < tb< t、 
< t4  と段階的に高くなっているため、両者の熱
交換時C二おける不可逆的エネルギ損失(第5図の斜線
部に相当)を単一成分の媒体を用いた場合に比べて著し
く抑制することができる。また、二相流形蒸発器のよう
な圧力損失を全く生じないために非共沸混合媒体の特性
を有効に利用することができる。
FIG. 5 shows the temperature inside the evaporator and the temperature of the heat source fluid. As can be seen from the figure, the fourth evaporation chamber 1
The heat source fluid flowing from the d side to the first evaporation chamber la side is a line segment t
As shown by L, the temperature decreases in the flow direction, but as mentioned earlier, the medium temperature in the evaporator increases from the first evaporation chamber to the fourth evaporation chamber as t, < tb < t,
<t4, which increases stepwise, so that irreversible energy loss (corresponding to the shaded area in Figure 5) in C2 during heat exchange between the two is significantly suppressed compared to when a single component medium is used. be able to. In addition, unlike a two-phase flow type evaporator, there is no pressure loss, so the characteristics of a non-azeotropic mixed medium can be effectively utilized.

なお、本発明の非共沸混合媒体用蒸発器の蒸発室は仕切
板で仕切るものに限らず、独立した蒸発器として複数備
えることもできる。
Note that the evaporation chamber of the evaporator for non-azeotropic mixed media of the present invention is not limited to one partitioned by partition plates, and a plurality of evaporators may be provided as independent evaporators.

第6図は第1図、第2図で説明した本発明の一実施例の
変形例である。第6図が第1図、第2図の蒸発器と異な
る点は媒体液の導通路(10a、 10b。
FIG. 6 shows a modification of the embodiment of the present invention explained in FIGS. 1 and 2. FIG. The difference between the evaporator shown in FIG. 6 and the evaporator shown in FIGS. 1 and 2 is that the evaporator shown in FIG.

10c )を仕切板4の下部を一部削除して蒸発器内に
設けたことにある。発明の作用効果は前述の実施例と全
く同じである。
10c) is provided in the evaporator by removing a portion of the lower part of the partition plate 4. The effects of the invention are exactly the same as those of the previous embodiments.

本発明に係る非共沸混合媒体用蒸発器はかならずしも前
述の実施例のように横型に限られるものではなく、第7
図に示すような縦型としても十分使用できる。この場合
C:は、熱源流体りの最下流側に位置する蒸発室(第1
蒸発室1a )が他の第2蒸発室1b乃至第4蒸発室1
dより上方に位置するよう蒸発器を設置し、媒体が各蒸
発室でプール沸騰により一部蒸発した後、隣接して下方
に位置する蒸発室にオーバーフローする形で順次流入す
るようになっている。前述の実施例と同一の部分には同
一符号を付してその説明を省略する。
The evaporator for non-azeotropic mixed media according to the present invention is not necessarily limited to the horizontal type as in the above-mentioned embodiments, but is
It can also be used as a vertical type as shown in the figure. In this case, C: is the evaporation chamber (first
Evaporation chamber 1a) is the other second evaporation chamber 1b to fourth evaporation chamber 1
The evaporator is installed above d, and after the medium is partially evaporated by pool boiling in each evaporation chamber, it sequentially flows into the adjacent evaporation chamber located below in the form of overflow. . Components that are the same as those in the previous embodiment are designated by the same reference numerals, and their description will be omitted.

さらに、本発明C二係る非共沸混合媒体用蒸発器はかな
らずしもこれまでに説明したようなプール沸騰蒸発方式
のものだけに限らない。第8図は本発明に係る他の実施
例を示すものである。
Furthermore, the evaporator for non-azeotropic mixed media according to the present invention C2 is not necessarily limited to the pool boiling evaporation type described above. FIG. 8 shows another embodiment according to the present invention.

この蒸発器は前述の実施例とは異なり媒体を伝熱管6外
に流下させながら蒸発させる流下液膜蒸発式のものであ
る。
This evaporator is of a falling film evaporation type in which the medium is evaporated while flowing down outside the heat transfer tube 6, unlike the previous embodiment.

各蒸発室ごとに媒体液分散用のナイストリピユータ(第
1ディストリビュータ15a、第2ディストリビュータ
i5b、saディストリビュータ15c。
Nice repeaters for medium liquid dispersion for each evaporation chamber (first distributor 15a, second distributor i5b, sa distributor 15c).

第4デイストリビユータ15d)と媒体液分散用ポンプ
(第1ポンプ16a、第2ポンプ16b、第3ポンプ1
6c、第4ポンプ16d)を設置し、伝熱管外に媒体液
を流下させたこと以外は構造的に前述の実施例と大きく
異なる点はなく、同一部分は同一符号で示し説明を省略
する。本実施例において得られる効果は前述の実施例と
同様であり、これによって高性能な非共沸混合媒体用蒸
発器を提供することができる。
fourth distributor 15d) and medium liquid dispersion pumps (first pump 16a, second pump 16b, third pump 1
6c and a fourth pump 16d) are installed, and the liquid medium is caused to flow down outside the heat transfer tube, there is no major structural difference from the previous embodiment, and the same parts are designated by the same reference numerals and the explanation thereof will be omitted. The effects obtained in this example are similar to those of the previous example, and thereby a high-performance evaporator for non-azeotropic mixed media can be provided.

さて、これまでの実施例においては媒体は熱源流体最上
流側に位置する蒸発室(第4蒸発室1d)ですべて蒸発
するような構造になっているが、本発明はそれ以外の場
合にも効果的に作用する。
Now, in the embodiments described above, the structure is such that the medium is completely evaporated in the evaporation chamber (fourth evaporation chamber 1d) located on the most upstream side of the heat source fluid, but the present invention can also be used in other cases. Works effectively.

第9図は本発明に係る他の実施例を示す図である。第9
図の実施例がこれまでに説明した実施例と異なる点は熱
源流体りの最上流側蒸発室(第4蒸発室1d)内の媒体
液11d′を熱源流体最上流側の蒸発室(第1蒸発室1
a)に一部戻すための媒体液分散用用接続配管19を設
けたことにある。この場合C二は、媒体液11d′の移
送はポンプ20によって行なわれている。その他の部分
は第1図の実施例と全く同じであり、同一部分には同一
符号をつけてその説明を省略する。このような構造にす
ると媒体液を蒸発器内で再循環させることができるため
、蒸発器に外部より供給される非共沸混合媒体11の成
分組成が同じ場合でもその再循環量を変えることによっ
て蒸発器内での媒体の温度変化の幅を任意に変えること
ができ、蒸発器を最適な条件で使用することが可能とな
る。
FIG. 9 is a diagram showing another embodiment according to the present invention. 9th
The difference between the embodiment in the figure and the embodiments described so far is that the medium liquid 11d' in the evaporation chamber (fourth evaporation chamber 1d) on the most upstream side of the heat source fluid is Evaporation chamber 1
The reason is that a connecting pipe 19 for medium liquid dispersion is provided for returning a portion of the liquid to a). In this case, in C2, the medium liquid 11d' is transferred by the pump 20. The other parts are completely the same as those in the embodiment shown in FIG. 1, and the same parts are given the same reference numerals and the explanation thereof will be omitted. With this structure, the medium liquid can be recirculated within the evaporator, so even if the component composition of the non-azeotropic mixed medium 11 supplied from the outside to the evaporator is the same, by changing the amount of recirculation. The width of the temperature change of the medium within the evaporator can be arbitrarily changed, making it possible to use the evaporator under optimal conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の概略構成を示す断面図、第
2図は第1図の矢視X−X断面を示す図、第8図は本発
明の実施例に係る非共沸混合媒体用蒸発器を組込んだ冷
凍装置のサイクル構成図、第4図および第5図は実施例
の作用説明図、第6図は第1図に示した実施例の変形例
を示す図、第7図乃至第9図は本発明の他の実施例を示
す図、第10図は非共沸混合媒体用蒸発器に関する従来
技術を説明するための冷凍装置のサイクル構成図である
。 L・・・熱源流体 1a・・・第1蒸発室 1b・・・第2蒸発室1c・・
・第8蒸発室 1d・・・第4蒸発室5a・・・第1蒸
気取出口 5b・・・第2蒸気取出口5c・・・第3蒸
気取出口 5d・・・第4蒸気取出口10a・・・第1
導通路 iob・・・第2導通路10c・・・第8導通
路 11・・・非共沸混合媒体19・・・媒体液再循環
用接続配管 代理人 弁理士 則 近 憲 佑 (ほか1名)第8図 1−1   .7 t3                    /4第
、4図 θ                  l′A戒ト廿
礒χA 第5図 第7図 第8図 第9図 /q−−べ迩人再徨環用猪蟻郵嗜 ンθ−−−片Jン7゜ 第10図
FIG. 1 is a cross-sectional view showing a schematic configuration of an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along arrow X-X in FIG. 1, and FIG. 8 is a non-azeotropic A cycle configuration diagram of a refrigeration system incorporating a mixed medium evaporator, FIGS. 4 and 5 are explanatory diagrams of the operation of the embodiment, and FIG. 6 is a diagram showing a modification of the embodiment shown in FIG. 1. FIG. 7 to FIG. 9 are diagrams showing other embodiments of the present invention, and FIG. 10 is a cycle configuration diagram of a refrigeration system for explaining the prior art related to an evaporator for a non-azeotropic mixed medium. L...Heat source fluid 1a...First evaporation chamber 1b...Second evaporation chamber 1c...
・Eighth evaporation chamber 1d...Fourth evaporation chamber 5a...First vapor outlet 5b...Second vapor outlet 5c...Third vapor outlet 5d...Fourth vapor outlet 10a ...First
Conduit path iob...Second conduit path 10c...Eighth conduit path 11...Non-azeotropic mixed medium 19...Connection piping for medium liquid recirculation Agent Patent attorney: Kensuke Chika (and one other person) ) Figure 8 1-1. 7 t3 /4th, 4th figure θ l'A precept to 廿礒χA 5th figure 7th figure 8th figure 9th figure / q--be 迩迩人 re-wandering ring θ --- piece J7゜Figure 10

Claims (2)

【特許請求の範囲】[Claims] (1)金属性の伝熱面を介して非共沸混合媒体を熱源流
体によつて加熱し蒸発せしめる非共沸混合媒体用蒸発器
において、蒸発器を前記熱源流体の流れ方向に沿つた複
数の蒸発室より構成し、それぞれの蒸発室に蒸気取出口
を設け、かつ前記熱源流体の最下流側に位置する蒸発室
に外部より供給された非共沸混合媒体が各蒸発室で一部
蒸発した後、順次隣接する熱源流体上流側の蒸発室に流
入するように隣接する蒸発室間に媒体液の導通路を設け
たことを特徴とする非共沸混合媒体用蒸発器。
(1) In an evaporator for a non-azeotropic mixed medium that heats and evaporates a non-azeotropic mixed medium with a heat source fluid via a metallic heat transfer surface, the evaporator is arranged in a plurality of evaporators along the flow direction of the heat source fluid. Each evaporation chamber is provided with a steam outlet, and a non-azeotropic mixed medium supplied from the outside to the evaporation chamber located on the most downstream side of the heat source fluid is partially evaporated in each evaporation chamber. 1. An evaporator for a non-azeotropic mixed medium, characterized in that a medium liquid conduction path is provided between adjacent evaporation chambers so that the medium liquid sequentially flows into the evaporation chambers on the upstream side of the adjacent heat source fluid.
(2)熱源流体の最上流側に位置する蒸発室内の冷媒液
を熱源流体最下流側の蒸発室へ戻すための媒体液再循環
用接続配管を設けたことを特徴とする特許請求の範囲第
1項記載の非共沸混合媒体用蒸発器。
(2) A medium liquid recirculation connection pipe is provided for returning the refrigerant liquid in the evaporation chamber located on the most upstream side of the heat source fluid to the evaporation chamber on the most downstream side of the heat source fluid. The evaporator for non-azeotropic mixed media according to item 1.
JP26172784A 1984-12-13 1984-12-13 Evaporator for non-eutectic mixed medium Pending JPS61140762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26172784A JPS61140762A (en) 1984-12-13 1984-12-13 Evaporator for non-eutectic mixed medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26172784A JPS61140762A (en) 1984-12-13 1984-12-13 Evaporator for non-eutectic mixed medium

Publications (1)

Publication Number Publication Date
JPS61140762A true JPS61140762A (en) 1986-06-27

Family

ID=17365866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26172784A Pending JPS61140762A (en) 1984-12-13 1984-12-13 Evaporator for non-eutectic mixed medium

Country Status (1)

Country Link
JP (1) JPS61140762A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069678A (en) * 2003-08-21 2005-03-17 Balcke-Duerr Gmbh Heat exchanger or method of installing degassing tube
JP2007155158A (en) * 2005-12-01 2007-06-21 T Rad Co Ltd Connecting structure of heat exchanger
JP2011043269A (en) * 2009-08-19 2011-03-03 Mayekawa Mfg Co Ltd Ice-making machine
JP2017072329A (en) * 2015-10-08 2017-04-13 株式会社Ihi Multitube heat exchanger
JP2021038898A (en) * 2019-09-05 2021-03-11 荏原冷熱システム株式会社 Evaporator used in turbo refrigerator, and turbo refrigerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005069678A (en) * 2003-08-21 2005-03-17 Balcke-Duerr Gmbh Heat exchanger or method of installing degassing tube
JP2007155158A (en) * 2005-12-01 2007-06-21 T Rad Co Ltd Connecting structure of heat exchanger
JP2011043269A (en) * 2009-08-19 2011-03-03 Mayekawa Mfg Co Ltd Ice-making machine
JP2017072329A (en) * 2015-10-08 2017-04-13 株式会社Ihi Multitube heat exchanger
JP2021038898A (en) * 2019-09-05 2021-03-11 荏原冷熱システム株式会社 Evaporator used in turbo refrigerator, and turbo refrigerator

Similar Documents

Publication Publication Date Title
US5765391A (en) Refrigerant circulation apparatus utilizing two evaporators operating at different evaporating temperatures
US4442677A (en) Variable effect absorption machine and process
US6935417B1 (en) Solution heat exchanger for absorption refrigerating machine
JPH01137170A (en) Method and device for absorbing heat
JPS5913670B2 (en) Dual effect absorption refrigeration equipment
JP3515998B2 (en) Mechanical compressor
US4512394A (en) Variable effect absorption machine and process
JPS61140762A (en) Evaporator for non-eutectic mixed medium
JPH0473556A (en) Absorption type heat pump
JPH11351697A (en) Heat exchanger and absorption refrigerating machine
JPS61262568A (en) Evaporator for non-azeotropic mixed medium
SE2050093A1 (en) A heat exchanger and refrigeration system and method
JPS61285389A (en) Heat exchanger
JPS5886361A (en) Heat pump device operated by low-temperature source consisting of turbid solution or corrosive solution
JPS62218773A (en) Cold and heat accumulator
JP3852897B2 (en) Absorption refrigerator
GB2314149A (en) Thermosyphon refrigeration apparatus
JPS60238650A (en) Heat pump
JPH0476335A (en) Cooling device and cooling/heating device
JPH08254373A (en) Horizontal type evaporator for nonazeotropic mixture refrigerant
Saravanan et al. Effect of component pressure drops in two-fluid pumpless continuous vapour absorption refrigerator
JP2787182B2 (en) Single / double absorption chiller / heater
JPH03148565A (en) Heat pump device
JPS6219689A (en) Evaporator for use in non-azetropic mixture medium
JPS6219653A (en) Heat pump device