JPS6219689A - Evaporator for use in non-azetropic mixture medium - Google Patents

Evaporator for use in non-azetropic mixture medium

Info

Publication number
JPS6219689A
JPS6219689A JP15696885A JP15696885A JPS6219689A JP S6219689 A JPS6219689 A JP S6219689A JP 15696885 A JP15696885 A JP 15696885A JP 15696885 A JP15696885 A JP 15696885A JP S6219689 A JPS6219689 A JP S6219689A
Authority
JP
Japan
Prior art keywords
medium
evaporator
tube bundle
heat transfer
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15696885A
Other languages
Japanese (ja)
Inventor
Yoshio Koyama
小山 由夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15696885A priority Critical patent/JPS6219689A/en
Publication of JPS6219689A publication Critical patent/JPS6219689A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate the composition distribution of a medium within the evaporator to provide an evaporator for use in a non-azetropic mixture medium, having an excellent heat- exchange function by disposing smoothing plates for securing the recirculation flowpath of the medium along the longitudinal direction of a heat transfer tube bundle. CONSTITUTION:The smoothing plates 3 are disposed along the longitudinal direction of a heat transfer tube bundle 2 within an evaporating chamber 1 so that the two smoothing plates 3 encircle the side surface of a heat transfer tube bundle 2 along the longitudinal direction of the heat transfer tube bundle 2 so as to secure the recirculation flowpath 6 for a medium liquid 5 between the outer shell of the evaporating chamber 1 and the smoothing plates 3. By the provision of the smoothing plates 3, natural circulation vortexes 19 in the vicinities of the upper parts on the right and left hands of the tube bundle 2, which are produced in a conventional evaporator 12, are eliminated to remove the ununiformity in the medium composition. As a result, since the total surface area of the heat transfer tube bundle 2 is effectively used for the heat transfer, downsizing of the evaporator can be realized. Further, when the present evaporator 20 is incorporated in the thermal apparatus such as a heat pump device, the function anticipation of the device can be easily conducted because no maldistribution of media having different compositions exists in the evaporator 20.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は複数の伝熱管を有するシェルアンドチューブ型
の非共沸混合媒体用蒸発器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a shell-and-tube type evaporator for non-azeotropic mixed media having a plurality of heat transfer tubes.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

本明細書における「蒸発器」の用語はヒートポンプ装置
などで用いられる狭義の蒸発器に限定されることなく、
石油精製プラント、一般化学工業プラントなどで使用さ
れるところの液体物質を蒸発させる機能を持った熱交換
器の一種である装置も含めて指称する。
The term "evaporator" in this specification is not limited to a narrowly defined evaporator used in a heat pump device, etc.
The term also refers to equipment that is a type of heat exchanger that has the function of evaporating liquid substances used in oil refinery plants, general chemical industry plants, etc.

ここで、非共沸混合媒体を蒸発させるための蒸発器がど
のような形で使われるかを理解するために、例としてヒ
ートポンプ装置の場合について説明する。第5図は非共
沸混合媒体を用いたヒートポンプ装置のサイクル構成図
であり、装置の高効率化を実現できるため最近特に注目
されているものである。同図中9は圧縮機、10は凝縮
器、11は膨張弁、12は蒸発器で各装置はパイプPを
介して非共沸混合媒体が封入されている。
Here, in order to understand how an evaporator for evaporating a non-azeotropic mixed medium is used, a case of a heat pump device will be explained as an example. FIG. 5 is a cycle configuration diagram of a heat pump device using a non-azeotropic mixed medium, which has recently attracted particular attention because it can realize high efficiency of the device. In the figure, 9 is a compressor, 10 is a condenser, 11 is an expansion valve, and 12 is an evaporator, each of which is filled with a non-azeotropic mixed medium via a pipe P.

圧縮機9で圧縮された媒体は、凝縮器lOで高温水とし
て外部に供給される被加熱流体Hと熱交換され、高圧状
態で凝縮する。
The medium compressed by the compressor 9 exchanges heat with the heated fluid H supplied to the outside as high-temperature water in the condenser IO, and is condensed in a high-pressure state.

液化された媒体は膨張弁11で減圧されて蒸発器12に
導かれ、ここで媒体は工場温排水などの低温熱源流体り
によって加熱されて低圧状態で蒸発し、再び圧縮機9へ
供給される。第5図のヒートポンプ装置内に封入されて
いる非共沸混合媒体は沸点の異なる2種類以上の媒体を
混合させたもので、気相と液相の組成が異なり、一定圧
力のもとで蒸発、凝縮させた場合でもその相変化過程で
温度変化を生じるような媒体である。
The liquefied medium is depressurized by the expansion valve 11 and guided to the evaporator 12, where the medium is heated by a low-temperature heat source fluid such as factory heated wastewater, evaporates at a low pressure, and is supplied to the compressor 9 again. . The non-azeotropic mixed medium enclosed in the heat pump device shown in Figure 5 is a mixture of two or more types of media with different boiling points, the gas phase and liquid phase have different compositions, and evaporate under constant pressure. , a medium that causes a temperature change during the phase change process even when condensed.

さて、以上に説明したヒートポンプ装置では凝縮器10
と蒸発器12という2つの熱交換器が使用されるが、そ
のうち前者の凝縮器10については熱交換過程の温度差
による不可逆損失の低減を目的として媒体と被加熱流体
Hとが対向して流れる二相流型の熱交換器が使用される
。一方、後者の蒸発器12については工場温排水などの
低温の熱源流体りが大量に存在する場合には必ずしも二
相流型にする必要がないため、蒸発器内での媒体の圧力
損失を生じない浸漬型の満液式蒸発器が非共沸混合媒体
用蒸発器として使用される。
Now, in the heat pump device explained above, the condenser 10
Two heat exchangers, ie, an evaporator 12 and an evaporator 12, are used, and in the former condenser 10, the medium and the heated fluid H flow in opposite directions for the purpose of reducing irreversible loss due to temperature difference in the heat exchange process. A two-phase heat exchanger is used. On the other hand, the latter evaporator 12 does not necessarily need to be a two-phase flow type when there is a large amount of low-temperature heat source fluid such as factory heated wastewater, so pressure loss of the medium within the evaporator may occur. A flooded evaporator of the submerged type is used as an evaporator for non-azeotropic mixed media.

この型の蒸発器12は古くから単−成分媒体用の蒸発器
として広く使用されてきたものであり、例えば第6図、
第7図に示す如く構成されている。
This type of evaporator 12 has long been widely used as an evaporator for single-component media; for example, the one shown in FIG.
It is constructed as shown in FIG.

すなわち、細心を水平方向にして配置した円筒形の外殻
4の左側開口および右側開口を蓋体13a13bによっ
てそれぞれ閉塞させて蒸発室lを形成し、この蒸発室1
の下部および上部には単数あるいは複数2の媒体供給口
14(第6図では2個)および蒸気取出口15(第6図
では2個)が配設されている。前記蒸発室l内には複数
本の伝熱管16からなる伝熱管束2が上記蓋体13a、
13bを貫通する形で水平に配備されている。前記伝熱
管束2の一端開口側、つまりは前記蓋体13Hの左側に
は熱源流体りの取入室17aが設けられ、伝熱管束2の
他端開口側、つまりは前記蓋体13bの右側には熱源流
体りの取出室17bが設けられている。これらの取入室
17aおよび取出室17bは伝熱管束2を介して連通し
ており、熱源流体りはこの取入室17aから伝熱管束2
を構成する伝熱管16内に導入され、その後上記取出口
17bより外部へ導出されるものとなっている。
That is, the left side opening and the right side opening of the cylindrical outer shell 4, which is arranged with the narrow side in the horizontal direction, are respectively closed by the lid body 13a13b to form the evaporation chamber 1.
One or more media supply ports 14 (two in FIG. 6) and steam outlet ports 15 (two in FIG. 6) are provided at the lower and upper portions of the tank. In the evaporation chamber l, a heat exchanger tube bundle 2 consisting of a plurality of heat exchanger tubes 16 is disposed within the lid 13a,
13b and is arranged horizontally. An intake chamber 17a for a heat source fluid is provided on the open end side of the heat exchanger tube bundle 2, that is, on the left side of the lid body 13H, and the intake chamber 17a for the heat source fluid is provided on the open end side of the heat exchanger tube bundle 2, that is, on the right side of the lid body 13b. A heat source fluid extraction chamber 17b is provided. The intake chamber 17a and the extraction chamber 17b communicate with each other via the heat exchanger tube bundle 2, and the heat source fluid flows from the intake chamber 17a to the heat exchanger tube bundle 2.
It is introduced into the heat exchanger tube 16 constituting the heat exchanger tube 16, and then led out to the outside through the outlet 17b.

しかして、媒体供給口14を介して蒸発室l内に非共沸
混合媒体7(ヒートポンプ装置では気液二相状態)を供
給して前記伝熱管束2を媒体液中に浸らせると共に伝熱
管束2の各伝熱’i16内に熱源流体りを通流せしめる
と蒸発室1内の非共沸混合媒体液5は上記熱源流体りに
よって加熱され、沸騰蒸発する。発生した非共沸混合媒
体の蒸気18は蒸発室lの上部に設けられている前記蒸
気取出口15から外部へ取出され、かくして蒸発器とし
ての機能を発揮する。
Then, the non-azeotropic mixed medium 7 (in a heat pump device, a gas-liquid two-phase state) is supplied into the evaporation chamber l through the medium supply port 14, and the heat transfer tube bundle 2 is immersed in the medium liquid, and the heat is transferred. When a heat source fluid is made to flow through each heat transfer 'i16 of the tube bundle 2, the non-azeotropic mixed medium liquid 5 in the evaporation chamber 1 is heated by the heat source fluid and boils and evaporates. The generated vapor 18 of the non-azeotropic mixed medium is taken out to the outside from the vapor outlet 15 provided at the upper part of the evaporation chamber 1, thus functioning as an evaporator.

しかしながら、このような蒸発器12においては伝熱管
束2の一部(第7図に一点鎖線にで囲って示す)に媒体
液の自然循環渦19が発生するため、その部分に外部よ
り供給された非共沸混合媒体が到達しに<<、蒸発室1
内に媒体の組成分布、温度分布が発生し易かった。その
媒体の組成分布、温度分布の発生は結果として蒸発器1
2の熱交換性能の低下を櫂なうための蒸発器12の大型
化や、ヒートポンプ装置内での媒体組成の偏りによる装
置特性の変化などを引起すため、非共沸混合媒体用蒸発
器の技術上の重要な問題になっていた。
However, in such an evaporator 12, a natural circulation vortex 19 of the medium liquid is generated in a part of the heat exchanger tube bundle 2 (indicated by a dashed line in FIG. 7), so that the medium liquid is supplied from the outside to that part. The non-azeotropic mixed medium reaches <<, evaporation chamber 1
It was easy for the composition distribution and temperature distribution of the medium to occur within the range. The composition distribution and temperature distribution of the medium result in the evaporator 1
The evaporator 12 for non-azeotropic mixed media needs to be increased in size to prevent the deterioration in heat exchange performance of 2, and the device characteristics may change due to imbalance in the medium composition within the heat pump device. It was an important technical issue.

ここで、蒸発室1内における媒体の温度分布、組成分布
の発生とその影響について2成分(AとB)からなる非
共沸混合媒体を例にとって説明する。第8図はその混合
媒体の一定圧力P=Poに量分率を意味する。Xム二〇
(B成分のみ)におけるtB1X人=1(A成分のみ)
におけるtAはそれぞれB成分とA成分の圧力POにお
ける飽和温度であり、図では人の方が飽和温度が低い、
つまりは蒸発し易いようになっている。図にはX人=0
;t=宜B、X*=1 ; t=tムの2点を通る2本
の曲線が描かれている。上の曲線Mは気相線とよばれ、
下の曲線Nは液相線と言う。平衡状態では気相線より上
の領域では混合媒体は蒸気のみ、また液相線より下の領
域では液体しか存在し得ない。両曲線の間の領域は液体
、気体の共存領域である。
Here, the occurrence and influence of the temperature distribution and composition distribution of the medium in the evaporation chamber 1 will be explained using a non-azeotropic mixed medium consisting of two components (A and B) as an example. FIG. 8 represents the quantity fraction at a constant pressure P=Po of the mixed medium. tB1X person in X m20 (B component only) = 1 (A component only)
tA in is the saturation temperature at the pressure PO of the B component and A component, respectively, and in the figure, the saturation temperature is lower for humans.
In other words, it evaporates easily. In the diagram, X people = 0
Two curves are drawn that pass through two points: t = yB, X* = 1; t = tm. The upper curve M is called the gas phase line,
The lower curve N is called the liquidus line. In the equilibrium state, only vapor can exist in the mixed medium in the region above the gas phase line, and only liquid can exist in the region below the liquidus line. The area between both curves is the area where liquid and gas coexist.

ここで為第8図中に点iで示される二相状態0非共沸混
合媒体(媒体温度ti、A$、分の重量分率XA i)
が第6図、第7図に示した蒸発器12に供給され、熱源
流体りによって加熱された場合を想定する。もし、仮に
その混合媒体が蒸発室l内に均一に分散供給され、蒸発
器12内で撹拌が十分になされているとすると蒸発室l
内の媒体液5はほぼ第8図中の点aで示される状態、す
なわちA成分重量分率がXA L、媒体温度がtr、に
なり、蒸発器からは点すで示される蒸気が外部に取出さ
れる。しかしながら、実際の蒸発器12にあっては第7
図に示す如く伝熱管束2の左右上部付近(一点鎖iKで
囲った部分)に媒体液の自然循環渦19が発生し、その
箇所に成分XAiの媒体が到達しにくくなり、蒸発し易
いA成分の3ttf分率が小さくなった媒体液が存在す
る。例えば第8図の点Cで示されるような状態であり、
A成分のその媒体温度tI′は第8図よりわかるように
媒体が十分撹拌された場合に得られる媒体温度tLされ
ている伝熱管16が伝熱にあまり寄与しなくなり、伝熱
管16の表面全部を有効に利用できなくなる。そのため
、従来の非共沸混合媒体用の蒸発器12にあっては伝熱
管16の本数を増やしたりして伝熱面積を余分に取らな
ければならず1その結果蒸発器12自体が大型のものに
なってしまった。
Here, the two-phase state 0 non-azeotropic mixed medium shown by point i in FIG. 8 (medium temperature ti, weight fraction XA i in A$, min)
Assume that the water is supplied to the evaporator 12 shown in FIGS. 6 and 7 and heated by a heat source fluid stream. If the mixed medium is uniformly distributed and supplied into the evaporation chamber l and sufficiently stirred in the evaporator 12, then the evaporation chamber l
The medium liquid 5 in the interior is approximately in the state shown by point a in FIG. taken out. However, in the actual evaporator 12, the seventh
As shown in the figure, a natural circulation vortex 19 of the medium liquid is generated near the left and right upper portions of the heat transfer tube bundle 2 (the area surrounded by the single-dot chain iK), making it difficult for the medium of the component A medium liquid exists in which the 3ttf fraction of the components is reduced. For example, the situation is as shown by point C in Figure 8,
As can be seen from FIG. 8, the medium temperature tI' of component A is the medium temperature tL obtained when the medium is sufficiently stirred. cannot be used effectively. Therefore, in the conventional evaporator 12 for non-azeotropic mixed media, it is necessary to increase the number of heat transfer tubes 16 to provide an extra heat transfer area1.As a result, the evaporator 12 itself has to be large. It has become.

また、蒸発器12内に媒体の組成分布が発生すると前述
の熱交換性能の低下とは別の意味で易だ都合の悪いこと
が生じる。すなわち、その分布の度合を定量的に予測す
ることが極めて困難であるため、その蒸発器12を例え
ばヒートポンプ装置などのシステムに組込んだ場合、媒
体組成の偏在のために実際に装置内を循環する媒体の組
成を把握できなσ1、つまりは装置特性を正確に予測で
きないという問題があった。
Furthermore, if a compositional distribution of the medium occurs in the evaporator 12, other inconvenient problems will occur in a sense other than the above-mentioned deterioration of heat exchange performance. In other words, it is extremely difficult to quantitatively predict the degree of distribution, so when the evaporator 12 is incorporated into a system such as a heat pump device, the uneven distribution of the medium composition causes the actual circulation within the device to be difficult. There was a problem in that the composition of the medium to be used could not be ascertained, σ1, and in other words, the device characteristics could not be accurately predicted.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮してなされたもので、その目的
とするところは蒸発器内の媒体の組成分布を解消し、熱
交換性能の良好な非共沸混合媒体用蒸発器を提供するこ
とにある。
The present invention has been made in consideration of the above circumstances, and its purpose is to provide an evaporator for non-azeotropic mixed media that eliminates the compositional distribution of the medium in the evaporator and has good heat exchange performance. It is in.

〔発明の概要〕[Summary of the invention]

本発明は媒体が供給される蒸発室内に複数の伝熱管から
なる伝熱管束を配設し、前記伝熱管内に熱源流体を通流
して前記媒体を加熱沸騰せしめる蒸発器において、前記
蒸発室内の前記伝熱管束の長手方向に沿って前記伝熱管
束の側面を囲う形に少なくとも2枚以上の整流板を配設
し、前記蒸発室の外殻と前記整流板との間に前記媒体の
再循環流路を確保することのできるものである。
The present invention provides an evaporator in which a heat transfer tube bundle consisting of a plurality of heat transfer tubes is arranged in an evaporation chamber to which a medium is supplied, and a heat source fluid is passed through the heat transfer tubes to heat and boil the medium. At least two or more rectifying plates are disposed to surround the side surfaces of the heat exchanger tube bundle along the longitudinal direction of the heat exchanger tube bundle, and the medium is recirculated between the outer shell of the evaporation chamber and the rectifying plate. It is possible to secure a circulation flow path.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来の蒸発器で生じていた媒体の組成
分布を解消し、蒸発器の熱交換性能を向上させることが
できる。
According to the present invention, it is possible to eliminate the compositional distribution of the medium that occurs in conventional evaporators, and improve the heat exchange performance of the evaporator.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細を図示の実施例を参照して説明する
。第1図、第2図は本発明の第1の実施例である非共沸
混合媒体用蒸発器の概略構成を示す図である。同実施例
の構成は先に従来例で示した蒸発器12と略同−の構成
となっており、第6図、第7図に示した蒸発器12と同
一の部分には同一符号を付し、ここでの説明は省略する
The details of the invention will be explained below with reference to the illustrated embodiments. 1 and 2 are diagrams showing a schematic configuration of an evaporator for a non-azeotropic mixed medium, which is a first embodiment of the present invention. The structure of this embodiment is almost the same as that of the evaporator 12 shown in the conventional example above, and the same parts as the evaporator 12 shown in FIGS. 6 and 7 are given the same reference numerals. However, the explanation here will be omitted.

第1図、第2図に示した本発明の@lの実施例である非
共沸混合媒体用蒸発器20が先に第6図、第7図で説明
した従来の非共沸混合媒体用蒸発器12と異なる点は蒸
発室1内の伝熱管束2の長手方向に沿って伝熱管束2の
側面を囲う形に2板の整流板3を配設し、蒸発室1の外
殻4と整流板3との間に媒体液5の再循環流路6を確保
したことにある。この整流板3の設置により、従来の蒸
発器12で発生していた伝熱管束2左右上部近傍の自然
循環渦19がなくなり媒体組成の不均一を解消すること
ができる。
The evaporator 20 for non-azeotropic mixed media, which is an embodiment of the present invention shown in FIGS. The difference from the evaporator 12 is that two rectifier plates 3 are disposed along the longitudinal direction of the heat exchanger tube bundle 2 in the evaporation chamber 1 to surround the sides of the heat exchanger tube bundle 2, and the outer shell 4 of the evaporation chamber 1 is This is because a recirculation flow path 6 for the medium liquid 5 is secured between the and the rectifying plate 3. By installing this straightening plate 3, the natural circulation vortices 19 near the left and right upper portions of the heat exchanger tube bundle 2, which were generated in the conventional evaporator 12, are eliminated, making it possible to eliminate non-uniformity in the medium composition.

その結果、伝熱管束2の全表面積を熱伝達に有効に使え
るため蒸発器の小型化が実現できる。またヒートポンプ
装置等の熱機器に本発明の蒸発器20を組込んだ場合に
は蒸発器20内に組成の異なる媒体の偏在がないことか
ら装置の性能予測が容易となる。
As a result, the entire surface area of the heat transfer tube bundle 2 can be effectively used for heat transfer, so that the evaporator can be downsized. Furthermore, when the evaporator 20 of the present invention is incorporated into a thermal device such as a heat pump device, the performance of the device can be easily predicted because there is no uneven distribution of media with different compositions in the evaporator 20.

第3図、第4図は本発明の第2の実施例である非共沸混
合媒体用蒸発器の概略構成を示す図である。第3図、第
4図に示した第2の実施例が先に第1図、第2図を参照
して説明した第1の実施例と異なる点は外部から供給さ
れた非共沸混合媒体7を整流板3で囲まれた伝熱管束2
の下部に均一に分散させる表面に多数の孔21を有する
長方形状平板からなる媒体分散機構(この場合は分散板
8)を整流板3と媒体供給口14の間で蒸発室l内の下
部に固定配備したことにある。第4図に示す如くこの媒
体分散機構は外部から供給される媒体7が前記再循環流
路6へ直接流れ込まないように遮へい部22を整流板3
に狭まれた部分下部に設けた構造になっている。このよ
うな構造にすることによって先の実施例で説明した本発
明の作用効果はより優れたものとなり、高性能な非共沸
混合媒体用蒸発器を実現することができる。
FIGS. 3 and 4 are diagrams showing a schematic configuration of an evaporator for non-azeotropic mixed media, which is a second embodiment of the present invention. The second embodiment shown in FIGS. 3 and 4 differs from the first embodiment described above with reference to FIGS. 1 and 2 in that the non-azeotropic mixed medium is supplied from outside. 7 is a heat exchanger tube bundle 2 surrounded by a rectifying plate 3
A medium dispersion mechanism (dispersion plate 8 in this case) consisting of a rectangular flat plate having a large number of holes 21 on its surface is placed between the rectifier plate 3 and the medium supply port 14 at the lower part of the evaporation chamber l. This is because it is permanently deployed. As shown in FIG. 4, this medium dispersion mechanism has a shielding portion 22 that is connected to a rectifying plate 3 so that the medium 7 supplied from the outside does not directly flow into the recirculation channel 6.
The structure is such that it is located at the bottom of the narrowed part. By employing such a structure, the effects of the present invention explained in the previous embodiments become more excellent, and a high-performance evaporator for non-azeotropic mixed media can be realized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1の実施例の概略構成を示す断面
図、第2図は第1図の矢視X−X断面を示す断面図、第
3図は本発明の第二の実施例の概略構成を示す断面図、
第4図は第3図の矢視X −X断面を示す断面図、第5
図は非共沸混合媒体用蒸発器に関する従来技術を説明す
るためのヒートポンプ装置のサイクル構成図、第6図は
ヒートポンプ装置に使用される従来の非共沸混合媒体用
蒸発器の概略構成を示す断面図、第7図は第6図の矢視
X−x断面を示す図、第8図は、非共沸混合媒体の気液
平衡関係を示す状態線図である。 1・・・蒸発室、2・・・伝熱管束、3・・・整流板、
4・・・蒸発室の外殻、5・・・媒体液、6・・・再循
環流路、7・・・非共沸混合媒体、8・・・媒体分散機
構、L・・・熱源流体。 代理人 弁理士 則 近 憲 佑 同    竹 花 喜久男 第  2 図 第3図 第4図 第  5 図 第  6 図 第  7 図
1 is a cross-sectional view showing a schematic configuration of a first embodiment of the present invention, FIG. 2 is a cross-sectional view taken along arrow XX in FIG. 1, and FIG. A sectional view showing a schematic configuration of an example,
Figure 4 is a sectional view taken along arrow X-X in Figure 3;
The figure is a cycle configuration diagram of a heat pump device to explain the conventional technology related to an evaporator for a non-azeotropic mixed medium, and FIG. 6 shows a schematic configuration of a conventional evaporator for a non-azeotropic mixed medium used in a heat pump device. 7 is a cross-sectional view taken along the line X--X in FIG. 6, and FIG. 8 is a state diagram showing the vapor-liquid equilibrium relationship of the non-azeotropic mixed medium. 1... Evaporation chamber, 2... Heat exchanger tube bundle, 3... Rectifier plate,
4... Outer shell of the evaporation chamber, 5... Medium liquid, 6... Recirculation channel, 7... Non-azeotropic mixed medium, 8... Medium dispersion mechanism, L... Heat source fluid . Agent Patent Attorney Nori Ken Yudo Takehana Kikuo Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)媒体が供給される蒸発室の外殻内に複数の伝熱管
からなる伝熱管束を配設し、前記伝熱管内に熱源流体を
通流して前記媒体を加熱沸騰せしめる蒸発器において、
前記伝熱管束の長手方向に沿つて、前記媒体の再循環流
路を確保する整流板を配設したことを特徴とする非共沸
混合媒体用蒸発器。
(1) In an evaporator in which a heat transfer tube bundle consisting of a plurality of heat transfer tubes is disposed within the outer shell of an evaporation chamber to which a medium is supplied, and a heat source fluid is passed through the heat transfer tubes to heat and boil the medium,
An evaporator for a non-azeotropic mixed medium, characterized in that a rectifier plate is provided along the longitudinal direction of the heat transfer tube bundle to ensure a recirculation flow path for the medium.
(2)外殻を、外殻部と、この外殻部の中の蒸発室内に
供給される媒体が伝熱管束の下部に略均一に分散させ、
かつ整流板で確保した再循環流路に容易に流れ込まない
よう、蒸発室内の下部に配備した媒体分散機構とで構成
したことを特徴とする特許請求の範囲第1項記載の非共
沸混合媒体用蒸発器。
(2) the outer shell has an outer shell portion and a medium supplied into the evaporation chamber in the outer shell portion is distributed substantially uniformly in the lower part of the heat exchanger tube bundle;
The non-azeotropic mixed medium according to claim 1, further comprising a medium dispersion mechanism disposed at a lower part of the evaporation chamber so as to prevent the medium from easily flowing into the recirculation channel secured by a rectifier plate. evaporator.
JP15696885A 1985-07-18 1985-07-18 Evaporator for use in non-azetropic mixture medium Pending JPS6219689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15696885A JPS6219689A (en) 1985-07-18 1985-07-18 Evaporator for use in non-azetropic mixture medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15696885A JPS6219689A (en) 1985-07-18 1985-07-18 Evaporator for use in non-azetropic mixture medium

Publications (1)

Publication Number Publication Date
JPS6219689A true JPS6219689A (en) 1987-01-28

Family

ID=15639256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15696885A Pending JPS6219689A (en) 1985-07-18 1985-07-18 Evaporator for use in non-azetropic mixture medium

Country Status (1)

Country Link
JP (1) JPS6219689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518953A (en) * 2012-06-06 2015-07-06 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft Heat transfer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015518953A (en) * 2012-06-06 2015-07-06 リンデ アクチエンゲゼルシャフトLinde Aktiengesellschaft Heat transfer

Similar Documents

Publication Publication Date Title
US4688399A (en) Heat pipe array heat exchanger
US6935417B1 (en) Solution heat exchanger for absorption refrigerating machine
JPH10176874A (en) Heat-exchanger
JPS63123993A (en) Heat pipe type heat exchanger
CN207515567U (en) A kind of high-efficiency falling film type evaporation equipment
JPS61119957A (en) Device for supplying absorption refrigeration system with heat
CN109668451A (en) A kind of high-efficiency falling film type evaporation equipment and liquid distribution method
Yi et al. Experimental assessment of a detachable plate falling film heat and mass exchanger couple using lithium bromide and water as working fluids
JPS6219689A (en) Evaporator for use in non-azetropic mixture medium
JP2881593B2 (en) Absorption heat pump
JPS5595091A (en) Heat-transfer element for plate type heat-exchanger
JPS61175492A (en) Evaporator for non-azeotropic mixture medium
JPS61140762A (en) Evaporator for non-eutectic mixed medium
JPS61110881A (en) Heat exchanger
JPS61285389A (en) Heat exchanger
KR100334933B1 (en) Absorber of plate heat exchanger type in Absorption heating and cooling system
JPH01244286A (en) Shell tube type heat exchanger
CN212870869U (en) Vaporization condensation cooler capable of cooling twice
KR100262718B1 (en) Solution Heat Regenerator Structure of Ammonia Absorption System
KR100208181B1 (en) Refrigerant vapor of absorption type cycle
JPS60144593A (en) Heat exchange device
RU1814023C (en) Heat transfer apparatus (options)
JPS6219653A (en) Heat pump device
JPS60599Y2 (en) low temperature generator
JPS61262568A (en) Evaporator for non-azeotropic mixed medium